JPS5827213B2 - Optical transmission line and its manufacturing method - Google Patents
Optical transmission line and its manufacturing methodInfo
- Publication number
- JPS5827213B2 JPS5827213B2 JP56124871A JP12487181A JPS5827213B2 JP S5827213 B2 JPS5827213 B2 JP S5827213B2 JP 56124871 A JP56124871 A JP 56124871A JP 12487181 A JP12487181 A JP 12487181A JP S5827213 B2 JPS5827213 B2 JP S5827213B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- transmission line
- optical transmission
- pipe
- purity quartz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】 本発明は光伝送路とその製法に関する。[Detailed description of the invention] The present invention relates to an optical transmission line and its manufacturing method.
従来、光伝送路としては、光学ガラスでつくられる場合
が多く、このような伝送路は、光学ガラスは石英ガラス
に比べて不純物が入りやすく、原料の純度と溶融工程に
限界があるために、光の吸収損失が大きい。Conventionally, optical transmission lines are often made of optical glass, but optical glass is more susceptible to impurities than quartz glass, and there are limits to the purity of raw materials and the melting process. Light absorption loss is large.
また、他の例として、石英ガラスのクラッド型ファイバ
ーが存在する。Further, as another example, there is a cladding type fiber made of quartz glass.
これは、石英ガラスパイプの内側に、屈折率を石英ガラ
スのそれよりも高めるための金属酸化物をドープした石
英ガラスを積層させ酸素中で焼結させ加熱溶融紡糸して
孔をつぶしてクラッド型ファイバーを作っている。This is made by laminating quartz glass doped with a metal oxide to increase the refractive index higher than that of quartz glass on the inside of a quartz glass pipe, sintering it in oxygen, heating it, melting it, spinning it, and crushing the holes. making fiber.
この後、酸素雰囲気で焼純して歪取りや金属の完全酸化
を行っている。After this, it is annealed in an oxygen atmosphere to remove distortion and completely oxidize the metal.
しかしながら、金属酸化物層を石英ガラスパイプ内に均
一につけることは流れが不均一なため不可能であり、長
さ方向に寸法精度を保つことは非常に困難である。However, it is impossible to uniformly apply the metal oxide layer inside the quartz glass pipe because of the non-uniform flow, and it is very difficult to maintain dimensional accuracy in the length direction.
また、紡糸時に気泡が入るために、孔をつぶすように真
空引きする必要がある。Also, since air bubbles are introduced during spinning, it is necessary to apply vacuum to close the holes.
しかし、真空引きすると金属酸化物やS i02が一部
還元されるため光吸収が大きくなり好ましくない。However, evacuation reduces some of the metal oxides and Si02, which increases light absorption, which is not preferable.
本発明は叙上の従来技術の欠陥を除去したものであって
、その目的とする所は、高純度の石英ガラス(屈折率が
大きい)の周囲にFをドープして低屈折率のSiO2層
を積層した光伝送路及びその製法を提供することであり
、他の目的は、更にその周囲に石英ガラス層を積層した
ファイバー及びその製法を提供することである。The present invention eliminates the deficiencies of the prior art described above, and its purpose is to create a SiO2 layer with a low refractive index by doping F around high-purity quartz glass (with a high refractive index). Another object of the present invention is to provide an optical transmission line in which a quartz glass layer is laminated around the fiber and a method for manufacturing the same.
なお、こ\で示す高純度石英ガラスとは光伝送損失に悪
影響を与えない元素の不純物を微量含んでもよいが、光
伝送損失に悪影響を与えるFeやCuのような遷移金属
類の不純物を実質上含まない石英ガラスを示すものであ
る。The high-purity silica glass shown here may contain trace amounts of elemental impurities that do not adversely affect optical transmission loss, but it does not substantially contain transition metal impurities such as Fe and Cu that adversely affect optical transmission loss. This indicates quartz glass that does not contain the above.
以下、図面を参照して本発明を詳述する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図a、bは、外側に石英ガラス層を成長させた例を
示すもので同図において、a図は紡糸前の石英ガラスロ
ッド又はパイプの断面構造を示し、b図は、aの石英ガ
ラスロッド又はパイプを加熱溶融紡糸した本発明の一実
施例のファイバーの断面構造と屈折率を示す。Figures 1a and 1b show an example in which a quartz glass layer is grown on the outside. 1 shows the cross-sectional structure and refractive index of a fiber according to an embodiment of the present invention obtained by heating and melt-spinning a glass rod or pipe.
同図において、Aはクラッド型ファイバー、Bは光0ガ
イド、Cは放物線状屈折率分布型ファイバーを示し、第
1図a図中、1は高純度の石英ガラス棒又はパイプを示
し、2は弗素(F)を添加することによって石英ガラス
よりも低い屈折率を下げた高純度石英ガラス部分を示し
、3は石英ガラスの層を示し、4は中空部分(こ\では
空気の部分)又はFを添加した高純度石英ガラスを示す
。In the figure, A indicates a cladding type fiber, B indicates an optical zero guide, and C indicates a parabolic graded index fiber. In Fig. 1a, 1 indicates a high-purity quartz glass rod or pipe, and 2 indicates a Indicates a high-purity quartz glass part whose refractive index is lower than that of quartz glass by adding fluorine (F), 3 indicates a layer of quartz glass, and 4 indicates a hollow part (air part in this case) or F This shows high purity quartz glass doped with .
第1図すは、a図に示す石英ガラスロッド又はパイプを
溶融紡糸したファイバーの断面構造を示し、各部の符号
は第1図aに対応している。FIG. 1 shows the cross-sectional structure of a fiber obtained by melt-spinning the quartz glass rod or pipe shown in FIG. 1A, and the numbers of each part correspond to those in FIG. 1A.
なお、Cでは、2の部分と3の部分との境界層の近傍即
ち、層3に近い2の部分は、含有されるF量が多くなり
屈折率が下がっていることを示している。Note that C indicates that near the boundary layer between the portion 2 and the portion 3, that is, the portion 2 near the layer 3, the amount of F contained increases and the refractive index decreases.
なお、上記の図示例で、外側に石英ガラス層3をつけて
いるのは、外気中のH2O又はH2がこの伝送路に含ま
れているFと反応してHFになり、2の部分が浸食され
ることを防止している。In the example shown above, the reason why the quartz glass layer 3 is attached to the outside is because H2O or H2 in the outside air reacts with F contained in this transmission line to become HF, and the part 2 is eroded. prevents it from happening.
第2図は、第1図すに図示したファイバーに紡糸するた
めの石英ガラスのロッド又はパイプのつくり方の一例を
説明するための図を示す。FIG. 2 shows a diagram for explaining an example of how to make a quartz glass rod or pipe for spinning into the fiber shown in FIG.
こSでは、ロッド又はパイプ上にFを含んだSiO2層
を積層する例について述べているが、パイプ内面に積層
する方法をとってよいことはいうまでもない。This S describes an example in which a SiO2 layer containing F is laminated on a rod or pipe, but it goes without saying that a method of laminating the SiO2 layer on the inner surface of the pipe may also be used.
また、これらを相合せたものとしては、下記の例を示す
ことができる。Further, as a combination of these, the following examples can be given.
(1)高純度の石英ガラスパイプ又は石英ガラスロッド
上にFをドープした石英ガラスを積層せしめた後石英ガ
ラスパイプに挿入し、溶融防糸する。(1) F-doped quartz glass is laminated on a high-purity quartz glass pipe or quartz glass rod, and then inserted into the quartz glass pipe and fused and thread-proofed.
(2)石英ガラスパイプの内面にFをドープした石英ガ
ラスを積層せしめた後頁に高純度の石英ガラスを積層せ
しめ、これを直接或いはコラップスして棒状とした後溶
融紡糸する。(2) F-doped quartz glass is laminated on the inner surface of the quartz glass pipe, and then high-purity quartz glass is laminated on the inner surface of the quartz glass pipe, and this is directly or collapsed into a rod shape, and then melt-spun.
(3)石英ガラスパイプの内面にFをドープした石英ガ
ラスを積層せしめた後頁に高純度の石英ガラスロッドを
挿入し、これを直接或いはコラップスして棒状とした後
溶融紡糸する。(3) After laminating F-doped quartz glass on the inner surface of a quartz glass pipe, a high-purity quartz glass rod is inserted into the inner surface of the quartz glass pipe, and this is directly or collapsed into a rod shape and then melt-spun.
以上の場合、5in4を酸化してS i02にする方法
をとるのであるが、この時Fが少量SiO2に含まれる
ようにする。In the above case, a method is used in which 5in4 is oxidized to form SiO2, and at this time, a small amount of F is included in SiO2.
SiF4の合成法としては、周知の高純度の化合物Ba
S i F6 、に2S iF6 、H2SiF6等を
加熱分解するとかSiO2にH3O3Fを作用させると
かS iCl 4にF2を作用させればよい。As a method for synthesizing SiF4, the well-known high-purity compound Ba
S i F6 may be thermally decomposed with 2S iF6 , H2SiF6, etc., H3O3F may be applied to SiO2, or F2 may be applied to S iCl 4 .
第2図において、11は高純度石英ガラス棒又はパイプ
、12はバーナー、13はマツフル、14は排気口を示
す。In FIG. 2, 11 is a high-purity quartz glass rod or pipe, 12 is a burner, 13 is a matzuru, and 14 is an exhaust port.
表面に汚れのない高純度の石英ガラス棒又はパイプ11
を軸方向に往復運動し、かつ回転し得るように配置し、
その上に、バーナーによる酸水素炎を接触し、バーナー
にSiF4のガスを送りこみ次式の反応によってS i
02を作り、5102中にFを含有させる。High purity quartz glass rod or pipe with no dirt on the surface 11
arranged so that it can reciprocate in the axial direction and rotate,
On top of that, an oxyhydrogen flame from a burner is brought into contact, and SiF4 gas is fed into the burner to form SiF4 through the reaction of the following formula.
02 is made and F is contained in 5102.
高温で酸素過剰気味の状態にするとFを含むS + 0
2ができ、これが、前記の石英ロッド又はパイプ1上に
積層する。When the temperature is high and there is a slight excess of oxygen, S + 0 containing F
2 is formed, which is laminated on the quartz rod or pipe 1 described above.
反応によって生じたHPは温度が低くなると逆反応によ
り石英SiO2を浸食するので、排気し、かつ高温に保
持した炉3中にて処理する必要がある。Since the HP produced by the reaction corrodes the quartz SiO2 by a reverse reaction when the temperature becomes low, it is necessary to treat the quartz in the furnace 3 which is evacuated and maintained at a high temperature.
平衡定数を示すと次の通りである。The equilibrium constant is shown as follows.
この他、SiF4以外のハロゲン化物、水素化物、有機
化合物を用いてF20を含む02で酸化してもよい。In addition, oxidation with 02 containing F20 may be performed using a halide, hydride, or organic compound other than SiF4.
場合によっては、02での酸化時にF2等のガス状弗素
化合物を導入してもよい。In some cases, a gaseous fluorine compound such as F2 may be introduced during the 02 oxidation.
なお上記の酸化は高周波プラズマ等で行えばHFが出来
ないのでさらに好ましい。It is more preferable to carry out the above oxidation using high frequency plasma or the like since HF cannot be produced.
次に、本発明の実験例について説明する。Next, an experimental example of the present invention will be explained.
まず、テレックス製反応管にB a S + F aを
入れ、電気炉に装入して減圧しながら温度を200℃に
上げて乾燥し更に300°から500°にて分解した。First, B a S + F a was placed in a Terex reaction tube, placed in an electric furnace, and the temperature was raised to 200° C. while reducing the pressure to dry it, and then decomposed at 300° to 500°.
発生したガスをドライアイス−アセトンのトラップを通
しHFやH2S iF6を凝縮し、次に液体空気トラッ
プでS I F4の白色固体を作った。The generated gas was passed through a dry ice-acetone trap to condense HF and H2SiF6, and then a white solid of SIF4 was produced in a liquid air trap.
次に、これをC2H4の液につけて一104℃にて蒸発
させ、第2図に図示の石英ガラス製の酸水素バーナーに
送りこんだ。Next, this was immersed in a C2H4 solution, evaporated at -104°C, and sent to an oxyhydrogen burner made of quartz glass as shown in FIG.
酸素9 g 7m1yr、水素51/m1yxの流量で
反応させ、運動する10mmφの高純度の石英ガラス上
にF入り5in2を積層させた所20mmφとなった。The reaction was carried out at a flow rate of 9 g of oxygen, 7 ml yr, and hydrogen of 51/ml yx, and a 5 in 2 film containing F was laminated on a moving 10 mm φ high-purity quartz glass, resulting in a diameter of 20 mm.
この時、排気中和剤を通しながら、数台のアスピレータ
で減圧した。At this time, the pressure was reduced using several aspirators while passing an exhaust neutralizer.
更に、その後5i(J’。を02でキャリアーして同じ
バーナーに送す、5102のみの層を積層させ25關φ
となった。Furthermore, after that, 5i (J'. is carried by 02 and sent to the same burner, a layer of only 5102 is stacked and 25 mm φ
It became.
このようにして、石英ガラスロンドを作った後、酸素雰
囲気炉で高温即ち約2000℃近くに加熱し溶融紡糸し
た所、外径235μ、内径95μ(即ち、1の部分)の
クラッド型ファイバーが得られた。After making the silica glass rondo in this way, it was melt-spun by heating it to a high temperature (approximately 2000°C) in an oxygen atmosphere furnace, and a clad-type fiber with an outer diameter of 235μ and an inner diameter of 95μ (i.e., part 1) was obtained. It was done.
このファイバーにレーザ光を投入したところ光はトラッ
プされ伝送損失の少ないものが得られた。When laser light was injected into this fiber, the light was trapped and a fiber with low transmission loss was obtained.
以上説明したように、本発明方法によってつくられた光
伝送路は、前記第1図すのA、B型の場合、光エネルギ
ーの集中する部分は高純度の石英ガラスであるので、吸
収及び散乱による損失が少なく、1の部分と2の部分の
境界には欠陥ができないので、境界での散乱損失が少な
いので、光伝送損失の少ない伝送路が得られる。As explained above, in the case of the A and B types shown in Figure 1, the optical transmission line made by the method of the present invention is capable of absorbing and scattering, since the portion where light energy is concentrated is made of high-purity quartz glass. Since no defects are formed at the boundary between portions 1 and 2, scattering loss at the boundary is small, and a transmission line with low optical transmission loss can be obtained.
また、第1図すのC型の場合、Fが入っていても光の吸
収にはそれほど作用しないので、石英ガラスなみの伝送
損失の少ないものが得られ、またFの量によって屈折率
の制御が容易であり、全体として伝送損失の少ない伝送
路が得られる。In addition, in the case of type C shown in Figure 1, even if F is contained, it does not have much effect on light absorption, so a product with low transmission loss comparable to quartz glass can be obtained, and the refractive index can be controlled by the amount of F. is easy, and a transmission line with little transmission loss can be obtained as a whole.
また、本発明による伝送路は外側に石英ガラスの層3を
つけているので、外気(主に水分)に対して安定であり
、Fを含有する2の部分に対して水分を防いでいるので
HPの反応によって浸食することはない。In addition, since the transmission line according to the present invention has a quartz glass layer 3 on the outside, it is stable against outside air (mainly moisture), and the part 2 containing F is protected from moisture. It does not erode due to HP reaction.
更に、本発明方法は、S i02中のFの量を制御でき
しかも均一にFを分散させる方法を採っており、しかも
、製造時にHの混入を防止し、また紡糸時には酸素雰囲
気中で溶融紡糸するので破壊することがない。Furthermore, the method of the present invention is capable of controlling the amount of F in Si02 and uniformly dispersing F. Moreover, it prevents the incorporation of H during production, and melt-spinning is performed in an oxygen atmosphere during spinning. Therefore, it cannot be destroyed.
本発明による光伝送路は、光伝送用の通信ケーブル、装
置間接続用フィーダ、ライトガイド等に使用して極めて
有効なものとなる。The optical transmission line according to the present invention is extremely effective when used as a communication cable for optical transmission, a feeder for connecting devices, a light guide, etc.
図は本発明の詳細な説明用図であり、第1図aは紡糸前
の石英ガラスロッド又はパイプの断面図を示し、第1図
すは、本発明の実施例の断面構造とその屈折率分布を示
す。
こ\で、Aはクラッド型ファイバー、Bは光Oガイド、
Cは放物線状屈折率分布型ファイバーを示す。
第2図は、第1図すに示したファイバーに紡糸するため
の石英ガラスロンド又はパイプの製造法を説明するため
の図を示す。
第1図において、1は高純度の石英、2は弗素(F)を
添加した高純度の石英、3は石英ガラスを示す。
第2図において、11は高純度の石英ガラス棒又はパイ
プ、12はバーナー 13はマツフル、14は排気口を
示す。The figures are detailed explanatory diagrams of the present invention, in which Figure 1a shows a cross-sectional view of a quartz glass rod or pipe before spinning, and Figure 1a shows the cross-sectional structure of an embodiment of the present invention and its refractive index. Show the distribution. Here, A is clad fiber, B is optical O guide,
C indicates a parabolic graded index fiber. FIG. 2 shows a diagram for explaining a method of manufacturing a quartz glass iron or pipe for spinning into the fiber shown in FIG. In FIG. 1, 1 indicates high-purity quartz, 2 indicates high-purity quartz doped with fluorine (F), and 3 indicates quartz glass. In FIG. 2, 11 is a high-purity quartz glass rod or pipe, 12 is a burner, 13 is a matzuru, and 14 is an exhaust port.
Claims (1)
記領域の外側に弗素をドープした高純度石英ガラスから
成る低屈折率領域を配置したことを特徴とするクラッド
型光伝送路。 2 高純度の石英ガラスパイプ或いは石英ガラスロンド
から成る出発部材の上にSiのハロゲン化物、水素化物
又は有機化合物をガス状の弗素化合物を含む酸素と混合
して燃焼せしめ弗素をドープした石英ガラスを積層せし
め、これを溶融紡糸することを特徴とする高純度石英ガ
ラスから成る高屈折率の中心領域と前記領域の外側に弗
素をドープした高純度石英ガラスから成る低屈折率領域
とを配置したクラッド型光伝送路の製法。[Claims] 1. A cladding type characterized by having a high refractive index central region made of high purity quartz glass, and a low refractive index region made of high purity quartz glass doped with fluorine arranged outside the region. optical transmission line. 2 Si halides, hydrides, or organic compounds are mixed with oxygen containing gaseous fluorine compounds and burned on top of a starting member consisting of a high-purity quartz glass pipe or quartz glass rond to form fluorine-doped quartz glass. A cladding comprising a high-refractive-index central region made of high-purity quartz glass and a low-refractive-index region made of high-purity quartz glass doped with fluorine arranged outside the said region, which is characterized by laminating the layers and melt-spinning them. Manufacturing method for molded optical transmission line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124871A JPS5827213B2 (en) | 1981-08-10 | 1981-08-10 | Optical transmission line and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124871A JPS5827213B2 (en) | 1981-08-10 | 1981-08-10 | Optical transmission line and its manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11834672A Division JPS5515682B2 (en) | 1972-11-25 | 1972-11-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57111259A JPS57111259A (en) | 1982-07-10 |
JPS5827213B2 true JPS5827213B2 (en) | 1983-06-08 |
Family
ID=14896155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56124871A Expired JPS5827213B2 (en) | 1981-08-10 | 1981-08-10 | Optical transmission line and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5827213B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277114U (en) * | 1985-10-30 | 1987-05-18 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59137332A (en) * | 1983-01-21 | 1984-08-07 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3320114A (en) * | 1963-07-31 | 1967-05-16 | Litton Prec Products Inc | Method for lowering index of refraction of glass surfaces |
-
1981
- 1981-08-10 JP JP56124871A patent/JPS5827213B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277114U (en) * | 1985-10-30 | 1987-05-18 |
Also Published As
Publication number | Publication date |
---|---|
JPS57111259A (en) | 1982-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4082420A (en) | An optical transmission fiber containing fluorine | |
US4979971A (en) | Method for producing glass preform for optical fiber | |
US5221309A (en) | Method for producing glass preform for optical fiber | |
US5961682A (en) | Method of fabricating optical fiber doped with rare earth element using volatile complex | |
US4161505A (en) | Process for producing optical transmission fiber | |
JPS6038345B2 (en) | Manufacturing method of glass material for optical transmission | |
US4295869A (en) | Process for producing optical transmission fiber | |
US4643751A (en) | Method for manufacturing optical waveguide | |
KR100866266B1 (en) | Method and apparatus for fabricating optical fiber using improved oxygen stoichiometry and deuterium exposure | |
US4165152A (en) | Process for producing optical transmission fiber | |
US4734117A (en) | Optical waveguide manufacture | |
JP4879019B2 (en) | Method of manufacturing optical fiber and its preform | |
JPH0314789B2 (en) | ||
EP2108624B1 (en) | Rare-earth-doped optical fiber, optical fiber amplifier, and method of manufacturing a preform for such a fiber | |
KR20030040498A (en) | Process for drying porous glass preforms | |
JPS5827213B2 (en) | Optical transmission line and its manufacturing method | |
JPH0788231B2 (en) | Manufacturing method of optical fiber preform | |
JP2005206452A (en) | Fluorine-doped silica glass body manufacturing method, optical fiber preform and optical fiber manufacturing method, and optical fiber | |
JPS5816161B2 (en) | Optical transmission line and its manufacturing method | |
JPS6036343A (en) | Manufacturing method of glass material for optical transmission | |
JPH0818843B2 (en) | Method for manufacturing preform for optical fiber | |
JPH0436100B2 (en) | ||
JP2831842B2 (en) | Manufacturing method of optical fiber base material | |
JPS61158303A (en) | Formation of quartz optical waveguide | |
JPS60239339A (en) | Preparation of parent material for optical fiber |