[go: up one dir, main page]

JPS5825433A - Directional property silicon steel band - Google Patents

Directional property silicon steel band

Info

Publication number
JPS5825433A
JPS5825433A JP12400481A JP12400481A JPS5825433A JP S5825433 A JPS5825433 A JP S5825433A JP 12400481 A JP12400481 A JP 12400481A JP 12400481 A JP12400481 A JP 12400481A JP S5825433 A JPS5825433 A JP S5825433A
Authority
JP
Japan
Prior art keywords
silicon steel
steel band
heat treatment
steel strip
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12400481A
Other languages
Japanese (ja)
Inventor
Harufumi Sakino
先納 治文
Masayuki Wakamiya
若宮 正行
Yukio Hotta
幸男 堀田
Eiichi Hirota
広田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12400481A priority Critical patent/JPS5825433A/en
Publication of JPS5825433A publication Critical patent/JPS5825433A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a directional silicon steel band for a magnetic core material, etc., which has oriented an axis of easy magnetization in the lengthwise direction, by radiating slit-like radiation heat to a silicon steel band obtained by a super-quenching method, relatively moving this heat treatment part and the steel band, and heating them. CONSTITUTION:To a super-quenching steel band 31, slit-like radiation heat is radiated by adjusting a position of a light source 32 for executing the heat treatment, condensing lenses 33, 35, and a slit 34. In this case, a surface layer of the steel band is melted by a condensing line 36, but the center part is constituted so as to be held in a coagulated state. When this optical system is moved in the direction as indicated with an arrow A or B, a boundary of the condensing line 36 moves at the almost same speed as a moving speed of the optical system, and a movement of a heat current also becomes in parallel with a movement of the optical system. A speed of a relative movement of a heat treatment of this band is sent to about 0.01-10mm./min. As a result, the crystal priority length direction is put in order in the lengthwise direction, and it is possible to obtain a directional silicon steel plate for a magetic core materal, which is excellent and low in its loss.

Description

【発明の詳細な説明】 %含有する配向性珪素鋼帯の改良に関するものである。[Detailed description of the invention] % of oriented silicon steel strip.

珪素鋼板は現代のトランス用磁心の最も代表的なものの
一つであり、特に〜磁化容易方向を圧延方向に一致させ
た方向性珪素鋼板は電力用トランス磁心として最も優れ
たものであろう。しかしこれをさらに改良していくもの
の一つとして、従来から研究されているものに高珪素鉄
合金がある。この合金は従来の3チ珪素鉄に較べ、珪素
量が6.5係近傍で電気抵抗率の上昇、磁歪および結晶
磁気異方性の低減により磁心としての鉄損の減少および
雑音の減少につながるものとして期待されている。これ
らの特徴を有するにもかかわらず、未だ工業的製品とし
て出現していないのは、この合金は脆く、冷間圧延が困
難であることに起因する。
Silicon steel sheets are one of the most representative magnetic cores for modern transformers, and in particular grain-oriented silicon steel sheets whose easy magnetization direction coincides with the rolling direction are probably the most excellent as power transformer magnetic cores. However, one of the things that has been researched to further improve this is high-silicon iron alloys. Compared to conventional 3T silicon iron, this alloy has a silicon content of around 6.5, which increases electrical resistivity and reduces magnetostriction and magnetocrystalline anisotropy, leading to lower iron loss and noise as a magnetic core. It is expected as such. Despite having these characteristics, this alloy has not yet appeared as an industrial product because it is brittle and difficult to cold-roll.

一方、近年、超急冷法といわれる熱解の薄帯製造技術が
開発され、非晶質合金や、脆い結晶質合金の薄帯作成に
適用されているのは周知である。このような背景から高
珪素鉄合金(65チ珪素近傍)に適用され、靭性の優れ
た薄帯が得られていることも公知である。この液体超急
冷技術の1つとして開発され、最もよく用いられている
ものに第1図に示す単ロール法がある。すなわち、同図
に示すととく溶湯1を耐熱性ノズル2の中で誘導コイル
3により加熱保持しておき、予め高速に回転している金
属体4の表面へ、ノズル口5から溶湯1をガス圧をかけ
て強制的に噴出さし超急冷をおこない薄帯6を作成する
ものである。かかる製法を解析してみるに、噴出された
溶湯1はロール表面に達した直後に、溶湯1の熱は金属
体4の表面で大部分うばわれる。このとき、第2図に示
されたように、凝固部分7は金属体4の側8から発生し
、順次自由表面9の方に移動してゆく。従って熱流の方
向は矢印Aで示された方向に生じるため、結晶優先成長
方向も熱流の方向と同様、矢印Aの方向に向いている。
On the other hand, it is well known that in recent years, a pyrolytic ribbon production technique called ultra-quenching method has been developed and is applied to the production of ribbons of amorphous alloys and brittle crystalline alloys. From this background, it is also known that it has been applied to high-silicon iron alloys (nearly 65 silicon) and that ribbons with excellent toughness have been obtained. The single roll method shown in FIG. 1 has been developed as one of the liquid ultra-quenching techniques and is most commonly used. That is, as shown in the figure, molten metal 1 is heated and held in a heat-resistant nozzle 2 by an induction coil 3, and the molten metal 1 is injected with gas from a nozzle opening 5 onto the surface of a metal body 4 that is rotating at high speed. The thin ribbon 6 is created by forcibly ejecting the material under pressure and performing ultra-rapid cooling. An analysis of this manufacturing method shows that immediately after the ejected molten metal 1 reaches the roll surface, most of the heat of the molten metal 1 is dissipated on the surface of the metal body 4. At this time, as shown in FIG. 2, the solidified portion 7 originates from the side 8 of the metal body 4 and gradually moves toward the free surface 9. Therefore, since the direction of heat flow occurs in the direction shown by arrow A, the crystal preferential growth direction is also oriented in the direction of arrow A, similar to the direction of heat flow.

珪素鋼は体心立方晶構造をもち、その結晶優先成長方向
は(100)であるので(100)が熱流方向にむく傾
向がある。つまり主として磁化容易軸である(100)
が、銅帯の厚さ方向をむいてしまうことになる。このよ
うな銅帯をトロイダルに巻き、トランスなどの磁心に使
用すると磁化方向と磁化容易軸とが一致しないため、励
磁特性および鉄損などが従来の配向性珪素鋼板に較べて
それほど改善されない。このためこれらの特性を改良す
るためには超急冷鋼帯の長手方向に<ioo>を配向さ
すことが必要である。
Silicon steel has a body-centered cubic crystal structure, and the preferential growth direction of its crystals is (100), so (100) tends to face the direction of heat flow. In other words, it is mainly the axis of easy magnetization (100)
However, the copper strip will be peeled in the thickness direction. When such a copper strip is toroidally wound and used in a magnetic core of a transformer, etc., the magnetization direction and the axis of easy magnetization do not match, so the excitation characteristics and iron loss are not improved much compared to conventional oriented silicon steel sheets. Therefore, in order to improve these properties, it is necessary to orient <ioo> in the longitudinal direction of the ultra-quenched steel strip.

発明者等はいろいろ研究した結果、次のようなことがわ
かった。つまり超急冷鋼帯を不活性雰囲気中で熱処理を
おこなえば帯の移動方向(相対的なもので、帯を固定し
て試料を移動させても同じ)に(100)が非常によく
配向することがわかった。ただし、本発明による帯熱処
理の条件は非常に厳密に制御されなければならない。
As a result of various studies, the inventors discovered the following. In other words, if an ultra-quenched steel strip is heat-treated in an inert atmosphere, (100) will be very well oriented in the direction of movement of the strip (relative; the same is true even if the strip is fixed and the sample is moved). I understand. However, the conditions for the thermal treatment according to the present invention must be very strictly controlled.

第3図は、本発明に使用される帯熱処理部30の構成を
示す図であって、31は超急冷鋼帯、32は光源、33
は第1集光レンズ、34はスリ、ト、35は第2集光レ
ンズ、36は集光ライン、37は雰囲気作成用透明石英
管である。まず、超急冷鋼帯31に対して熱処理を行な
いうる程度の出力を有する光源32と、これからの光エ
ネルギが所定の状態で超急冷鋼帯31に照射されるよう
に第1集光レンズ33、スリット34、第2集光レンズ
35の位置を調整する。すなわち、帯熱処理部をあまり
広げ過ぎると十分な熱エネルギが供給されないので配向
せず、また帯熱処理部をあまり狭くし過ぎると、銅帯が
完全に溶解してしまって、帯形状を保持し得なくなるの
で、集光ライン36では銅帯の表面層は溶解されるが、
中心部は凝固した状態となる程度に保持されねばならな
い。
FIG. 3 is a diagram showing the configuration of a band heat treatment section 30 used in the present invention, in which 31 is an ultra-quenched steel strip, 32 is a light source, and 33 is an ultra-quenched steel strip.
34 is a first condensing lens, 34 is a slit, 35 is a second condensing lens, 36 is a condensing line, and 37 is a transparent quartz tube for creating an atmosphere. First, a light source 32 having an output power sufficient to heat-treat the ultra-quenched steel strip 31, a first condenser lens 33 so that the ultra-quenched steel strip 31 is irradiated with light energy in a predetermined state, The positions of the slit 34 and the second condensing lens 35 are adjusted. In other words, if the heat-treated band is too wide, sufficient thermal energy will not be supplied and the copper strip will not be oriented, and if the heat-treated band is made too narrow, the copper strip will completely melt and will not be able to maintain its shape. Therefore, the surface layer of the copper strip is dissolved in the condensing line 36, but
The center must be retained to the extent that it remains solidified.

このような熱エネルギを与え得るように光学系を調整し
た後、この光学系全体を矢印Bもしくは矢印C方向に移
動させると、集光ライン36には融解部と凝固部との界
面が生じているので、この界面が光学系の移動速度とほ
ぼ同一の速度で移動し、熱流の移動もほぼこの光学系の
移動と平行となり、結晶優先成長方位(5t−Fe系、
の場合には(100))が長手方向にそろえられる。
After adjusting the optical system to give such thermal energy, when the entire optical system is moved in the direction of arrow B or arrow C, an interface between the melting part and the solidifying part is created in the condensing line 36. Therefore, this interface moves at almost the same speed as the moving speed of the optical system, and the movement of heat flow is almost parallel to the movement of this optical system, resulting in crystal preferential growth orientation (5t-Fe system,
(100)) are aligned in the longitudinal direction.

以上のように超急冷鋼帯に帯熱処理を施すとその移動方
向に、つまり銅帯の長手方向に〈100〉を配向させる
ことが可能となる。帯熱処理の速度は0.01 m/分
〜10W/分が望ましい。本発明で得られた銅帯と、超
急冷の状態で得られた通常の熱処理は実施したものの試
料の鉄損値を比較すると第1表のごとくである。本発明
で得られる銅帯は従来の最高の配向性珪素鋼板と較べて
、いかに優れているものであるかが解る。
When the ultra-quenched steel strip is subjected to band heat treatment as described above, it becomes possible to orient the <100> in the direction of movement of the steel strip, that is, in the longitudinal direction of the copper strip. The speed of the heat treatment is preferably 0.01 m/min to 10 W/min. Table 1 shows a comparison of the iron loss values of the copper strip obtained according to the present invention and samples obtained in an ultra-quenched state and subjected to conventional heat treatment. It can be seen how superior the copper strip obtained by the present invention is compared to the conventional best oriented silicon steel sheet.

第1表 本発明による帯熱処理をした 銅帯と従来鋼帯の鉄損の比較 次に、本発明の具体的構成を実施例に基づいて説明する
Table 1 Comparison of iron loss between a copper strip subjected to band heat treatment according to the present invention and a conventional steel strip Next, the specific structure of the present invention will be explained based on examples.

実施例1 67重量%5i−Fe組成の超急冷法で得られた珪素鋼
帯を第4図に示す装置で帯熱処理部の相対移動速度(v
)をいろいろ変えて実験をおこない、得られた珪素鋼帯
の長手方向への(001)配向を簡易的に直流磁化曲線
の飽和磁化(■s)と残留磁化(Ir)の比< I r
/x s )から求めた。その結果を第4図に示す。
Example 1 A silicon steel strip obtained by ultra-quenching with a composition of 67% by weight 5i-Fe was heated in the apparatus shown in FIG.
), and the (001) orientation in the longitudinal direction of the obtained silicon steel strip was simply determined by the ratio of the saturation magnetization (■s) to the residual magnetization (Ir) of the DC magnetization curve < I r
/xs). The results are shown in FIG.

実施例2 6.5重量% 84−Fe組成の超急冷鋼帯を第3図に
示す装置でV = l 1m/分で帯熱処理し、得られ
た珪素鋼帯をトロイダル磁心にし巻線を施して50Hz
における鉄損(W15AO)を測定した。Wls、4o
 = 0.7W1kgであった。ただし測定磁束密度は
1.5Tである。
Example 2 An ultra-quenched steel strip having a composition of 6.5% by weight 84-Fe was subjected to heat treatment at V = l 1 m/min using the apparatus shown in Fig. 3, and the obtained silicon steel strip was made into a toroidal magnetic core and wound. 50Hz
The iron loss (W15AO) was measured. Wls, 4o
= 0.7W1kg. However, the measured magnetic flux density is 1.5T.

以上、説明したように本発明においては、超急冷鋼帯に
帯熱処理を施すことによりその長手方向に(001)を
配向させ、優れた低損失の磁心材料を得ることができた
As described above, in the present invention, by subjecting an ultra-quenched steel strip to band heat treatment, (001) is oriented in the longitudinal direction, and an excellent low-loss magnetic core material can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、超急冷鋼帯を作成するだめの原理図、第2図
は、超急冷法による凝固時の熱流にもとずく〈001〉
軸の成長方向を説明するだめの図、第3図は、本願発明
に係る配向性珪素鋼帯を得るだめの帯熱処理部の原理図
、第4図は、帯熱処理の速゛度による配向度を示す図で
ある。 30・・・帯熱処理部、31・・・超急冷鋼帯、32・
・・光源、33・・・第1集光レンズ、34・・・スリ
ット、35・・・第2集光レンズ、36・・・集光ライ
ン、37・・・石英管。 第1図 第2図 第3図
Figure 1 is a diagram of the principle of producing ultra-quenched steel strips, and Figure 2 is based on the heat flow during solidification by the ultra-quenching method.
FIG. 3 is a diagram for explaining the direction of axis growth. FIG. 3 is a principle diagram of the band heat treatment section for obtaining an oriented silicon steel strip according to the present invention. FIG. 4 is a diagram showing the degree of orientation depending on the speed of the band heat treatment. FIG. 30... Strip heat treatment section, 31... Ultra-quenched steel strip, 32.
... Light source, 33... First condensing lens, 34... Slit, 35... Second condensing lens, 36... Condensing line, 37... Quartz tube. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)超急冷法で得られた、珪素を65重量%含有する
珪素銅帯を、スリット状の輻射熱を放射する帯熱処理部
によって、該珪素鋼帯と帯熱処理部との間で相対移動を
行なわせながら加熱し、該珪素鋼帯の長手方向に磁化容
易軸が配向させられていることを特徴とする配向性珪素
鋼帯。
(1) A silicon-copper strip containing 65% by weight of silicon obtained by an ultra-quenching method is moved relative to the silicon steel strip by a slit-shaped heat-treated band that emits radiant heat. 1. An oriented silicon steel strip characterized in that the silicon steel strip is heated while being heated so that an axis of easy magnetization is oriented in the longitudinal direction of the silicon steel strip.
(2)該相対移動の速度が0.O1〜10謳/分である
ことを特徴とする特許請求の範囲の第(1)項に記載さ
れた配向性珪素鋼帯。
(2) The speed of the relative movement is 0. The oriented silicon steel strip according to claim (1), characterized in that the oriented silicon steel strip has an O1 to 10 m/min.
JP12400481A 1981-08-10 1981-08-10 Directional property silicon steel band Pending JPS5825433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12400481A JPS5825433A (en) 1981-08-10 1981-08-10 Directional property silicon steel band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12400481A JPS5825433A (en) 1981-08-10 1981-08-10 Directional property silicon steel band

Publications (1)

Publication Number Publication Date
JPS5825433A true JPS5825433A (en) 1983-02-15

Family

ID=14874648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12400481A Pending JPS5825433A (en) 1981-08-10 1981-08-10 Directional property silicon steel band

Country Status (1)

Country Link
JP (1) JPS5825433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392589U (en) * 1986-12-05 1988-06-15
JPH059290U (en) * 1991-02-16 1993-02-09 小嶺機械株式会社 Food washing equipment with desalination function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392589U (en) * 1986-12-05 1988-06-15
JPH018156Y2 (en) * 1986-12-05 1989-03-03
JPH059290U (en) * 1991-02-16 1993-02-09 小嶺機械株式会社 Food washing equipment with desalination function

Similar Documents

Publication Publication Date Title
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
SK161897A3 (en) Manufacturing process of a soft magnetic iron based alloy components with nanocrystalline structure
JP6867744B2 (en) Method for manufacturing Fe-based nanocrystalline alloy
US4475962A (en) Annealing method for amorphous magnetic alloy
JP2008248380A (en) Fe-based amorphous alloy with excellent soft magnetic properties
US4685980A (en) Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP2003213331A (en) METHOD FOR MANUFACTURING SOFT MAGNETIC Fe ALLOY, AND SOFT MAGNETIC Fe ALLOY
JPH0211662B2 (en)
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPS5825433A (en) Directional property silicon steel band
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPH0219442A (en) High saturated magnetic flux density ferrous alloy having superfine crystalline structure
JPS627261B2 (en)
JPS6159815B2 (en)
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
JPH11302823A (en) Method for producing Fe-based amorphous alloy ribbon
RU2009258C1 (en) Magnetic alloy for oxidizing annealing and method for production thereof
JPS6323242B2 (en)
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP2982969B2 (en) Manufacturing method of amorphous alloy ribbon
CA1178181A (en) Method of making permanent magnets and product
JP2000144347A (en) Iron base soft magnetic alloy and control of magnetostriction therein
CN101456076A (en) Preparation method of high saturation induction density Fe-Si alloy sheet band