[go: up one dir, main page]

JPS5823577B2 - Polarimeter - Google Patents

Polarimeter

Info

Publication number
JPS5823577B2
JPS5823577B2 JP1090279A JP1090279A JPS5823577B2 JP S5823577 B2 JPS5823577 B2 JP S5823577B2 JP 1090279 A JP1090279 A JP 1090279A JP 1090279 A JP1090279 A JP 1090279A JP S5823577 B2 JPS5823577 B2 JP S5823577B2
Authority
JP
Japan
Prior art keywords
sample
optical rotation
fhz
component
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1090279A
Other languages
Japanese (ja)
Other versions
JPS55103434A (en
Inventor
坂柳信之
市村勉
重久三行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Nihon Bunko Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Bunko Kogyo KK filed Critical Nihon Bunko Kogyo KK
Priority to JP1090279A priority Critical patent/JPS5823577B2/en
Publication of JPS55103434A publication Critical patent/JPS55103434A/en
Publication of JPS5823577B2 publication Critical patent/JPS5823577B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は旋光針に関し、特に振動面を周期的に振動させ
るとともに検出器からの信号を電気的に処理することに
よって試料の旋光角を求める旋光針に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical rotation needle, and more particularly to an optical rotation needle that determines the optical rotation angle of a sample by periodically vibrating a vibration surface and electrically processing a signal from a detector.

従来の旋光針又は旋光分散針は、いわゆる光学的零位法
を用い、試料の旋光角に応じて検光予審回転させ、その
検光子の回転角度から試料の旋光角を求めている。
Conventional optical rotation needles or optical rotation dispersion needles use the so-called optical zero position method, rotate the optical rotation angle of the sample according to the optical rotation angle of the sample, and determine the optical rotation angle of the sample from the rotation angle of the analyzer.

しかしこの方法は検光子を回転させるという機械的検出
方法であるため、得られる旋光角の精度は検光子回転の
機械的精度に依存し、せいぜい0.001°程rあり、
又機械的作動のため応答速度も遅くなるという本質的な
欠点があった。
However, since this method is a mechanical detection method in which the analyzer is rotated, the accuracy of the obtained optical rotation angle depends on the mechanical accuracy of the analyzer rotation, and is approximately 0.001° at most.
Furthermore, due to the mechanical operation, the response speed is slow, which is an essential drawback.

本発明は検光子を機械的に回転させる方法は用いず電気
的処理によって試料の旋光角を測定する全く新規な方法
を与えることを目的とするものである。
An object of the present invention is to provide a completely new method of measuring the angle of optical rotation of a sample by electrical processing without using a method of mechanically rotating an analyzer.

本発明の旋光針では、偏光1面の振動角度δ゛と試料の
旋光角θの大きさによって検出器からの出力を電気的に
処理する方法が2通りに分れ、δ〈]とθ〈]が成り立
ち近似式が適用できる場合は偏光面をfHzで振動させ
、試料透過後の光に;対応した検出器からの出力中2
fHz成分の信号を一定に保ちつつ、fHz成分の信号
を同期整流し、その電圧を測定することによって試料の
旋光角を求めるものであり、又δ〈]とθ(1が成り立
たない一般的な場合は、同じく偏光面をfHzで振動さ
せ、試料を入れた状態での検出器出力中に含まれるfH
zの基本波及び高調波信号のうち、試料の旋光角に基く
位相のズレを含む特定の周波数成分を取り出し、試料の
旋光角の影響を受けない標準信号成分と比較し、両者の
位相差を検出することンによって試料の旋光角を求める
ものである。
In the optical rotation needle of the present invention, there are two ways to electrically process the output from the detector depending on the vibration angle δ of one plane of polarization and the optical rotation angle θ of the sample. ] holds and the approximation formula can be applied, the plane of polarization is oscillated at fHz, and the light after passing through the sample;
While keeping the fHz component signal constant, the fHz component signal is synchronously rectified and the resulting voltage is measured to determine the optical rotation angle of the sample. In this case, the polarization plane is also oscillated at fHz, and the fH contained in the detector output with the sample inserted is
Of the fundamental wave and harmonic signals of z, extract a specific frequency component that includes a phase shift based on the optical rotation angle of the sample, compare it with a standard signal component that is not affected by the optical rotation angle of the sample, and calculate the phase difference between the two. The angle of optical rotation of the sample is determined by the detection.

以下本発明の実施例を図面に沿って詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

図中点線は光信号、実線は電気信号を示している。In the figure, dotted lines indicate optical signals, and solid lines indicate electrical signals.

第1図において光線1からの光はレンズ2を通って平行
光線になり、フィルター3で単色デ光となる。
In FIG. 1, light from a ray 1 passes through a lens 2 and becomes parallel rays, and then passes through a filter 3 where it becomes monochromatic light.

この単色光は偏光4で直線偏光になった後ファラデーセ
ル5を通り、そこで直線偏光の偏光面は角度±δラジア
ン、周波数fHz、サイン波形で振動される。
This monochromatic light becomes linearly polarized light by polarization 4, and then passes through Faraday cell 5, where the plane of polarization of the linearly polarized light is vibrated at an angle of ±δ radian, a frequency of fHz, and a sine waveform.

6はファラデーセルのコイルにサイン波形の電流を流す
ための発振回路である。
6 is an oscillation circuit for causing a sinusoidal current to flow through the coil of the Faraday cell.

ファラデーセル5を出た偏光面の振動する直線偏光は試
料7を透過した後、偏光子4と直交状態に配置された検
光子8を経て検出器9に入り電気信号に変換される。
After leaving the Faraday cell 5, the linearly polarized light whose polarization plane oscillates passes through the sample 7, passes through the analyzer 8 disposed perpendicular to the polarizer 4, enters the detector 9, and is converted into an electrical signal.

検出器9(!:しては一般に光電子増倍管を使用する。A photomultiplier tube is generally used as the detector 9 (!).

まず最初に試料Tを入れない状態で偏光子4と検光子8
を直交させておく。
First, polarizer 4 and analyzer 8 are inserted without sample T.
Let them be orthogonal.

ファラデーセル5により偏光面が角度±δラジアンの振
巾、周期fHzのサイン波形で振動しているため、この
とき検出器9に入射する光の強度■1は次式で与えられ
る。
Since the plane of polarization is vibrated by the Faraday cell 5 in a sinusoidal waveform with an amplitude of ±δ radian and a period of fHz, the intensity 1 of the light incident on the detector 9 at this time is given by the following equation.

■、== ■ost直δsin 2πft)ここで、■
oは偏光子と検光子が平行の場合に検出器へ入射する光
強度、tは単位秒の時間である。
■, == ■ost direct δsin 2πft) where, ■
o is the light intensity incident on the detector when the polarizer and analyzer are parallel, and t is the time in units of seconds.

次に旋光角θを有する試料を入れた状態について考えて
みると、振動面の角度がθだけ偏位することになるから
、検出器9に入射する光の強度■2は次式で示される。
Next, if we consider a state in which a sample with an optical rotation angle θ is placed, the angle of the vibration plane will deviate by θ, so the intensity of light incident on the detector 9 2 is expressed by the following equation. .

但しTは試料の透過度(係)である。However, T is the transmittance of the sample.

今、δ(1,θ(1が成り立つと仮定すれば上記■2は
次のように近似できる。
Now, assuming that δ(1, θ(1) holds true, the above 2 can be approximated as follows.

従ってこのときの検出器9からの出力■2とすれば、k
を定数として、 となる。
Therefore, if the output from the detector 9 at this time is 2, then k
Assuming that is a constant, it becomes .

この■2の式に着目すると、第1項は試料の旋光角θを
含まない2 fHz成分、第2項は1次のθを含むfe
z成分、第3項は2次のθを含む直流成分であることが
解る。
Focusing on this equation (2), the first term is the 2 fHz component that does not include the optical rotation angle θ of the sample, and the second term is the fe that includes the first-order θ.
It can be seen that the z component, the third term, is a DC component containing second-order θ.

従って第2項のfHz成分だけを取り出せばθを求める
ことができる。
Therefore, by extracting only the fHz component of the second term, θ can be determined.

但しこ5で係数に含まれるTは試料によって変化する値
であるため、その大きさを規格化しておく必要がある。
However, in 5, since T included in the coefficient is a value that changes depending on the sample, it is necessary to standardize its magnitude.

そこでもう一度上式に着目すれば、第1項にも同じ係数
KT/100がかかつているから、θの影響を受けない
2f成分の大きさを一定に保てばf成分の大きさを決定
する係数を規格化できる。
So, if we look at the above equation again, the same coefficient KT/100 is applied to the first term, so if we keep the size of the 2f component, which is not affected by θ, constant, we can determine the size of the f component. Coefficients can be normalized.

つまり検出器9の出力中2 fHz成分だけをまず取り
出して第1項が定数となるように検出器の感度を制御す
る一方、fHz成分を取り出して同期整流すれば、2f
成分と直流成分がカットさね、一次のθのみを含む規格
化を施した情報だけを得ることができる。
In other words, by first extracting only the 2 fHz component of the output of the detector 9 and controlling the sensitivity of the detector so that the first term becomes a constant, if the fHz component is extracted and synchronously rectified, the 2 fHz component is
It is possible to obtain only normalized information that includes only the first-order θ by cutting out the DC component and the DC component.

図の電気系統部分と対応させれ・ば、検出器9からの出
力は前置増巾器10を経た後、2f成分だけが2fHz
用増幅器11で増巾され、その信号が検出器制御回路1
2に入って検出器の感度を自動的に制御し、2fHz成
分を一定に保つ。
Corresponding to the electrical system part in the figure, after the output from the detector 9 passes through the preamplifier 10, only the 2f component is 2fHz.
The signal is amplified by the detector control circuit 1.
2 to automatically control the sensitivity of the detector and keep the 2fHz component constant.

すなわち検出器の感度を100/KT倍に調整すれ1ば
、上記■2は、 と変数Tを含まない式で与えられる。
That is, if the sensitivity of the detector is adjusted to 100/KT times, the above (2) can be given by an equation that does not include the variable T.

13はfHz用増中器で、この増巾器によってfHz成
分だけを増1コし、次いで同期整流回路14で直流信号
に変換すれば、2fHz成分と直流成分の第1項と第3
項はカットされ、同期整流回路14からの出力■ニは2
1oδθに比例した大きさとなる。
Reference numeral 13 denotes an fHz amplifier, which increases only the fHz component by 1, and then converts it into a DC signal in the synchronous rectifier circuit 14, which converts the 2fHz component and the first and third terms of the DC component.
The term is cut, and the output from the synchronous rectifier circuit 14 becomes 2.
The size is proportional to 1oδθ.

従ってあらかじめ旋光角のわかっている試料を用い上記
2■oδの値を較正しておけば、■≦を測定することに
よって試料の旋光角θを求めることができる。
Therefore, if the value of 2■oδ is calibrated in advance using a sample whose optical rotation angle is known, the optical rotation angle θ of the sample can be determined by measuring ■≦.

尚15は電圧指示計で、電圧計、レコーダ、オシロスコ
ープなど適当なものを使用する。
Reference numeral 15 is a voltage indicator, and a suitable device such as a voltmeter, recorder, or oscilloscope is used.

次にδ(1、θ(1が成り立たず、近似式が使えない一
般の場合について考えてみると、前記■2の式は次のよ
うに変形される。
Next, if we consider the general case where δ(1, θ(1) does not hold and an approximation formula cannot be used, the equation (2) above can be transformed as follows.

これを第1種のベッセル関数の公式、 にX二δ、θ二2πftとしてあてはめれば、となる。This is the formula for the Bessel function of the first kind, If we apply X2δ and θ22πft to

すなわちδ(1、θ(1の近似でない正確な■2は上式
で与えられる。
That is, the exact 2 which is not an approximation of δ(1, θ(1) is given by the above equation.

この式を展開すると以下の項が出る。Expanding this formula yields the following terms.

三角関数の倍角公式より を代入すれば、 で表現される。From the double angle formula of trigonometric functions If you substitute It is expressed as

ここで12の第1項中は、直流成分を表わしていて、試
料による旋光角θは含んでいない。
Here, the first term of 12 represents the DC component and does not include the optical rotation angle θ due to the sample.

次のは、周波数成分が偏光面の振動周波数fの偶数倍の
高調波成分で、その振巾が、 AJn2(δ)− てあり、各周波数の位相は試料の旋光角により、試料が
ないときに比べ2θだけズしていることを示している。
The following is a harmonic component whose frequency component is an even multiple of the vibration frequency f of the polarization plane, and its amplitude is AJn2(δ)-, and the phase of each frequency is determined by the optical rotation angle of the sample, when there is no sample. This shows that there is a deviation of 2θ compared to .

又■2の第2項中、は、周波数成分がfHzの高調波を
含み、その振巾は AJ n (δ)Jm(δ)−(n≠m)であり、試料
による旋光角θは含んでいない。
In addition, in the second term of ■2, the frequency component includes harmonics of fHz, the amplitude is AJ n (δ) Jm (δ) - (n≠m), and the angle of rotation θ due to the sample is not included. Not there.

次の は、周波数成分がfHzの高調波を含み、その振巾は A ’J n (δ)J m(δ)−(n≠m)であり
、各周波数の位相は試料の旋光角θにより、試料がない
ときに比べ2θだけズしていることを示している。
In the next example, the frequency component includes harmonics of fHz, the amplitude is A 'J n (δ) J m (δ) - (n≠m), and the phase of each frequency depends on the optical rotation angle θ of the sample. , it shows that there is a shift of 2θ compared to when there is no sample.

従ってδ(1、θ(1が成り立たない一般の場合にも、
試料を入れた状態で検出器中に含まれるfHzの基本波
及び高調波信号のうち、試料の旋光角に基く位相のズレ
を含む特定の周波数成分を取り出し、標準信号と比較し
て両者の位相差を検出すれば、試料の旋光角θを求めら
れることが解る。
Therefore, even in the general case where δ(1, θ(1) does not hold,
Among the fHz fundamental wave and harmonic signals contained in the detector with a sample inserted, a specific frequency component containing a phase shift based on the optical rotation angle of the sample is extracted, and the position of both is determined by comparing it with a standard signal. It is understood that by detecting the phase difference, the angle of optical rotation θ of the sample can be determined.

次にその検出方法について具体的に説明する。Next, the detection method will be specifically explained.

第3図(aXb)はそれぞれδ及びnをパラメータとし
たベッセル関数Jn(δ)の値を示している。
FIG. 3 (aXb) shows the values of the Bessel function Jn(δ) with δ and n as parameters, respectively.

Jn(δ)が検出器からの出力中に含まれるfHzの基
本波及び高調波信号の各大きさを規定しているから、δ
の大きさによりnはいくつまで考慮すればよいかが解る
Since Jn(δ) defines the respective magnitudes of the fHz fundamental wave and harmonic signals contained in the output from the detector, δ
The size of n determines how many n should be considered.

例えばδ二1のときは、第3図aからn=0,1,2,
3のときを考慮すればよくそれより大きいnは無視でき
、又第3図すを見れば、δ(1で意味を持つのは先の近
似で示したように直流成分(n=0)、fHz成分(n
=t)、2 fHz成分(n=2)であることが解る。
For example, when δ21, n=0, 1, 2,
3, n larger than that can be ignored, and if we look at Figure 3, we can see that δ (1 has a meaning as shown in the previous approximation), the DC component (n = 0), fHz component (n
=t), 2 fHz component (n=2).

又第4図は、第3図をもとにし、試料による旋光角θが
ない場合、すなわち について、各周波数成分の絶対値をとった周波数スペク
トル分布の一例を示している。
Further, FIG. 4 shows an example of the frequency spectrum distribution based on FIG. 3, in which the absolute value of each frequency component is taken in the case where there is no optical rotation angle θ due to the sample.

■2は第4図のスペクトルの二乗であり、■2の第1項
は各周波数成分それ自身を二乗したものを意味し、第2
項はある周波数成分と他の周波数成分を掛けたものを意
味している。
■2 is the square of the spectrum in Figure 4, the first term of ■2 means the square of each frequency component itself, and the second term
The term means the product of one frequency component and another frequency component.

ここで第1項の大きさはそれ自身の二乗であるため、そ
の一番太きいものは第2項のある周波数成分と他の周波
数成分を掛けたものより大きくなることが明らかである
Here, since the magnitude of the first term is the square of itself, it is clear that the thickest term is larger than the product of a certain frequency component and another frequency component of the second term.

従って振動角δと周波数fが与えられ、考慮すべきnの
値が決ったならば、その中でJn(δ)が最も大きくな
るnつまり2nfという特定の周波数成分を選び出し、
試料の旋光角θによる位相のズレを含まない標準信号と
比較して、両者の位相差を検出すれば2θが求められる
Therefore, if the vibration angle δ and frequency f are given and the value of n to be considered is determined, select a specific frequency component n, that is 2nf, where Jn(δ) is the largest among them,
By comparing it with a standard signal that does not include a phase shift due to the optical rotation angle θ of the sample, and detecting the phase difference between the two, 2θ can be determined.

第2図はこの方法による旋光計を示すブロック図である
FIG. 2 is a block diagram showing a polarimeter using this method.

第1図と同一の番号は同一物を示し、前置増巾器10ま
では第1図の場合と同様なので説明は省略する。
The same numbers as in FIG. 1 indicate the same parts, and the parts up to the preamplifier 10 are the same as in FIG. 1, so their explanation will be omitted.

前置増巾器10の出力は主増巾器16で増巾された後、
フィルタ一群17に入り各周波数成分に分別される。
After the output of the preamplifier 10 is amplified by the main amplifier 16,
The signal enters a group of filters 17 and is separated into each frequency component.

上述したように、δの大きさによって定まるnのうち、
最も大きな振巾を与える特定の周波数成分が取り出され
、位相検出器19に入る。
As mentioned above, among n determined by the size of δ,
The particular frequency component giving the largest amplitude is extracted and entered into phase detector 19.

一方試料の旋光角による影響を含まない標準信号成分と
して、発振回路6からの信号を利用する。
On the other hand, the signal from the oscillation circuit 6 is used as a standard signal component that does not include the influence of the optical rotation angle of the sample.

この信号は分周器18を経て、上記特定の周波数成分と
同じ周波数にされた後、同じく位相検出器19に入り、
両成分の位相差2θが検出される。
This signal passes through a frequency divider 18 and is made to have the same frequency as the above-mentioned specific frequency component, and then similarly enters a phase detector 19.
A phase difference 2θ between both components is detected.

位相検出器19における位相差の検出方法は各種考えら
れ、任意である。
Various methods can be considered for detecting the phase difference in the phase detector 19, and any method is possible.

又図示の実施例では、発振回路6から標準信号成分を得
ているが、検出器からの出力のうち試料の旋光角による
位相差を含まない信号部分 を使ってもよい。
Further, in the illustrated embodiment, the standard signal component is obtained from the oscillation circuit 6, but a signal portion of the output from the detector that does not include the phase difference due to the optical rotation angle of the sample may be used.

次にδ(1、θ〈]が成り立つ場合の本節光計を高速液
体クロマトグラフィーと組合せた測定実施例を示す。
Next, we will show a measurement example in which the present optical spectrometer is combined with high performance liquid chromatography when δ(1, θ<] holds.

実施例 1 光源として波長6328人出力約2靜駅ビーム径約0.
8′IIL′IILのHe−Neレーザを使用し、ファ
ラデーセルは約±0.5°の振巾、周波数370Hzで
振動させた。
Example 1 As a light source, the wavelength is 6328, the output is about 2, the beam diameter is about 0.
An 8'IIL'IIL He-Ne laser was used, and the Faraday cell was oscillated at a frequency of 370 Hz with an amplitude of approximately ±0.5°.

試料セルとしては、内径1m、長さ10關の石英製UV
検出器用のフローセルを用いた。
The sample cell is a quartz UV with an inner diameter of 1 m and a length of 10 mm.
A flow cell for the detector was used.

カラムはLichrosorb−NH2(5μm )を
250×4mfii−b・に充填したものとし、溶媒と
してはアセトニl−IJルー水を使用した。
The column was packed with Lichrosorb-NH2 (5 μm) at 250 x 4 mfii-b, and acetonyl-IJ-water was used as the solvent.

流量は0.8ml/minで、各糖類の分析を行ったと
ころ第5図AB及びCのような結果が得られた。
The flow rate was 0.8 ml/min, and when each saccharide was analyzed, the results shown in FIG. 5 AB and C were obtained.

第5図Aはフルクトース1、グルコース2、シュクロー
ス3の各200μg標準試料、Bは市販の清涼飲料水3
μ6. Cはワイン10μlを溶媒比75 : 25で
直接注入した場合の測定スペクトルを示し、横軸は時間
(分)、縦軸は旋光角度である。
Figure 5 A is a standard sample of 200 μg each of fructose 1, glucose 2, and sucrose 3, B is a commercially available soft drink 3
μ6. C shows the measured spectrum when 10 μl of wine was directly injected at a solvent ratio of 75:25, the horizontal axis is time (minutes), and the vertical axis is the optical rotation angle.

実施例 2 実施例1と同様の条件で、グルコース1、マルトース2
、マルトリオース3の各200μgを溶媒比60:40
で注入したところ、第6図に示す測定スペクトルが得ら
れた。
Example 2 Under the same conditions as Example 1, glucose 1, maltose 2
, 200 μg each of maltriose 3 in a solvent ratio of 60:40
When the sample was injected, the measured spectrum shown in FIG. 6 was obtained.

実施例 3 実施例1と同様の条件で1.アラビノースを25゜50
.75.100 、150’及び200μgの容量を注
入し、定量性について検討したところ、第7図に示すよ
うに良好な直線性が得られた。
Example 3 1. Under the same conditions as Example 1. Arabinose 25°50
.. Volumes of 75.100, 150' and 200 μg were injected and quantitative properties were examined, and as shown in FIG. 7, good linearity was obtained.

尚、この場合の検出限界はS/Nが2のとき2μgであ
った。
Note that the detection limit in this case was 2 μg when the S/N was 2.

実施例 4 旋光計、カラムは上記実施例1と同じ条件とし溶媒には
アセトニトリル−0,01M KH2P 04 (溶媒
比70:30)を用いて、アミノ酸の分析を行った。
Example 4 Amino acids were analyzed using the polarimeter and column under the same conditions as in Example 1, using acetonitrile-0.01M KH2P 04 (solvent ratio 70:30) as the solvent.

流量は0.8 mA/mi no D −トリプトファ
ン100μg(1)、D−ロイシン200μg(2)、
D−プロリン80μg(3)、D−アスパラギン200
μg(4)、D−セリン200μ9(5)をそれぞれ各
量注入したところ、第8図に示すような測定スペクトル
が得られた。
The flow rate was 0.8 mA/mino D-tryptophan 100 μg (1), D-leucine 200 μg (2),
D-proline 80 μg (3), D-asparagine 200
When 200 μg (4) and 200 μ9 (5) of D-serine were injected, measurement spectra as shown in FIG. 8 were obtained.

又、(1′)〜(5勺は上記(1)〜(5)にそれぞれ
対応するL体のアミノ酸に関する測定結果である。
Further, (1') to (5) are measurement results regarding L-form amino acids corresponding to the above (1) to (5), respectively.

゛以上述べたように本発明によれば、機械的な応答手段
を使用せず、電気的に信号を処理して試料の旋光角を求
めているため、応答速度が速く、微小角度での測定精度
も向上し、0.0001℃精度が得られる。
゛As described above, according to the present invention, the optical rotation angle of the sample is determined by electrically processing the signal without using mechanical response means, so the response speed is fast and measurement at minute angles is possible. Accuracy is also improved, achieving an accuracy of 0.0001°C.

さらに光源にレーザーを使い、データをコンピュータで
長時間積算すれば0.00001゜の精度も可能となる
Furthermore, if a laser is used as a light source and the data is accumulated over a long period of time by a computer, an accuracy of 0.00001° can be achieved.

又機械的な部分を用いてないので旋光計全体も安価に製
作可能である。
Furthermore, since no mechanical parts are used, the entire polarimeter can be manufactured at low cost.

尚偏光面を振動させる方法は、ファラデーセル5を使用
する代りに、偏光子4又は検光子8を同じく角度±δ、
fHzのサイン波形で振動させて測定してもよく、旋光
分散計への応用も勿論可能である。
In addition, the method of vibrating the plane of polarization is that instead of using the Faraday cell 5, the polarizer 4 or analyzer 8 is oscillated at an angle of ±δ,
It may be measured by vibrating it with a sine waveform of fHz, and of course it is also possible to apply it to an optical rotation dispersion meter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はδ(、θ(1が成り立つ場合の本発明による旋
光計を示すブロック図、第2図はδ(1、θ(1で近似
できない場合の本発明による旋光計を示すブロック図、
第3図a、bはそれぞれδとnをパラメータとしたベッ
セル関数Jn(δ)の値を示す図、第4図は各δの値に
おける周波数スペクトル分布を示す図、第5A、B、C
,6,7及び8図はそれぞれ第1図の旋光計を高速液体
クロマトグラフィーと組合せて測定した場合の測定結果
を示す図で、横軸は時間(分)、縦軸は旋光角度である
。 1・・・・・・光源、2・・・・・・レンズ、3・・・
・・・フィルタ)4・・・・・・偏光子、5・・・・・
・ファラデーセル、6・・・・・・発振回路、γ・・・
・・・試料、8・・・・・・検光子、9・・・・・・検
知器、10・・・・・・前置増巾器、11・・・・・・
2 fHz用増巾器、12・・・・・・検出器制御回路
、13・・・・・・fHz用増巾器、14・・・・・・
同期整流回路、15・・−・・電圧指示計、16・・・
・・・主増巾器、17・・・・・・フィルタ一群、18
・・・・・・分周期、19・・・・・・位相検出器。
FIG. 1 is a block diagram showing a polarimeter according to the present invention when δ(, θ(1) holds; FIG. 2 is a block diagram showing a polarimeter according to the present invention when δ(1, θ(1) cannot be approximated.
Figures 3a and b are diagrams showing the values of the Bessel function Jn(δ) with δ and n as parameters respectively, Figure 4 is a diagram showing the frequency spectrum distribution at each value of δ, and Figures 5A, B, and C
, 6, 7, and 8 are diagrams showing measurement results when the polarimeter shown in FIG. 1 was combined with high-performance liquid chromatography, respectively, where the horizontal axis is time (minutes) and the vertical axis is the angle of optical rotation. 1...Light source, 2...Lens, 3...
...filter) 4...polarizer, 5...
・Faraday cell, 6...Oscillation circuit, γ...
...Sample, 8...Analyzer, 9...Detector, 10...Preamplifier, 11...
2 fHz amplifier, 12...detector control circuit, 13... fHz amplifier, 14...
Synchronous rectifier circuit, 15... Voltage indicator, 16...
...Main amplifier, 17...Group of filters, 18
...Division period, 19...Phase detector.

Claims (1)

【特許請求の範囲】 1 旋光針において、偏光面をfHzで振動させ、試料
透過後の光に対応した検出器からの出力中2fHzFi
分の信号を一定に保ちつつ、fHz成分の信号を同期整
流し、その電圧を測定することにより試料の旋光角を求
めることを特徴とする旋光針。 2 旋光針において、偏光面をfHzで振動させ、試料
を入れた状態で検出器出力中に含まれるfHzの基本波
及び高調波信号のうち、試料の旋光角に基く位相のズレ
を含む特定の周波数成分を取り出し、試料の旋光角の影
響を受けない標準信号成分と比較し、両者の位相差を検
出することによって試料の旋光角を求めることを特徴と
する旋光針。
[Claims] 1. In the optical rotation needle, the plane of polarization is vibrated at fHz, and the output from the detector corresponding to the light after passing through the sample is 2fHzFi.
An optical rotation needle characterized in that the optical rotation angle of a sample is determined by synchronously rectifying the fHz component signal and measuring the voltage while keeping the fHz component signal constant. 2. In the optical rotation needle, the plane of polarization is vibrated at fHz, and among the fHz fundamental wave and harmonic signals included in the detector output with the sample inserted, a specific signal containing a phase shift based on the sample's optical rotation angle is detected. An optical rotation needle characterized in that the optical rotation angle of the sample is determined by extracting a frequency component, comparing it with a standard signal component that is not affected by the optical rotation angle of the sample, and detecting the phase difference between the two.
JP1090279A 1979-02-01 1979-02-01 Polarimeter Expired JPS5823577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090279A JPS5823577B2 (en) 1979-02-01 1979-02-01 Polarimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090279A JPS5823577B2 (en) 1979-02-01 1979-02-01 Polarimeter

Publications (2)

Publication Number Publication Date
JPS55103434A JPS55103434A (en) 1980-08-07
JPS5823577B2 true JPS5823577B2 (en) 1983-05-16

Family

ID=11763222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090279A Expired JPS5823577B2 (en) 1979-02-01 1979-02-01 Polarimeter

Country Status (1)

Country Link
JP (1) JPS5823577B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669732B2 (en) * 1990-07-27 1997-10-29 昭和電工株式会社 Optical rotation detection method, its detection device, and optical rotation detection cell
JP4791752B2 (en) 2005-04-20 2011-10-12 日本分光株式会社 Near-field polarimeter

Also Published As

Publication number Publication date
JPS55103434A (en) 1980-08-07

Similar Documents

Publication Publication Date Title
EP0468487B1 (en) Method of detecting angle of optical rotation in solution having time-dependent concentration, detection apparatus therefor, and detector cell therefor
Clark et al. Raman spectroscopy
US6473179B1 (en) Birefringence measurement system
US5956147A (en) Two modulator generalized ellipsometer for complete mueller matrix measurement
JP4026939B2 (en) Circular dichroism detector for HPLC
US6268914B1 (en) Calibration Process For Birefringence Measurement System
US3807862A (en) Raman spectroscopy in the presence of fluorescence
JP3337734B2 (en) Infrared ellipsometer
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
US3157727A (en) Polarimeter
US2974561A (en) Polarimeter
US3817634A (en) Testing of optically active substances by polarized radiation
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
US3257894A (en) Registering apparatus for measuring circular dichroism
US6480277B1 (en) Dual circular polarization modulation spectrometer
Matsuoka et al. Light beating spectroscopy of polarized and depolarized scattering in p-n-hexyl p’-cyanobiphenyl
Gillham et al. New design of spectropolarimeter
JPS63236945A (en) Crystal bearing analysis instrument which utilizes polarization characteristic of raman scattering light
JPS5823577B2 (en) Polarimeter
EP0080540A1 (en) Method and apparatus for measuring quantities which characterize the optical properties of substances
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
US20030179375A1 (en) System for measuring of both circular and linear birefringence
Kuczyński et al. Interference method for the determination of refractive indices and birefringence of liquid crystals
JPS62184333A (en) Crystal axis analyzing device
Rosenhauer et al. The measurement of the optical transfer functions of lenses