[go: up one dir, main page]

JPS58225672A - Floating gate non-volatile memory - Google Patents

Floating gate non-volatile memory

Info

Publication number
JPS58225672A
JPS58225672A JP57108930A JP10893082A JPS58225672A JP S58225672 A JPS58225672 A JP S58225672A JP 57108930 A JP57108930 A JP 57108930A JP 10893082 A JP10893082 A JP 10893082A JP S58225672 A JPS58225672 A JP S58225672A
Authority
JP
Japan
Prior art keywords
voltage
floating gate
volatile memory
memory
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57108930A
Other languages
Japanese (ja)
Inventor
Yuji Kitamura
北村 裕二
Yasuki Rai
泰樹 頼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57108930A priority Critical patent/JPS58225672A/en
Publication of JPS58225672A publication Critical patent/JPS58225672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/681Floating-gate IGFETs having only two programming levels

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、半導体基板−第1の絶縁膜−70−ティング
ゲート−第2の絶#、膜−制御電極、の構成を有するフ
ローティングゲート型不揮発性メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating gate nonvolatile memory having a structure of semiconductor substrate-first insulating film-70-ring gate-second insulation film-control electrode.

フローティングゲート型不揮発性メモリの構造上第1図
に示す。同図に於て、(11は一導電型半導体基板、例
えば4〜8rl 、 t7jLの比抵抗を有するN型の
シリコン基板、 12H31はこの基板(11にP型の
不純物を選択拡散する事に依って形成したソース。
The structure of a floating gate type nonvolatile memory is shown in FIG. In the figure, (11 is a semiconductor substrate of one conductivity type, for example, an N-type silicon substrate having a resistivity of 4 to 8 rl, t7jL, and 12H31 is a semiconductor substrate of one conductivity type, for example, an N-type silicon substrate having a specific resistance of t7jL, and 12H31 is a semiconductor substrate of one conductivity type. sauce formed.

トレイン領域、 +41はこのソース、ドレイン領域〕
外周に設けらtた膜厚大なるフィールド酸化膜、151
ハ:/−ス、ドレイン各領域121131間のチャンネ
ル領域(6)ヲ覆う如く設けら几た第1の絶縁膜で、膜
厚約20OAの酸化膜にて構成さ扛ている。(7)はこ
のMlのPJR膜15)上に設けらnたモリブデン等の
金属材料から成るフローティングゲート、(8)ハ該フ
ローテインググー)i71i覆って設けらnた第2の絶
縁膜で、膜厚が850A程度の窒化膜にて構成さnてい
る。+91はこの第2の絶縁膜(8)上に被着さ才tた
制御II]を極、叫1uはソース、ドレイン各領域i2
1+31 K逐ったソース、ドレイン各電極である。
Train region, +41 is this source and drain region]
Field oxide film with large thickness provided on the outer periphery, 151
A first insulating film is provided to cover the channel region (6) between the base and drain regions 121131, and is made of an oxide film with a film thickness of about 20 OA. (7) is a floating gate made of a metal material such as molybdenum provided on this Ml PJR film 15), and (8) is a second insulating film provided covering the floating gate. It is made of a nitride film with a film thickness of about 850 Å. +91 is the control II layer deposited on this second insulating film (8), and 1u is the source and drain region i2.
The source and drain electrodes are separated by 1+31K.

斯る構造の不揮発性メモリはフローテインダゲ−) 1
71に電荷を注入する事に依って情報を書き込んで記憶
せしめている。ところで断るメモリへのiii:i込み
電圧(VV)及びその書き込んだ内容ケ消去する消去゛
電圧い])は20V前後で1通常の半導体回路で用いる
電圧に比して相当高い。
A non-volatile memory with such a structure is a floating memory) 1
By injecting charge into 71, information is written and stored. By the way, the writing voltage (VV) to the memory and the erasing voltage (voltage for erasing the written contents) are around 20V, which is considerably higher than the voltage used in normal semiconductor circuits.

−万、斯る不揮発性メモリに対する情報の瞥き込み方法
としては。
- How can I view information on such non-volatile memory?

1)基板(1)と制卸電極(9)との間に高電界を印加
して電子tトンネリングに依り強制的にフローティング
ゲート(7)に注入する方法。
1) A method of applying a high electric field between the substrate (1) and the control electrode (9) to forcibly inject electrons into the floating gate (7) through electron tunneling.

2)基板(1)とソース、ドレイン各領域121f31
との間のPN接合でアバランシェ破壊奮起し、その時発
生するホントエレクトロン會フローティンクケ−H71
に注入する方法。がある。
2) Substrate (1) and source and drain regions 121f31
The avalanche breakdown occurs at the PN junction between the
How to inject into. There is.

また消去方法としても、トンネリングに依って強制的に
注入電子?放出せしめるものと、紫外線管照射して注入
電子全活性化して消去する方法がある。
Also, as an erasing method, is it possible to forcibly inject electrons through tunneling? There is a method in which the electrons are emitted, and a method in which all the injected electrons are activated and erased by irradiation with an ultraviolet tube.

一般に不揮発性メモリは種々の用途に用いらnているが
、例えば書き込みのみが行わt′L、1殆ど消去は行わ
れない場合には消去電圧は多少高くても問題はなく、頻
度の高い書き込み電圧が低いものが好ましい。また逆に
消去のみ全目的としての用途に対しては消去電圧の低減
のみt考え牡ば艮い0勿論、蕾き込み電圧も消去電圧も
共に低いものが得らf’LfLは良いのであるが、実際
には両者の要望を満す事は出来ない。
In general, non-volatile memory is used for a variety of purposes.For example, if only writing is performed, t'L, or 1, there is no problem even if the erase voltage is a little high if there is little erasing; One with a low voltage is preferable. On the other hand, for applications where erasing is the only purpose, it is not acceptable to consider only reducing the erasing voltage.Of course, f'LfL is good since it is possible to obtain low write-in voltage and low erase voltage. In reality, it is not possible to satisfy both demands.

本発明はこのような不揮発性メモリの用途に応じた特性
會得る半合目的としている。
The present invention is aimed at achieving a combination of characteristics suitable for the use of such nonvolatile memory.

第2図は第1図に示さ几たような構成の不揮発性メモリ
の製造直後の閾値電圧(Vto)と書き込み及び消去の
為の臨界電圧(Vφ)との関係線図であり、実線(〜は
書き込み臨界電圧(VVφ)t、また破線(B)は消去
臨界′電圧(v[φ)を示している。この第2図は第1
図に示したPチャンネル型のメモリの特性図であるので
、縦軸も横軸も負の値を示している。尚、*き込み臨界
電圧(VWφ)とは、メモリの閾値電圧(Vt)が負に
あるものを書き込み処理する事に依ジ正に移行するが、
閾値電圧(Vt)¥i−零にする為に必要な電圧の半合
云い、また消去臨界電圧(viφ)とは。
FIG. 2 is a diagram showing the relationship between the threshold voltage (Vto) immediately after manufacturing the nonvolatile memory having the structure shown in FIG. 1 and the critical voltage (Vφ) for writing and erasing, and the solid line (~ indicates the write critical voltage (VVφ) t, and the broken line (B) indicates the erase critical voltage (v[φ).
Since this is a characteristic diagram of the P-channel type memory shown in the figure, both the vertical and horizontal axes indicate negative values. Note that *Writing critical voltage (VWφ) means that the threshold voltage (Vt) of the memory becomes positive depending on the writing process when the threshold voltage (Vt) is negative.
What is the threshold voltage (Vt) ¥i - half of the voltage required to make it zero, and what is the erase critical voltage (viφ)?

消去に依って閑値゛電圧(Vt)’を負方向に移行ぜt
、わ、ヵ1、ヤ□ヶ零。f4Ki’f411t工。事ヶ
ヨ      1う。この関係線図が示している事は、
閾値電圧が高く(工9負側に)なルば書き込み電圧(V
′vI)は高く(エリ負側に)なり、逆に消去電圧(V
JI+)は低くなる半合示している。従って消去は考え
る必要はなく、書き込みのみに着目丁nば良い用途のメ
モリの場合は書き込み電圧(vv )vr低(設定すn
は艮い事とな9、その為にはメモリの製造直後の閾値電
圧(VtO)?r低くす扛は艮い。
By erasing, the idle value 'voltage (Vt)' moves in the negative direction.
, Wow, ka1, ya□karei. f4Ki'f411t engineering. Kotogayo 1. What this relationship diagram shows is that
If the threshold voltage is high (on the negative side), the write voltage (V
'vI) becomes high (toward the negative side), and conversely, the erase voltage (V
JI+) shows a half chance of becoming lower. Therefore, there is no need to think about erasing, and in the case of a memory whose purpose is to focus only on writing, write voltage (vv) vr low (setting n
9.For that reason, what is the threshold voltage (VtO) immediately after the memory is manufactured? r.

また逆に消去のみ?問題にする用途のメモリの場合は製
造直後の閾値電圧(VtO)i高く設定イルば艮い事に
なる。
Or on the other hand, only deletion? In the case of a memory for the purpose in question, if the threshold voltage (VtO) i is set high immediately after manufacture, it will cause problems.

斯る目的全果すべく本発明に於てはメモリのチャンネル
領域(6)にP型、或いはN型の不純物全注入して製造
直後の閾値電圧(vto)2任意に設定している。
In order to achieve this purpose, in the present invention, all P-type or N-type impurities are implanted into the channel region (6) of the memory, and the threshold voltage (vto) 2 is arbitrarily set immediately after manufacture.

第1図に示した具体的なメモリの製造直後の閾値電圧(
VtO)は約−1,8■であったが、チャンネル領域(
6)にN型の不純物、具体的には燐會加速電圧60に6
V、注入t 1.8 X 10  /am テロ50に
の厚みの酸化膜を介して注入する事に依って(vto)
は約0.4v増大し、−2,2Vとなった。更に注入荻
?増す事に依ってエリ負方向へ製造直後の閾値電圧(v
to)y移行せしめる事が出来る。またチャンネル領域
(6)にpgの不純物であるボロンf 35 K e 
Vの加速電圧で1.0 X 1011 Ag注入すると
、(Vto)は0゜3Vだけ低くzp−−i、svとな
った。当然ボロンの注入量を増加すると−(Vto)i
j史に低下してOVに近ずくであろう。
The threshold voltage (
VtO) was about -1.8■, but the channel area (
6) N-type impurity, specifically phosphorus accelerating voltage 60
V, implantation t 1.8 x 10 /am by implanting through an oxide film with a thickness of 50 (vto)
increased by about 0.4V to -2.2V. More injections? By increasing the threshold voltage immediately after manufacturing (v
to)y transition. Also, in the channel region (6), boron f 35 K e which is a pg impurity
When 1.0 x 1011 Ag was implanted at an accelerating voltage of V, (Vto) was lowered by 0°3V to zp--i,sv. Naturally, when increasing the amount of boron implanted, -(Vto)i
It will probably drop to near OV.

従って書き込みが重視さnる用途のメモリにはチャンネ
ル領域(6)にP型の不純物を注入して1Fき込み電圧
を下げ、また消去電圧が問題となる場合はチャンネル領
域(6)にN型の不純物全注入して消去電圧會下ける事
が好ましい。
Therefore, for memory applications where writing is important, P-type impurities are implanted into the channel region (6) to lower the 1F write voltage, and when erasing voltage is a problem, N-type impurities are implanted into the channel region (6). It is preferable to lower the erase voltage by implanting all of the impurities.

本発明は以上の説明から明らかな如く、チャンネル領域
にP減成いはN型の不純物ケ注入する事に依って書き込
み電圧や消去電圧全変化せしめているので、用途に適し
たメモIJ (、得る事が出来ると共に、低い電圧で齋
き込み、或いは消去を行う事が可能となり、使い勝手の
良い不揮発性メモリが得られる。
As is clear from the above description, the present invention completely changes the write voltage and erase voltage by implanting P-type impurities or N-type impurities into the channel region. It is possible to obtain a nonvolatile memory that is easy to use, and can be written or erased with a low voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフローティングゲート型不揮発性メモリの断面
図、第2因は製造直後の閾値電圧と臨界電圧(Vφ)と
の関係線図上水しており、+21131はソース、ドレ
イン領域、i5+181は絶縁膜、(6)はチャンネル
領域、17)はフローテインググー)、191は制af
ilfl、 (ωは書き込み臨界電圧、(B)は消去臨
界電圧、葡夫々示している。 出願人三洋電機株式会社 第2図 Lp θ   −zsr    −5V
Figure 1 is a cross-sectional view of a floating gate non-volatile memory.The second factor is the relationship between the threshold voltage and critical voltage (Vφ) immediately after manufacture. membrane, (6) is the channel region, 17) is the floating goo), 191 is the control af
ilfl, (ω is the writing critical voltage, (B) is the erasing critical voltage, respectively. Applicant: Sanyo Electric Co., Ltd. Figure 2 Lp θ -zsr -5V

Claims (1)

【特許請求の範囲】[Claims] 1) ソース、ドレイン間のチャンネル領域が、半導体
基板−第1の絶縁膜=70−テイングゲートー第2の絶
縁膜−ml電極、の構成を有するフローティングゲート
型不揮発性メモリに於て、P型或いはN型の不純物音チ
ャンネル領域に注入して不揮発性メモリの書き込み電圧
、並びに消去電圧を変化ぜしめた半合特徴としたフロー
ティングゲート型不揮発性メモリ。
1) In a floating gate nonvolatile memory having the structure of semiconductor substrate-first insulating film=70-tecking gate-second insulating film-ml electrode, the channel region between the source and drain is P-type. Alternatively, a floating gate type non-volatile memory has a half-domain feature in which the write voltage and erase voltage of the non-volatile memory are changed by injecting N-type impurities into the sound channel region.
JP57108930A 1982-06-23 1982-06-23 Floating gate non-volatile memory Pending JPS58225672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108930A JPS58225672A (en) 1982-06-23 1982-06-23 Floating gate non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108930A JPS58225672A (en) 1982-06-23 1982-06-23 Floating gate non-volatile memory

Publications (1)

Publication Number Publication Date
JPS58225672A true JPS58225672A (en) 1983-12-27

Family

ID=14497255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108930A Pending JPS58225672A (en) 1982-06-23 1982-06-23 Floating gate non-volatile memory

Country Status (1)

Country Link
JP (1) JPS58225672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144976A (en) * 1984-01-06 1985-07-31 Seiko Instr & Electronics Ltd Low-voltage programming method for nonvolatile semiconductor memory
US6327186B1 (en) 1998-12-17 2001-12-04 Fujitsu Limited Non-volatile semiconductor memory including memory cells having different charge exchange capability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502873A (en) * 1973-05-11 1975-01-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502873A (en) * 1973-05-11 1975-01-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144976A (en) * 1984-01-06 1985-07-31 Seiko Instr & Electronics Ltd Low-voltage programming method for nonvolatile semiconductor memory
US6327186B1 (en) 1998-12-17 2001-12-04 Fujitsu Limited Non-volatile semiconductor memory including memory cells having different charge exchange capability

Similar Documents

Publication Publication Date Title
JP3061924B2 (en) Method of erasing nonvolatile storage device
JPS59500343A (en) Electrically Modifiable Nonvolatile Floating Gate Storage Device
US6040995A (en) Method of operating a storage cell arrangement
JPS649741B2 (en)
CN1199189C (en) Method of erasing data in nonvolatile semiconductor memory devices
JPH04105368A (en) Nonvolatile semiconductor storage device
JPS59500342A (en) Electrically Modifiable Nonvolatile Floating Gate Storage Device
JPH02308571A (en) Semiconductor memory device
JP2002043448A (en) Method for charging trap charge layer of integrated circuit and memory cell
JPH11238814A (en) Semiconductor storage device and its control method
JP3375087B2 (en) Semiconductor memory device and storage information reading method thereof
JPH06302828A (en) Nonvolatile semiconductor memory device
JPS58225672A (en) Floating gate non-volatile memory
JPH0577189B2 (en)
JP3069607B2 (en) Operating method of semiconductor nonvolatile memory
JPH07120721B2 (en) Nonvolatile semiconductor memory device
JPS63306598A (en) Erasing system for non-volatile memory cell
JP2672688B2 (en) Method for driving nonvolatile semiconductor memory device
CN1373517A (en) Embedded flash memory and its operating method
JPS60182777A (en) non-volatile semiconductor memory
JPS6129177A (en) semiconductor non-volatile memory
JPS6318864B2 (en)
JPS58112370A (en) Semiconductor nonvolatile memory device
JPH05226665A (en) Semiconductor storage device
KR20020071718A (en) Semiconductor device