[go: up one dir, main page]

JPS58225116A - Highly flame-retardant, low-smoke-polluting polyurethane resin composition - Google Patents

Highly flame-retardant, low-smoke-polluting polyurethane resin composition

Info

Publication number
JPS58225116A
JPS58225116A JP57106437A JP10643782A JPS58225116A JP S58225116 A JPS58225116 A JP S58225116A JP 57106437 A JP57106437 A JP 57106437A JP 10643782 A JP10643782 A JP 10643782A JP S58225116 A JPS58225116 A JP S58225116A
Authority
JP
Japan
Prior art keywords
smoke
retardant
polyurethane resin
flame
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57106437A
Other languages
Japanese (ja)
Other versions
JPS6152171B2 (en
Inventor
Sadao Wakatsuki
若月 貞夫
Yukio Shimazaki
島崎 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57106437A priority Critical patent/JPS58225116A/en
Publication of JPS58225116A publication Critical patent/JPS58225116A/en
Publication of JPS6152171B2 publication Critical patent/JPS6152171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高麹帖低煙害f1ポリウレタン樹脂組成物に係
り、特に高度の難燃性を有し、火炎に接した際に発煙が
少なく、溶融滴下せずに固化物となるボリウレΦタン樹
脂組成物に関りるものeある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high kojicho low smoke pollution f1 polyurethane resin composition, which has particularly high flame retardancy, generates little smoke when exposed to flame, and solidifies without melting and dripping. There are some related to polyurethane Φ tan resin compositions.

ポリイソシアネートとポリオールとを反応せしめ−C作
られるポリウレタン樹脂の難燃化手段としては、難燃化
剤を添加する方法、反応型難燃ポリオールを使用づる方
法、ウレタン樹脂の構造変性になる方法などが知られC
いる。
Methods for making polyurethane resin made by reacting polyisocyanate and polyol with -C include adding a flame retardant, using a reactive flame retardant polyol, and modifying the structure of the urethane resin. is known C
There is.

難燃化剤を添加する方法においCは、有機または無機系
の難燃剤が使用され、前者にはへ11グン含有化合物、
ハロゲン含有リン化合物、含窒素リン化合物があり、後
者には金属酸化物、水酸化物がある。イNI系界燃剤C
は、ハ[コグン化リン酸にステル、例えば、トリス(2
−クロロ」−デル)ノAスフーL−ト、トリス(クロロ
プロピJし)フォスフェート、1〜リス(2,3−ジブ
ロモブ[Jピル)ΔスフJ−トなどがウレタン原料と相
溶性がよく代表的なものであるが、これらは低分子哨の
液体で、接触りる材料に移行しC悪影響を及ぼしたり、
昇温時に揮発して卸燃効果が低下づるという欠点を持っ
ている。また、粉末状のハ【」グン含有化合物、例えば
、デカブロモジフェニルニーデル、デりDンブラスなど
は移行や揮発の問題がない反面、火炎に接した際の発煙
量が多く、かつ、有毒で腐食性のハ【」ゲン含有ガスを
発生するという欠点がある。
In the method of adding a flame retardant, C is an organic or inorganic flame retardant;
There are halogen-containing phosphorus compounds and nitrogen-containing phosphorus compounds, and the latter include metal oxides and hydroxides. iNI type fuel agent C
is a cognate phosphoric acid, for example, Tris(2).
Typical examples that have good compatibility with urethane raw materials include -chloro'-del)noAsufuL-to, tris(chloropropylene)phosphate, and 1-lis(2,3-dibromob [Jpil) Δsufuto. However, these are low molecular weight liquids that may transfer to the materials they come in contact with and have an adverse effect on C.
It has the disadvantage that it evaporates when the temperature rises, reducing the wholesale combustion effect. In addition, powdered compounds containing halogens, such as decabromodiphenyl needle and deli-Denbras, do not have problems with migration or volatilization, but on the other hand, they emit a large amount of smoke when exposed to flame, and are also toxic. It has the disadvantage of generating corrosive hydrogen-containing gas.

反応型ガ燃ポリオールを使用りる方法は、難燃持続性が
大きい特徴を示すが、難燃ポリオールは、分子中にリン
、ハL1ゲン、窒素などを含有し、通常のポリオールと
はイソシアネートとの反応性が著しく異なるものが多く
、安定した加工性と良好の特f1の硬化樹脂を与える組
成物は未だ十分に知られでいない。
The method of using reactive flame-retardant polyols exhibits the feature of long-lasting flame retardancy, but flame-retardant polyols contain phosphorus, halides, nitrogen, etc. in their molecules, and are different from ordinary polyols in terms of isocyanate and flame retardant polyols. Many of them have significantly different reactivities, and a composition that provides stable processability and a good characteristic f1 cured resin is still not sufficiently known.

ウレタン樹脂の構造変性による難燃化方法は、分子構造
中にイソシアヌレ−1〜M、イミド基、Aキリゾリドン
基、カルボジイミド基などの耐熱性構造を導入したり、
難燃時に耐熱性を承り構造を形成する原料成分を使用す
ることが1)ねれる。
Flame retardant methods by structural modification of urethane resins include introducing heat-resistant structures such as isocyanure-1 to M, imide groups, A-kyrizolidone groups, and carbodiimide groups into the molecular structure;
1) It is possible to use raw materials that have heat resistance and form a structure when flame retardant.

ところで、構造変性による難燃化(二おいCは、硬化物
が硬質で脆くなり、ポリウレタン樹脂の1つの特徴ぐあ
る軟質弾性硬化物が得られないという欠点がある。
By the way, flame retardancy due to structural modification (Fuji C) has the disadvantage that the cured product becomes hard and brittle, and a soft elastic cured product, which is one of the characteristics of polyurethane resins, cannot be obtained.

以上のように、ポリウレタン樹脂の難燃化におc)る従
来技術はイれぞれ欠点を持っCおり、8度に難燃性で低
煙害性のポリウレタン樹脂組成物についCはまだ十分な
ものが提案されCいない。
As mentioned above, each of the conventional techniques used to make polyurethane resin flame retardant has its drawbacks, and C is still insufficient for polyurethane resin compositions that are 8 degrees flame retardant and have low smoke pollution. Nothing has been proposed.

上記のポリウレタン樹脂の難燃化の01究実用化は、主
としてポリウレタンフォームについ(進められており、
非発泡エラストマータイゾのポリウレタン樹脂の卸燃化
に対しては、作業t!1、硬化樹脂に対する要求特性が
異なるため、ポリウレタンフォームの難燃化の技術的知
見を非発泡系には適用できない口とが多い。
The practical application of the above-mentioned flame retardant polyurethane resin is being carried out mainly for polyurethane foam.
Work t! 1. Due to the different characteristics required for cured resins, the technical knowledge of flame retardant polyurethane foam cannot often be applied to non-foamed systems.

本発明は上記に鑑みてなされlcものe、その目的とす
るところは、注入含浸、塗布等の作業性にづぐれ、高い
難燃時を有し、火炎に接しても低発煙性r、かつ、溶融
滴下せずに固化物となる高邦燃低煙害性ポリウレタン樹
脂組成物を提供づることにある。
The present invention has been made in view of the above, and its objectives are to improve the workability of injection impregnation, coating, etc., to have high flame retardancy, low smoke generation even when exposed to flame, and The object of the present invention is to provide a polyurethane resin composition with high fuel efficiency and low smoke pollution, which becomes a solidified product without being melted and dripped.

・i 本発明の特徴は、ジエヂルN、N−一じス(2−ヒト[
1キシエヂル)アミノメヂルホスホネ−1〜を主体と覆
るリン含有ポリオールよりなるポリオール成分、ヘキリ
メヂレンジイソシアネートの三量体を主体とづるポリイ
ソシアネート成分、水和アルミナを主体とする難燃剤お
よびその他の配合剤より構成し、上記ポリオール成分と
上記ポリイソシアネート成分との合i1100Φ量部に
対し−C上記難燃剤を150〜400重量部添加し−C
なるポリウレタン樹脂組成物とした点にある。
・i The feature of the present invention is that diezyl N, N-1jisu (2-human [
A polyol component consisting of a phosphorus-containing polyol mainly covering 1-xylene diisocyanate) aminomethylphosphone-1, a polyisocyanate component mainly consisting of a trimer of hexylene diisocyanate, a flame retardant mainly consisting of hydrated alumina, and It is composed of other compounding agents, and 150 to 400 parts by weight of the flame retardant -C is added to the total i1100 parts of the polyol component and the polyisocyanate component.
The point is that it is a polyurethane resin composition.

ここに、本発明で使用するポリオール成分は、分子昂2
55、比重1.16(25℃)、リン含右岨12%、粘
度185CPS (25℃)の低粘度液体Cあるジ1デ
ルN、N”−ビス(2−ヒトL1キシ]ニブル)アミノ
メヂルボスホネー1〜を主体とりるもので、ポリイソシ
アネート成分は、ヘキリメブーレンジイソシアネートの
三量体を主体とする25℃の粘度が約2000CPSの
液体であって、少量の単量体およびその他を含有づる工
業製品をそのままに使用することができる。難燃剤は水
和アルミナを主体とづる無機系難燃剤であるが、水和ア
ルミナに当量以下(無機難燃剤全体の50重量%未満)
の割合C水酸化マグネシウム、ホウ酸亜鉛、ポリリン酸
アンモニウムなどの無機系難燃剤を組合せたものを使用
づるようにしCもよい。
Here, the polyol component used in the present invention has a molecular concentration of 2.
55, a low viscosity liquid C with a specific gravity of 1.16 (25°C), a phosphorus content of 12%, and a viscosity of 185 CPS (25°C). The polyisocyanate component is a liquid with a viscosity of about 2000 CPS at 25°C, which is mainly composed of trimer of hexylimebulene diisocyanate, and contains a small amount of monomer and Industrial products containing other substances can be used as they are.The flame retardant is an inorganic flame retardant mainly composed of hydrated alumina, but the amount is less than the equivalent of hydrated alumina (less than 50% by weight of the total inorganic flame retardant).
It is also possible to use a combination of inorganic flame retardants such as magnesium hydroxide, zinc borate, and ammonium polyphosphate.

なお、加1性(作業性)を考慮し℃無Ia知燃剤の粒度
とその分布を選択することは重重なことeある。粒I(
が小さい側に偏ると組成物の粘度1ニ竹が著しくなり、
作業性が低下して実用性に乏しくなる。本発明の組成物
に適した水和アルミナの粒度分布の一例を示づと、74
〜150μInの粒子45重量%、44〜74μTn、
の粒子25重量%、4/lμyn以下の粒子30重量%
からなるものがある。
Note that it is important to select the particle size and distribution of the °C-free Ia flame-informing agent in consideration of addability (workability). Grain I (
If it leans toward the small side, the viscosity of the composition will become significantly lower,
Work efficiency decreases and practicality becomes poor. An example of the particle size distribution of hydrated alumina suitable for the composition of the present invention is 74
45% by weight of particles of ~150μIn, 44-74μTn,
25% by weight of particles of 4/lμyn or less, 30% by weight of particles of 4/l μyn or less
There is something that consists of

本発明はジエチルN。N−−ビス)2−ヒト【」キシエ
ヂル)アミノメチルホスボネート以外のポリオールの併
用を妨げるものではなく、ボリア1−ル成分全体の50
重量%未満の割合でその他の卸燃ポリA−ルや通常のポ
リオールを併用しく′t)よい。
The present invention uses diethyl N. This does not preclude the use of polyols other than N-bis)2-human['xyedyl)aminomethylphosbonate, and the amount of
It is preferable to use other combustible polyols or ordinary polyols in a proportion less than % by weight.

また、ポリイソシアネート成分としてヘキリメチレンジ
イソシアネートの三量体とともにシフにルメタンジイソ
シアネート、カルボジイミド化変性により液状化したジ
フェニルメタンジイソシアネ−1−、アニリンとホルム
アルデヒドとの低重縮合物とホスゲンとの反応によつ(
得られる多核ポリイソシアネー1−(いわゆるクルード
M、DIまたはポリメリックポリイソシアネート)等を
併用しでもよいが、これらはジエチルN、N=−ビス(
2−ヒドロキシエチル)アミノメチルホスホネートと急
速に反応して可使時間を著しく短縮づるから使用可能量
は自ら少量に限定される。
In addition, as a polyisocyanate component, a trimer of hexylimethylene diisocyanate is used together with Schiff's methane diisocyanate, diphenylmethane diisocyanate liquefied by carbodiimidation modification, a low polycondensate of aniline and formaldehyde, and a reaction with phosgene. Yotsu(
The obtained polynuclear polyisocyanate 1- (so-called crude M, DI or polymeric polyisocyanate) may be used in combination with diethyl N, N=-bis(
Since it reacts rapidly with 2-hydroxyethyl)aminomethylphosphonate and significantly shortens its pot life, the usable amount is itself limited to a small amount.

本発明のポリウレタン組成物は、上記の3成分を特定範
囲で含有するのを基本とするが、必要に応じてその他の
成分を配合することは防げない。
The polyurethane composition of the present invention basically contains the above three components within a specific range, but other components may be added as necessary.

例えば、着色剤、硬化促進触媒、無機物知繊維、描変性
付与剤、非反応性の有機難燃剤等を緒特性を満足する範
囲内で使用しても差し支えない。
For example, a coloring agent, a curing accelerating catalyst, an inorganic material fiber, a drawing agent, a non-reactive organic flame retardant, etc. may be used within a range that satisfies the properties.

なお、ポリメール成分とポリイソシアネート成分の比率
は、水酸基とイソシアネート基との割合が0.6〜1.
2の範囲で作業性や硬化物の特性を勘案して適宜選択す
るようにしてもよい。
The ratio of the Polymer component to the polyisocyanate component is such that the ratio of hydroxyl groups to isocyanate groups is 0.6 to 1.
It may be selected as appropriate within the range of 2, taking into consideration workability and properties of the cured product.

次に具体的な実施例と比較例について説明する。、第1
表は実施例1〜6と比較例1〜4の配合成分とその配合
割合を示したもので、第2表は実施例7〜10と比較例
5.6の配合成分とその配合割合を示したもので、第1
表、第2表にはそれぞれ硬化前の初期粘度、可使時間、
作業性の評価および硬化後の酸素指数、発煙係数、燃焼
時の溶融滴下、難燃性低発煙性の綜合評価の測定結果も
併記し゛(ある。なお、各配合剤の配合割合は重昂部で
示しである。なお、比較例は参考のため示し/j、。
Next, specific examples and comparative examples will be described. , 1st
The table shows the ingredients and their proportions in Examples 1 to 6 and Comparative Examples 1 to 4, and Table 2 shows the ingredients and proportions in Examples 7 to 10 and Comparative Examples 5.6. The first
Table 2 shows the initial viscosity before curing, pot life,
The measurement results of workability evaluation, oxygen index after curing, smoke emission coefficient, melt dripping during combustion, and comprehensive evaluation of flame retardancy and low smoke emission are also listed. Comparative examples are shown for reference.

酸素指数はJISK7201酸素指数法による高分子材
料の燃焼試験方法に準じC測定した。
The oxygen index was measured by C according to the JIS K7201 oxygen index method for combustion testing of polymer materials.

発煙係数は220X200X1mmの鋼板に各組成物を
1500g/m2の割合で塗布し、室温に2日放置して
硬化させた試験体について、JISΔ1321建築物の
内装材料およけ工法の難燃性試験方法に規定された表面
試験を実施し、11位面積当りの発煙係数(CA )を
求めるようにした。発     (j煙化係数は所定の
加熱炉で加熱したときに発生する煙を東煙箱に熱め、光
量測定装置により光の強さを測定し、次式から求めた。
The smoke emission coefficient was determined according to JIS Δ1321 Flame retardant test method for building interior materials, using test specimens in which each composition was applied at a rate of 1500 g/m2 to a 220 x 200 x 1 mm steel plate and left at room temperature for 2 days to harden. A surface test was carried out as specified in 11, and the smoke generation coefficient (CA) per area was determined. (j) The smoke conversion coefficient was determined from the following formula by heating the smoke generated when heated in a specified heating furnace in an east smoke box, measuring the intensity of light with a light intensity measuring device.

従って、発煙係数が小さいほど発煙が少ないことを示し
ている。
Therefore, the smaller the smoke generation coefficient, the less smoke generation.

CA =24011o Q t o to / I −
−−−−(1)ここに、1o:加熱試験開始時の光の怖
さくLx ) I :加熱試験中の光の強さの最低値 (シ×) 燃焼時の溶融滴下は、10#l#IX 10m×30m
mの硬化試料を作り、内炎30mm、外炎127mmに
調節したブンゼンバーノー−で1000℃、10分間燃
焼試験を行い、同化性が不十分で燃焼時に溶融滴トがあ
るかどうかを調べた。なお。、硬化後の特性試験は、室
温で5日放置後に行った。
CA = 24011o Q to to / I −
-----(1) Here, 1o: Scariness of light at the start of heating test Lx) I: Minimum value of light intensity during heating test (x) Melt dripping during combustion is 10 #l #IX 10m x 30m
A hardened sample of M was prepared and a combustion test was conducted at 1000°C for 10 minutes using a Bunsen bar with an inner flame adjusted to 30 mm and an outer flame adjusted to 127 mm to determine whether assimilation was insufficient and there were melt droplets during combustion. . In addition. The property tests after curing were conducted after being left at room temperature for 5 days.

tllF 化前+7) nJ 使時III G、L、1
00000cpsまrを作業可能な時間とし、B型回転
粘度計により25℃にお1ノる粘度を測定し、1000
00cpsになるまでの時間を求めた。
tllF before +7) nJ Envoy III G, L, 1
00,000 cps is the workable time, and the viscosity is measured at 25°C with a B-type rotational viscometer, and the viscosity is 1,000 cps.
The time required to reach 00 cps was determined.

実施例1〜6、比較例1〜4につい(は、第1表に承り
配合割合で、ポリイソシアネ−1へを除く各配合原料を
ビーカーに採取し、−1分混合した後、ポリイソシアネ
ート(ベキ1ノメヂレンジイソシアネ−1−三量体)を
加え、十分攪拌した後、型に流し込んで室温で硬化さけ
た。そしr:25°(]の粘度の経時変化をB型粘度h
1により測定して初期粘度、可使時間を測定した。発煙
係数測定試験は鋼板の周囲に枠を設置しC流出を防止し
、1500g/尻の割合U−塗布硬化させて作成した。
Regarding Examples 1 to 6 and Comparative Examples 1 to 4, each blended raw material except for polyisocyanate 1 was collected in a beaker at the blending ratio as shown in Table 1, and after mixing for -1 minute, polyisocyanate (power After stirring thoroughly, the mixture was poured into a mold and allowed to harden at room temperature.
1 to measure the initial viscosity and pot life. The smoke generation coefficient measurement test was made by installing a frame around the steel plate to prevent C from flowing out, and applying and curing U at a rate of 1500 g/bottom.

第1表の各測定結果かられかるように、実施例1〜6の
組成物は、作業性、硬化物の難燃性、低発煙f1、燃焼
時に溶融滴下がない点において非常に1ぐれ(いる。
As can be seen from the measurement results in Table 1, the compositions of Examples 1 to 6 were extremely superior in terms of workability, flame retardancy of cured products, low smoke f1, and no melt dripping during combustion. There is.

これに対しC参考のための比較例1の組成物I31、ク
ルードMD1を混合したとぎ急激に発熱反応しく′1分
程度e硬化しくしまい、作業性が極め【悪い。比較例1
の組成物は、水和アルミナの配合量が少ないのC作業性
は良好であるが、実施例1〜6にくらべて難燃性、発煙
性が劣っている。比較例3の組成物は、水和アルミプの
配合量が多過ぎるため流動せず、注入、含浸、塗イ1i
等の作業をtiうことがひきない。比較例1の組成物は
、非反応性液状ガ燃剤Cある1−リノLニルノAスノT
 −1−の吊を多くシ(あるので、燃焼時に溶融滴トが
あり、火災時の延焼防]に効果を期1!Jりることが(
゛きない。
On the other hand, when Composition I31 of Comparative Example 1 for C reference and Crude MD1 were mixed, there was a rapid exothermic reaction and hardening occurred for about 1 minute, resulting in extremely poor workability. Comparative example 1
The composition of C has good workability due to the small amount of hydrated alumina blended, but is inferior in flame retardancy and smoke generation compared to Examples 1 to 6. The composition of Comparative Example 3 did not flow because the amount of hydrated aluminum was too large, and it was difficult to pour, impregnate, and apply it.
I can't wait to do these tasks. The composition of Comparative Example 1 is a non-reactive liquid gas refueling agent C1-RinoL NilnoA SunoT
-1- It is effective in preventing the spread of fire in the event of a fire because there are many molten droplets during combustion.
I can't come.

実施例7・〜10、比較例55,6については、第2表
に示1ように、実施例7の組成物は、ジJデルN、N’
″−ビス(2−ヒト[1キシ土デル)アミツメデルホス
ボネートに別の難燃ポリオールを4Jt用しくあり、実
施例8の組成物は、実施例7の組成物に硬化促進触媒と
してジブデル錫ジラウレートを添加してあり、実施例9
の組成物は、通常のポリオールを用いた組成としであり
、実施例7〜10ども実施例1〜・6と同様良好な特f
1を示しくいる。これに対して比較例5.6は作業性ま
たは難燃性が実施例の組成物にくらべC劣っ(いる。 
    11以上説明したように、本発明によれば、注
入含浸、塗布等の作業性にづぐれ、高い顛燃性を有し、
火炎に接してもイ[(発煙性e、かつ、溶融滴下せずに
同化物となり、延焼防止効果を期待でき、電線ケーゾル
n通部の延焼防止耐火シール材、鉄構造物の耐火保護被
覆材等として好適なポリウレタン組成物を提供Cきると
いう効果がある。
As for Examples 7 to 10 and Comparative Examples 55 and 6, as shown in Table 2, the composition of Example 7 was
''-bis(2-human[1xytodel)amizmedel phosphonate with 4 Jt of another flame-retardant polyol, and the composition of Example 8 was prepared by adding dibdel to the composition of Example 7 as a curing accelerating catalyst. Tin dilaurate is added, Example 9
The compositions used are those using ordinary polyols, and Examples 7 to 10 had good characteristics similar to Examples 1 to 6.
Show 1. On the other hand, Comparative Examples 5 and 6 are inferior to the compositions of Examples in terms of workability and flame retardancy.
11 As explained above, according to the present invention, the workability of injection impregnation, coating, etc. is poor, and it has high flammability,
Even if it comes in contact with flame, it will emit smoke and become an assimilate without melting and dripping, so it can be expected to have a fire spread prevention effect. It has the effect of providing a polyurethane composition suitable as a polyurethane composition.

Claims (1)

【特許請求の範囲】[Claims] ポリオール成分、ボリイソシj7ネート成分、舅涯燃剤
およびその伯の配合剤からなるポリウレタン樹脂組成物
において、ポリオール成分がジエヂルN、N′−ビス(
2−ヒドロキシ1デル)アミツメデル小スホネー]〜を
主体とでるリン含有ポリオールで、ポリイソシッフネー
ト成分がヘキサメチレンジイソシアネー1〜の三量体を
主体としたちのぐ、難燃剤が水和アルミナを主体とした
もので、前記ポリオール成分と前記ポリイソシアネート
成分のとの合、;t 100重量部に対しく前記鼎燃性
剤を150〜40011部添加しCなることを特徴と覆
る高難燃低煙害性ポリウレタン樹脂組成物。
In a polyurethane resin composition comprising a polyol component, a polyisocyanate component, a retardant, and a combination thereof, the polyol component is diethyl N, N'-bis(
A phosphorus-containing polyol mainly composed of 2-hydroxy 1 del) amizmedel small sulfonate], the polyisosyphnate component is mainly composed of a trimer of hexamethylene diisocyanate 1, and the flame retardant is hydrated alumina. 150 to 40,011 parts of the above flame retardant are added to 100 parts by weight of the polyol component and the polyisocyanate component. Low smoke pollution polyurethane resin composition.
JP57106437A 1982-06-21 1982-06-21 Highly flame-retardant, low-smoke-polluting polyurethane resin composition Granted JPS58225116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106437A JPS58225116A (en) 1982-06-21 1982-06-21 Highly flame-retardant, low-smoke-polluting polyurethane resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106437A JPS58225116A (en) 1982-06-21 1982-06-21 Highly flame-retardant, low-smoke-polluting polyurethane resin composition

Publications (2)

Publication Number Publication Date
JPS58225116A true JPS58225116A (en) 1983-12-27
JPS6152171B2 JPS6152171B2 (en) 1986-11-12

Family

ID=14433618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106437A Granted JPS58225116A (en) 1982-06-21 1982-06-21 Highly flame-retardant, low-smoke-polluting polyurethane resin composition

Country Status (1)

Country Link
JP (1) JPS58225116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231017A (en) * 1985-03-30 1986-10-15 ライン‐ヘミイ・ライナウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Reactive materials based on polyurethane and their use for the production of coatings
US4931481A (en) * 1986-09-27 1990-06-05 Bayer Aktiengesellschaft Process for the production of foams based on aromatic isocyanates using MG(OH)2 and the foams produced thereby
WO2014066037A1 (en) * 2012-10-23 2014-05-01 Lubrizol Advanced Materials, Inc. Dyeable and flame-retarded thermoplastic polyurethane fibers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144034A (en) * 1976-05-26 1977-12-01 Dai Ichi Kogyo Seiyaku Co Ltd Flame retardant polyurethane coating compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144034A (en) * 1976-05-26 1977-12-01 Dai Ichi Kogyo Seiyaku Co Ltd Flame retardant polyurethane coating compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231017A (en) * 1985-03-30 1986-10-15 ライン‐ヘミイ・ライナウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Reactive materials based on polyurethane and their use for the production of coatings
US4931481A (en) * 1986-09-27 1990-06-05 Bayer Aktiengesellschaft Process for the production of foams based on aromatic isocyanates using MG(OH)2 and the foams produced thereby
WO2014066037A1 (en) * 2012-10-23 2014-05-01 Lubrizol Advanced Materials, Inc. Dyeable and flame-retarded thermoplastic polyurethane fibers
EP3067446A1 (en) * 2012-10-23 2016-09-14 Lubrizol Advanced Materials, Inc. Method of making fabrics from dyeable and flame-retarded thermoplastic polyurethane fibers
US9963806B2 (en) 2012-10-23 2018-05-08 Lubrizol Advanced Materials, Inc. Dyeable and flame-retarded thermoplastic polyurethane fibers

Also Published As

Publication number Publication date
JPS6152171B2 (en) 1986-11-12

Similar Documents

Publication Publication Date Title
EP0927231B1 (en) Low density, light weight intumescent coating
RU2040530C1 (en) Method of preparing nonflammable elastic polyurethane foam
US4438028A (en) Fire retardant and compounds based thereon
AU658550B2 (en) Intumescent coating and method of manufacture
SA01220273B1 (en) Flexible bulging coating formula
Myers et al. Ammonium pentaborate: an intumescent flame retardant for thermoplastic polyurethanes
JPH0668070B2 (en) Reactive fire-retardant compound which renders rigid polyurethane foam materials flame-retardant and process for making same
EP0799288B1 (en) Intumescent putty
CN115851025A (en) Environment-tolerant intumescent epoxy fire-retardant coating and preparation method and application thereof
JPS58225116A (en) Highly flame-retardant, low-smoke-polluting polyurethane resin composition
TWI481664B (en) Flexible non-combustible fire-resistant material
BR112013018600B1 (en) FLAME RETARDANT FORMULATION SUITABLE TO PROVIDE POLYURETHANE PRODUCTS
JPS63243159A (en) polyamide composition
JP4530655B2 (en) Foam fireproof paint
Aydoğan et al. Effects of dolomite and intumescent flame retardant additions on thermal and combustion behaviors of rigid polyurethane foams
JP7602416B2 (en) Composition for flame retardant foam
JPH0480281A (en) Flame-reterdant and heat-resistant sealing material
JP2620411B2 (en) Elastic sealing material for expansion joints
Ding et al. Photopolymerization and properties of UV‐curable flame‐retardant resins with hexaacrylated cyclophosphazene compared with its cured powder
Amir et al. Fire resistance of glass wool and rockwool hybrid fibre reinforced intumescent coating
Azmi et al. Investigating the mechanical performance of intumescent coating enhanced with magnesium oxide (MgO) for structural steel application
Du et al. Layered double hydroxide reinforced thermal expansion fire extinguishing agent for potential solid fire prevention
JP2023046990A (en) Flame-retardant coated red phosphorous and flame-retardant rigid polyurethane foam composition
KR20250046230A (en) Composition
JPS5898360A (en) Flame-retardant, thermosetting resin composition