[go: up one dir, main page]

JPS58224430A - Hybrid thin film integrated head - Google Patents

Hybrid thin film integrated head

Info

Publication number
JPS58224430A
JPS58224430A JP10683182A JP10683182A JPS58224430A JP S58224430 A JPS58224430 A JP S58224430A JP 10683182 A JP10683182 A JP 10683182A JP 10683182 A JP10683182 A JP 10683182A JP S58224430 A JPS58224430 A JP S58224430A
Authority
JP
Japan
Prior art keywords
substrate
thin film
integrated circuit
head
circuit chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10683182A
Other languages
Japanese (ja)
Other versions
JPH0474767B2 (en
Inventor
Akira Niimi
新見 晄
Hiroshi Yoneda
弘 米田
Hideaki Sato
英昭 佐藤
Tamotsu Sato
保 佐藤
Ikuo Kurihara
郁夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10683182A priority Critical patent/JPS58224430A/en
Publication of JPS58224430A publication Critical patent/JPS58224430A/en
Publication of JPH0474767B2 publication Critical patent/JPH0474767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the induction of external noises, by forming a magneto- resistance (MR) head part on which an MR element and an electrode part are formed by thin film depositing method and a semiconductor integrated circuit chip on which a magnetic signal detecting circuit is formed on the same substrate and connecting both the electrodes by a wire bonding method. CONSTITUTION:The substrate 4 is formed by glass, quartz, alumina, ferrite, or the like, the MR head part 5 obtained by forming the MR element 2 and a conductive part 3 to be used as an electrode on a silicon substrate by a thin film depositing lating method is fixed on the substrate 4 and the magnetic recording medium side of the MR head part 5 is covered and protected with an inuslating substrate 5a formed by glass, quartz, or the like. The semiconductor integrated circuit chip 7 consisting of a magnetic signal detecting circuit and a preamplifier is also fixed on the substrate 4. The pad part 8 of the semiconductor integrated circuit chip 7 is electrically connected with the conductive part 3 of the MR head part 5 through a thin wire 9 by a wire bonding method or the like.

Description

【発明の詳細な説明】 本発明は混成薄膜集積ヘッドに係り、さらに詳しく記録
密度を増大させ、周波数特性の向上のために薄膜磁気ヘ
ッドが広く採用されてきている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid thin film integrated head, and more specifically, thin film magnetic heads have been widely adopted to increase recording density and improve frequency characteristics.

例えば、この薄膜磁気ヘッドは、デジタルオーディオレ
コーダのように、多チャンネル化の要望に応えるために
、ヘッド素子の数が多く、ヘッド素子1個の集積度の高
いものが要求される磁気ヘッドとして最適なものとされ
ている。
For example, this thin-film magnetic head is ideal for magnetic heads that require a large number of head elements and a high degree of integration per head element in order to meet the demands for multi-channel use, such as in digital audio recorders. It is considered a thing.

ところが、再生ヘッドについてみると、従来多く使用さ
れていた磁気誘導型の薄膜磁気ヘッドの再生電圧はヘッ
ドと磁気記録媒体間の相対速度に比例しているため、低
速度の場合、再生出力も低くなり、これに対応するには
コイルの巻き数を数百〜千ターンと多くする必要があり
、薄膜再生ヘッドとして使用するには実用上困難であっ
た。
However, when looking at playback heads, the playback voltage of the magnetic induction type thin-film magnetic heads that have been widely used in the past is proportional to the relative speed between the head and the magnetic recording medium, so at low speeds, the playback output is also low. In order to accommodate this, it is necessary to increase the number of turns of the coil, from several hundreds to thousands of turns, which is practically difficult to use as a thin film reproducing head.

一方、このような薄膜磁気ヘッドに対応するために、ヘ
ッドと磁気記録媒体間の相対速度に関係のない磁束応答
型の磁気抵抗効果素子を用いた薄膜磁気ヘッド(以下、
MRヘッドと略称)が注目をあびてきている。
On the other hand, in order to support such thin-film magnetic heads, thin-film magnetic heads (hereinafter referred to as
MR heads (abbreviated as MR heads) are attracting attention.

このようなMRヘッドの一例を、第1図に拡大して示す
An example of such an MR head is shown enlarged in FIG.

第1図において、符号1で示すものは基板で、その側面
には磁気記録媒体側に臨んでMR素子2が薄膜堆積法な
どにより形成されており、MR素子2の両端は同様な方
法で基板上に形成された導電部3に接続されている。
In FIG. 1, the reference numeral 1 indicates a substrate, and an MR element 2 is formed on the side surface of the substrate by a thin film deposition method, facing the magnetic recording medium side, and both ends of the MR element 2 are formed on the substrate by a similar method. It is connected to a conductive part 3 formed above.

以上のような構造を有するMRヘッドのMR素子2に導
電部3を介して一定電流を供給しておくと、外部磁界が
接近した場合、MR素子2の持つ抵抗値が変化し、電圧
変化として磁界の強さを取り出すことができる。この時
の再生出力電圧ΔVはΔ■=ΔRIで表わされる。ΔR
は外部磁界によるMR素子の抵抗変化分で、IはMR素
子に加えられた一定電流の値である。MR素子2が外部
磁界によって抵抗変化を生じる変化率は、一般にNi−
Fe 、 Ni−Coなどから成るMR素子で1〜3%
である。
When a constant current is supplied to the MR element 2 of the MR head having the above structure through the conductive part 3, when an external magnetic field approaches, the resistance value of the MR element 2 changes, resulting in a change in voltage. The strength of the magnetic field can be extracted. The reproduced output voltage ΔV at this time is expressed as Δ■=ΔRI. ΔR
is the resistance change of the MR element due to the external magnetic field, and I is the value of the constant current applied to the MR element. The rate of change in resistance of the MR element 2 caused by an external magnetic field is generally
1 to 3% for MR elements made of Fe, Ni-Co, etc.
It is.

従って、再生出力を大きく得るためにはMR素子の絶対
抵抗値を大きくすることが必要である。
Therefore, in order to obtain a large reproduction output, it is necessary to increase the absolute resistance value of the MR element.

MR素子の抵抗値Rは、一般に次の(1)式で表わされ
る。
The resistance value R of the MR element is generally expressed by the following equation (1).

R−ρMRX  ’−・・・・・・・・・・・・・・・
・・・(1)Xt (])式においてρMRはMR素子の固有抵抗値、lは
MR素子の長さ、Wは幅、tは厚みを示す。第(1)式
からも明らかなように、MR素子の抵抗値を大きくする
ためにはMR素子の長さを太きくし、幅及び厚さを小さ
くすることが必要である。
R−ρMRX '−・・・・・・・・・・・・・・・
... (1) Xt (]) In the formula, ρMR is the specific resistance value of the MR element, l is the length of the MR element, W is the width, and t is the thickness. As is clear from equation (1), in order to increase the resistance value of the MR element, it is necessary to increase the length and decrease the width and thickness of the MR element.

しかし、MR素子の厚さは素子を薄膜技術で作成してい
るため、製作上あまり薄くはできず、MR素子の幅につ
いてはフォトエツチング技術上の制約があり、あまり小
さくすることができない。
However, the thickness of the MR element cannot be made very thin because the element is manufactured using thin film technology, and the width of the MR element cannot be made very small due to limitations in photoetching technology.

また、MR素子の長さは再生ヘッドのトラック幅に相当
し、最近の磁気記録再生技術の高密度化のために多チャ
ンネル化し、高集積度が要求され、トラック幅を小さく
すること、すなわちMR素子の長さを小さくすることが
要求されている。この結果、第(1)式から明らかなよ
うに、再生出力も小さくなってしまう欠点がある。
Furthermore, the length of the MR element corresponds to the track width of the reproducing head, and as the recent high-density magnetic recording and reproducing technology requires multi-channel and high integration, it is necessary to reduce the track width. There is a need to reduce the length of elements. As a result, as is clear from equation (1), there is a drawback that the reproduction output also becomes small.

さらに、MR素子を実装する場合には、導電部をフレキ
シブルな″ラード線で接合させ、プリアンプ回路部に接
続して再生出力信号を取る必要がある。
Furthermore, when mounting an MR element, it is necessary to connect the conductive part with a flexible lead wire and connect it to the preamplifier circuit part to obtain a reproduced output signal.

この結果、導電部、リード線の抵抗値も無視で(3) き々いものとなり、S/N比の悪い出力となってしまう
。そして、導電部やリード線が長くなってしまうために
、実際に再生信号を検出する場合、周囲のノイズの誘導
を受ける原因となっている。
As a result, the resistance values of the conductive parts and lead wires are ignored (3), resulting in an output with a poor S/N ratio. Furthermore, since the conductive portions and lead wires are long, they are subject to the induction of surrounding noise when actually detecting a reproduced signal.

本発明は以上のような従来の欠点を除去するためになさ
れたもので、S/N比を向上させ、外部ノイズの誘導を
少なくできるように構成したMR素子を用いた薄膜磁気
ヘッドを提供することを目的としている。
The present invention has been made to eliminate the above-mentioned conventional drawbacks, and provides a thin film magnetic head using an MR element configured to improve the S/N ratio and reduce the induction of external noise. The purpose is to

本発明においては、上記の目的を達成するために、同一
の基板上にMR素子および電極部を薄膜堆積法により形
成したMRヘッド部と磁気信号検出回路を形成した半導
体集積回路チップを設け、両者の電極間をワイヤボンデ
ィング法により接続した構造を採用した。
In order to achieve the above object, the present invention provides an MR head section in which an MR element and an electrode section are formed by a thin film deposition method and a semiconductor integrated circuit chip in which a magnetic signal detection circuit is formed on the same substrate. A structure was adopted in which the electrodes were connected using a wire bonding method.

以下、図面に示す実施例に基づいて、本発明の詳細な説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第2図において符号4で示すものは絶縁性基板で、ガラ
ス、石英、アルミナ、フェライトなどから形成される。
The reference numeral 4 in FIG. 2 is an insulating substrate made of glass, quartz, alumina, ferrite, or the like.

(4) 符号5で示すものはMRヘッド部で、シリコン基板上に
MR素子2及び電極となる導電部3が薄膜堆積法により
形成し、このシリコン基板を基板4上に固定しである。
(4) The reference numeral 5 is an MR head section in which an MR element 2 and a conductive section 3 serving as an electrode are formed on a silicon substrate by a thin film deposition method, and this silicon substrate is fixed onto a substrate 4.

このMRヘッド部5は基板4上に固定され、その先端部
、すなわち磁気記録媒体側は、MR素子部分を保護する
ための絶縁性基板5aによって覆われている。この絶縁
性基板6もガラス、石英。
The MR head section 5 is fixed on the substrate 4, and its tip end, that is, the magnetic recording medium side, is covered with an insulating substrate 5a for protecting the MR element part. This insulating substrate 6 is also made of glass or quartz.

アルミナ、フェライトなどから成る。Made of alumina, ferrite, etc.

一方、符号7で示すものは半導体集積回路チップで、シ
リコン基板上に磁気信号検出回路やプリアンプなどの回
路が形成されており、基板4上に固定されている。そし
て、この半導体集積回路チップ1の接続端子電極となる
パッド部8と、前記MRヘッド部5の導電部3との間は
アルミニウムや金などの細線9を用い、ワイヤボンディ
ング法などにより電気的に接続されている。
On the other hand, a semiconductor integrated circuit chip indicated by the reference numeral 7 has circuits such as a magnetic signal detection circuit and a preamplifier formed on a silicon substrate, and is fixed on the substrate 4. Then, a thin wire 9 made of aluminum or gold is used to connect the pad section 8, which serves as a connection terminal electrode of the semiconductor integrated circuit chip 1, and the conductive section 3 of the MR head section 5, and electrically conducts the connection by wire bonding or the like. It is connected.

第4図には、その一部であるプリアンプ回路の等価回路
図が示されている。第4図において符号10で示す部分
がMR素子部で、その両端の符号A、Bで示す部分はそ
れぞれ第3図に示すパッド部8及び導電部3に相当する
FIG. 4 shows an equivalent circuit diagram of a preamplifier circuit, which is a part of the preamplifier circuit. In FIG. 4, the portion designated by the reference numeral 10 is the MR element portion, and the portions designated by the symbols A and B at both ends thereof correspond to the pad portion 8 and the conductive portion 3 shown in FIG. 3, respectively.

そして、MR素子部11の抵抗変化によって生じる電圧
変化はトランジスタT、、T2によって検出され、トラ
ンジスタ1゛3〜T5によって増幅され、出力OUTと
して取り出され、外部回路へと送られる。
The voltage change caused by the change in resistance of the MR element section 11 is detected by the transistors T, . . . T2, amplified by the transistors 1-3 to T5, taken out as an output OUT, and sent to an external circuit.

本実施例は以上のように構成されているため、MR素子
とプリアンプ集積回路部が同一シリコン基板上に形成さ
れ、両者間の距離を短縮することができ、再生信号のS
/N比を向」ニさせることができる。
Since the present embodiment is configured as described above, the MR element and the preamplifier integrated circuit section are formed on the same silicon substrate, the distance between them can be shortened, and the S of the reproduced signal can be reduced.
/N ratio can be changed.

MRヘッドを使用する場合、MR素子とプリアンプを接
続する信号線に誘導磁界が交差することにより発生する
ノイズが問題となるが、このノイズの大きさは信号線が
形成する閉ループの断面積に比例する。
When using an MR head, noise generated by the induced magnetic field crossing the signal line connecting the MR element and preamplifier becomes a problem, but the magnitude of this noise is proportional to the cross-sectional area of the closed loop formed by the signal line. do.

このため、従来例ではMR素子と離れた位置にあるプリ
アンプとをフレキシブルリード線のようなリード線によ
って接続していたため、前述した閉ループの断面積が大
きくなり、ノイズ量も多かった。
For this reason, in the conventional example, the MR element and the preamplifier located at a remote location were connected by a lead wire such as a flexible lead wire, resulting in a large cross-sectional area of the aforementioned closed loop and a large amount of noise.

これに反し、本発明に々る薄膜磁気ヘッドでは、MR素
子とプリアンプの部分が極めて近接して配置されるため
、両者間を結ぶ信号線が形成する閉ループの断面積はほ
とんど無視でき、ノイズ量も著しく減少させることがで
きる。
On the other hand, in the thin-film magnetic head according to the present invention, the MR element and preamplifier are arranged extremely close to each other, so the cross-sectional area of the closed loop formed by the signal line connecting them can be almost ignored, and the amount of noise can also be significantly reduced.

一方、プリアンプの出力端から次段の入力端までは従来
通りにリード線で接続することになり、この部分におい
て誘導磁界によるノイズを発生するが、本発明構造にお
いては信号成分がプリアンプにより増幅された後である
ため、この部分において従来と同量のノイズ量が発生し
ても、あらかじめ信号が増幅されている分だけS/N比
の向上がはかれる。
On the other hand, the output end of the preamplifier is connected to the input end of the next stage using a lead wire as before, and noise is generated in this part due to the induced magnetic field, but in the structure of the present invention, the signal component is amplified by the preamplifier. Therefore, even if the same amount of noise occurs in this part as in the conventional case, the S/N ratio can be improved by the amount that the signal has been amplified in advance.

また、MR素子から信号を取り出す導電部及びリード線
の抵抗はノイズ発生源となるが、このノイズについても
従来構造ではプリアンプの前段の信号電圧の小さい段階
で発生していたため、s/N(7) の低下を招いていた。
In addition, the resistance of the conductive part and lead wire that take out the signal from the MR element is a source of noise, but in the conventional structure, this noise was generated at a stage where the signal voltage is small before the preamplifier, so s/N (7 ), leading to a decline in

ところが、本発明構造においては、リード線部分の抵抗
がプリアンプの後段に位置するため、これによるノイズ
を無視して考えることができる。
However, in the structure of the present invention, since the resistor of the lead wire portion is located at the subsequent stage of the preamplifier, the noise caused by this can be ignored.

さらに、従来構造においては、n個のMR素子を用いた
場合、接続端子数は2n個必要であり、MR素子からプ
リアンプ部へフレキシブルリード線で接続する場合にも
、2n本のリード線が必要である。
Furthermore, in the conventional structure, when using n MR elements, the number of connection terminals is 2n, and when connecting the MR element to the preamplifier section with a flexible lead wire, 2n lead wires are required. It is.

これに対し、本発明構造ではプリアンプ回路の共通の駆
動電圧印加端子1本、共通アース端子1本、出力端子4
本の合計n+2本の端子数ですむ。
In contrast, in the structure of the present invention, the preamplifier circuit has one common drive voltage application terminal, one common ground terminal, and four output terminals.
The total number of terminals is n+2.

この結果、実装されるMR素子の数が2個以上に増大す
るほど端子数は少なくてすむため、本発明構造のほうが
有利になり、上述したS/N比の改善ばかりではなく、
小型化もはかれる。
As a result, as the number of MR elements mounted increases to two or more, the number of terminals is reduced, so the structure of the present invention becomes more advantageous, and not only improves the S/N ratio as described above.
It can also be made smaller.

以上の説明から明らかなように、本発明によれば、同一
の基板上にMRヘッド部と、半導体集積回路部を設け、
両者の電極間をワイヤボンディング法で接続した構造を
採用しているため、ノイズ(8) の誘導を少なくでき、S/N比を向上させることができ
ると共に、小型化が可能で高密度実装を実現することが
できる。
As is clear from the above description, according to the present invention, an MR head section and a semiconductor integrated circuit section are provided on the same substrate,
By adopting a structure in which both electrodes are connected by wire bonding, it is possible to reduce the induction of noise (8), improve the S/N ratio, and also enable miniaturization and high-density mounting. It can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造を説明する一部拡大平面図、第2図〜
第4図は本発明の一実施例を説明するもので、第2図は
薄膜磁気ヘッドの側面図、第3図は薄膜磁気ヘッドの一
部拡大平面図、第4図は集+14曲 積回路部のプリアンプ部分の透過回路図である。 2・・・MR素子     3・、S・導電部。 5・・・MRヘッド部   7・・・半導体集積回路チ
ップ8・・・パッド部    9・r・細線第4図 手続補正書(自発) 昭和57年 9月 1日 特許庁長官殿 ■、事件の表示 昭和 57 年 特許願 第 108831  号2、
発明の名称 混成薄膜集積ヘッド 3、補正をする者 重性との関係   特許出願人 名  称     (100)  ギヤノン株式会社4
、代理人     電話 03 (268)2481 
(N6、補正の内容 別紙の通り 補正の内容 l)明細書第6頁第1行目の「シリコン」の次に(ガラ
ス、アルミナ、フェライト等の絶縁性」を加入する。 2)同第6頁第3行目の「シリコン」を削除し、「上記
絶縁性」を加入する。 3) 同第7頁第9行]]から第1O行目の「同一シリ
コン基板」二に形成され、]を削除し、「極めて近接し
て形成されるので、」を加入する。 4)同第9頁第12行目の「出力端子4本」を「出力端
子n本」に訂正する。 179−
Figure 1 is a partially enlarged plan view explaining the conventional structure, Figures 2-
FIG. 4 explains one embodiment of the present invention, FIG. 2 is a side view of a thin film magnetic head, FIG. 3 is a partially enlarged plan view of the thin film magnetic head, and FIG. 4 is a 14-curve integrated circuit. FIG. 2... MR element 3. S. Conductive part. 5...MR head part 7...Semiconductor integrated circuit chip 8...Pad part 9.R.Thin line Figure 4 Procedural amendment (voluntary) September 1, 1980 Mr. Commissioner of the Japan Patent Office ■, of the case Display 1982 Patent Application No. 108831 2,
Name of invention Hybrid thin film accumulating head 3, relationship with weight of person making correction Name of patent applicant (100) Gyanon Co., Ltd. 4
, agent telephone 03 (268) 2481
(N6, Contents of the Amendment Contents of the Amendment as shown in the attached sheet 1) Next to "silicon" in the first line of page 6 of the specification, add (insulating properties of glass, alumina, ferrite, etc.). 2) Item 6 of the specification Delete "silicon" in the third line of the page and add "the above insulation". 3) Delete ``formed on the same silicon substrate'' in line 1O from page 7, line 9] and add ``because they are formed extremely close to each other''. 4) Correct "4 output terminals" on the 12th line of page 9 to "n output terminals". 179-

Claims (2)

【特許請求の範囲】[Claims] (1)  同一基板上に磁気抵抗効果素子を薄膜堆積法
により形成すると共に、少しはなして集積回路チップを
固定し、両者間を電気的に接続したことを特徴とする混
成薄膜集積ヘッド。
(1) A hybrid thin film integrated head characterized in that a magnetoresistive element is formed on the same substrate by a thin film deposition method, an integrated circuit chip is fixed with a slight separation, and the two are electrically connected.
(2)磁気抵抗効果素子の電極部と集積回路チップの駆
動電極部間をワイヤボンディング法により接続したこと
を特徴とする特許請求の範囲第1項記載の混成薄膜集積
ヘッド。
(2) The hybrid thin film integrated head according to claim 1, wherein the electrode portion of the magnetoresistive element and the drive electrode portion of the integrated circuit chip are connected by wire bonding.
JP10683182A 1982-06-23 1982-06-23 Hybrid thin film integrated head Granted JPS58224430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10683182A JPS58224430A (en) 1982-06-23 1982-06-23 Hybrid thin film integrated head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10683182A JPS58224430A (en) 1982-06-23 1982-06-23 Hybrid thin film integrated head

Publications (2)

Publication Number Publication Date
JPS58224430A true JPS58224430A (en) 1983-12-26
JPH0474767B2 JPH0474767B2 (en) 1992-11-27

Family

ID=14443685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10683182A Granted JPS58224430A (en) 1982-06-23 1982-06-23 Hybrid thin film integrated head

Country Status (1)

Country Link
JP (1) JPS58224430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143417A (en) * 1983-12-29 1985-07-29 Sony Corp Magnetic head device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966119A (en) * 1972-09-05 1974-06-26
JPS4968716A (en) * 1972-10-31 1974-07-03
JPS49112610A (en) * 1973-02-26 1974-10-26
JPS5150498U (en) * 1974-10-16 1976-04-16
JPS51134615A (en) * 1975-05-16 1976-11-22 Seiko Epson Corp Integrated magnetic head
JPS52138711U (en) * 1976-04-16 1977-10-21
JPS5552620U (en) * 1978-10-02 1980-04-08

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966119A (en) * 1972-09-05 1974-06-26
JPS4968716A (en) * 1972-10-31 1974-07-03
JPS49112610A (en) * 1973-02-26 1974-10-26
JPS5150498U (en) * 1974-10-16 1976-04-16
JPS51134615A (en) * 1975-05-16 1976-11-22 Seiko Epson Corp Integrated magnetic head
JPS52138711U (en) * 1976-04-16 1977-10-21
JPS5552620U (en) * 1978-10-02 1980-04-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143417A (en) * 1983-12-29 1985-07-29 Sony Corp Magnetic head device

Also Published As

Publication number Publication date
JPH0474767B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
KR920004215B1 (en) Metal Oxide Semiconductor Self-Renewing Head
KR0181708B1 (en) An integrated magnetoresistive head mounted on a slider with mr strife, its manufacturing methodand magnetic medium drive including the unit
US3967368A (en) Method for manufacturing and using an internally biased magnetoresistive magnetic transducer
US4499515A (en) Integrated magnetostrictive-piezoresistive magnetic recording playback head
JP2002531909A (en) Shielded magnetoresistive head with charge clamp
JPH04351706A (en) Composite thin film magnetic head
JPS58118017A (en) magnetic head
JPS58224430A (en) Hybrid thin film integrated head
JPS61120318A (en) Unified thin film magnetic head
JP2806378B2 (en) Magnetic head slider
JPS58224429A (en) Thin film integrated head
JP3521553B2 (en) Thin film magnetic head
JP3285094B2 (en) Polishing method of thin film magnetic head
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JP2602203B2 (en) Magnetoresistive magnetic head
JPS599986A (en) Thin film magnetoelectric transducer
JP2787174B2 (en) Magnetoresistive thin film magnetic head
JP2002358608A (en) Magnetic head and method of manufacturing magnetic head
JPS6112593Y2 (en)
JPS6363117A (en) Thin film magnetic head
JPH09508229A (en) Magnetic head provided with write element and read element
JPS626420A (en) Thin film magnetic head
JPS60160014A (en) Vertical recording and reproducing magnetic head
JPS63175214A (en) Magnetoresistive head
JPH06124420A (en) Magnetoresistance effect type head and signal reproducing apparatus for magnetoresistance effect type head