[go: up one dir, main page]

JPS58223927A - Data compression processor - Google Patents

Data compression processor

Info

Publication number
JPS58223927A
JPS58223927A JP10740782A JP10740782A JPS58223927A JP S58223927 A JPS58223927 A JP S58223927A JP 10740782 A JP10740782 A JP 10740782A JP 10740782 A JP10740782 A JP 10740782A JP S58223927 A JPS58223927 A JP S58223927A
Authority
JP
Japan
Prior art keywords
signal
time
amplitude
peak
original signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10740782A
Other languages
Japanese (ja)
Inventor
Katsuro Okamoto
克郎 岡本
Takashi Akai
赤井 孝至
Takashi Furukawa
孝 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10740782A priority Critical patent/JPS58223927A/en
Publication of JPS58223927A publication Critical patent/JPS58223927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/662Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a time/frequency relationship, e.g. time compression or expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

PURPOSE:To compress data continuously with high compression rate and good reproducibility, by representing an input signal comprising a data showing a prescribed time series and a data showing the difference of the amplitude at adjacent time from a secondary differentiating filtering processing output. CONSTITUTION:A signal applied to a secondary differentiating filter 1 is discriminated for whether it is a peak or a zero cross significatnt signal. The peak and the zero crossing point of a filtering output section are recognized at a peak detector 3 and a zero cross point detector 4 and the time is detected. The amplitude of the original signal at the detected time is obtained at a reference device 5. Then, the amplitude of the time series signal just before being an output signal of a delay device 6 and the amplitude of the signal at present are subtracted at a subtractor 7 and the difference of the amplitude values is obtained. As to the original signal where the ratio exceeds a prescribed threshold value at a voltage-time comparator 8, it is subtracted separately from the output of the device 6, allowing to reproduce the original signal with fidelity.

Description

【発明の詳細な説明】 本発明は信号のデータ圧縮に関し、%に生体信号のデー
タ圧縮処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to data compression of signals, and more particularly to a data compression processing device for biological signals.

心電図信号など生体信号を自動計測する場合、A/D変
換されたある一定時間の時系列生体信号を蓄積しその蓄
積された時系列信号に処理を加えることKよシ生体信号
の特徴波の振幅値1時刻などt計測している。ここで、
蓄積されるディジタル化された信号のデータ量は(A/
D変換器のサンプリング周波数)×(データ取得時間)
X(同時取得チャネル数)であシ、一般にはほう大なデ
ータ量となるためこれらのデータをそのまま保存するに
は大容量のメモリや外部補助記憶装置が必要であった。
When automatically measuring biological signals such as electrocardiogram signals, it is necessary to accumulate A/D-converted time-series biological signals over a certain period of time and then apply processing to the accumulated time-series signals. The value 1 is measured by t, such as time. here,
The amount of data of the digitized signal to be accumulated is (A/
D converter sampling frequency) x (data acquisition time)
X (number of simultaneously acquired channels), and generally the amount of data is large, so a large capacity memory or external auxiliary storage device is required to store this data as it is.

そのため、実用に際しては装置を単純化、小型化するた
めにいくつかのデータ圧縮法が試みられてきた。その代
表的なものとして、ある設定時間以内、設定振幅値範囲
内にある時系列信号を、その時間内の信号群の示す最大
振幅値と最小振幅値の平均振幅値と時間とで代表させ、
一定振幅範囲を越える急峻な変化を示す信号に対しては
その振幅値の変化分と変化した時間で代表させることに
よりデータ圧縮を行う方法、あるいは時間−振幅値よシ
決定される符号化関数と時系列信号との交点の振幅値を
圧縮データとして残す、可変標本密度符号化方式による
帯域圧縮法などが挙げられる。
Therefore, several data compression methods have been attempted in order to simplify and downsize the device in practical use. As a typical example, a time-series signal within a set amplitude value range within a set time is represented by the average amplitude value and time of the maximum amplitude value and minimum amplitude value of the signal group within that time,
For a signal that shows a sharp change exceeding a certain amplitude range, there is a method of data compression by representing the change in amplitude value and the time of change, or an encoding function determined by time-amplitude value. Examples include a band compression method using a variable sample density encoding method, which leaves the amplitude value at the intersection with the time-series signal as compressed data.

しかしながら前者はその再現波形が一定時間幅の傾きを
持つ直線と水平な直線とで表現されてbるため必ずしも
原信号を忠実に再現し得ないこと、また後者については
符号化および復号化専用のプロセッサを必要とするとい
う欠点を持っていた。
However, the former cannot necessarily reproduce the original signal faithfully because the reproduced waveform is expressed by a straight line with a slope of a certain time width and a horizontal straight line, and the latter has the disadvantage that it is difficult to reproduce the original signal faithfully. It had the disadvantage of requiring a processor.

他方、原信号が周期的な信号であれば基本練液群の繰り
返しであ“す、基本波形に関する計測値を用いてデータ
圧縮を行う方法もある。たとえば心電図計測のように波
形計測部分を1心拍分に限定しその計測値を保存する方
法である。しかし、生体信号のように必ずしも周期的で
ない信号、たとえば不整脈の現象のある心電図などでは
連続したデータ圧縮が必要であった。
On the other hand, if the original signal is a periodic signal, there is also a method of data compression using measurement values related to the basic waveform by repeating the basic preparation group.For example, as in electrocardiogram measurement, the waveform measurement part is This method saves the measured values only for heartbeats.However, continuous data compression is required for signals that are not necessarily periodic, such as biological signals, such as electrocardiograms that show arrhythmia phenomena.

本発明の目的は、従来のデータ圧縮方式に比較(、シて
、方式が単純で高速に処理できかつ圧縮率が高く再現性
の良い、連続的なデータ圧縮を行うことができるデータ
圧縮処理装置を提供することである。
The purpose of the present invention is to provide a data compression processing device that can perform continuous data compression with a simple method, high speed processing, high compression rate, and good reproducibility, compared to conventional data compression methods. The goal is to provide the following.

本発明によれば、処理対象信号に2次微分フィルタリン
グ処理を加える手段と、処理対象信号を構成する練液の
時系列信号のうち選択対象となる信号の生起時刻を2次
微分された出力信号より検出する手段と、現時点の選択
対象2次微分信号の生起時刻における原信号の振幅値と
直前の選択対象2次微分信号の生起時刻における原信号
の振幅値とを比較する手段と、選択された2つの原信号
の時間々隔と振幅値の差分値を合成して処理対象信号の
圧縮データとする手段とから構成されるデータ圧縮処理
装置が得られる。
According to the present invention, there is provided a means for applying a second-order differential filtering process to a signal to be processed, and an output signal obtained by second-order differentiating the occurrence time of a signal to be selected from among the time-series signals of the liquid concentrate constituting the signal to be processed. means for comparing the amplitude value of the original signal at the occurrence time of the current selection target secondary differential signal with the amplitude value of the original signal at the occurrence time of the immediately previous selection target secondary differential signal; A data compression processing device is obtained, which includes means for synthesizing the time interval and the difference value of the amplitude values of the two original signals to generate compressed data of the signal to be processed.

まず、処理対象信号に2次微分操作を加える2次微分フ
ィルタリングの式を式(1)に示す。
First, a formula for second-order differential filtering that applies a second-order differential operation to a signal to be processed is shown in equation (1).

Xk+□+Xk−□)十〇−( xk+2 + Xk−x ) + 0・(Xk+s+ 
Xk−s) + 1・(Xk+4+Xk−4)+2@( Xk+s+Xk−4)+1・( Xk+s+xk−s)’j ・・・式(1)ここで(X
k)は例えば第1図に示すサンプリエ ングされた各時系列デニタである。またη簀■丁はスケ
ールファクタを示す。式(1)にて示した通り本フィル
タは係数が簡単な整数(o、工ないしは2)を示すため
、加減算およびビットシフト演算のみで処理が可能であ
り、高速かつ良好な2次微分特性を実現する。本フィル
タリング操作を原信号に加えるとその出力信号のピーク
が原信号を構成している練液群の立ち上り時刻、終端時
刻、ピーク生縮時刻およびその近傍を忠実に示し零交叉
点の一部は原信号の変曲点近傍を示すという特徴を有し
て込る。そこで、フィルタリング出力信号からその振幅
値がピークおよび基線レベル(ゼロレベル)を交叉する
時刻を検出し、その生起時刻に和尚する原信号の振幅値
を得る。この振幅値が圧縮データ生成のために選択され
た時系列信号となる。
Xk+□+Xk-□) 10-(xk+2 + Xk-x) + 0・(Xk+s+
Xk-s) + 1・(Xk+4+Xk-4)+2@(Xk+s+Xk-4)+1・(Xk+s+xk-s)'j...Formula (1) where (X
k) is each sampled time series monitor shown in FIG. 1, for example. Also, η窀■ding indicates a scale factor. As shown in equation (1), the coefficients of this filter are simple integers (o, or 2), so processing can be performed using only addition, subtraction, and bit shift operations, and it has high-speed and good second-order differential characteristics. Realize. When this filtering operation is applied to the original signal, the peaks of the output signal faithfully indicate the rise time, end time, peak generation/contraction time, and their vicinity of the solution group that makes up the original signal, and some of the zero crossing points are It has the characteristic of showing the vicinity of the inflection point of the original signal. Therefore, the time at which the amplitude value of the filtered output signal crosses the peak and the baseline level (zero level) is detected, and the amplitude value of the original signal that is corrected at the time of occurrence is obtained. This amplitude value becomes the time series signal selected for compressed data generation.

以上のように2次微分フィルタリング出力信号のピーク
および零交叉時刻に対応する原信号の振幅値を順次求め
ていき、現時点の振幅値と、その前すなわち直前の選択
された振幅値との差分および時間々隔を対として抽出し
て、この対を圧縮データとしている。尚、上記の方式に
おいて、更K、データとして表示できる限界に対応しで
ある時間々隔、および振幅値の閾値を設定し、それを超
える信号も圧縮データ生成の九めの選択信号として補間
することにより、忠実な信号の再現を可能としている。
As described above, the amplitude values of the original signal corresponding to the peak and zero-crossing times of the second-order differential filtering output signal are sequentially determined, and the difference between the current amplitude value and the previous, i.e., immediately previous, selected amplitude value is calculated. Time intervals are extracted as pairs, and these pairs are used as compressed data. In the above method, a time interval and an amplitude threshold are set corresponding to the limits that can be displayed as data, and signals exceeding these are also interpolated as the ninth selection signal for compressed data generation. This enables faithful signal reproduction.

ここで心電図を例にと9説明してゆくと、心電図は第2
図に示すようにP、QR81T#u波と称される各練液
から構成されておシ、一般にはこの練液における区分点
と呼ばれる特徴点の時刻およびピークの振幅値を計測す
ることによシ診断が行われている。第3図は心電図信号
(itとこれをフィルタリングした結果(blを示すが
、本図に示す通りフィルタリング出力信号のピーク時刻
が各鯨波の立ち上り時刻、終端時刻、ピーク生起時刻に
it tx 一致している。従ってこの練液の特徴点の
生起時刻、および振幅値に関する情報を既に述べた方式
で保存すれば、再生された心電図信号上でもこの情報が
失われることなく再現でき石ことになる。
To explain this using the electrocardiogram as an example, the electrocardiogram is the second
As shown in the figure, the waves are composed of various liquids called P and QR81T#u waves.Generally, by measuring the time and peak amplitude value of characteristic points called segmentation points in this liquid, A diagnosis is being made. Figure 3 shows the electrocardiogram signal (it) and the result of filtering it (bl). As shown in this figure, the peak time of the filtered output signal coincides with the rise time, end time, and peak occurrence time of each whale wave. Therefore, if the information regarding the occurrence time and amplitude value of the characteristic points of this concentrated solution is stored in the method described above, this information can be reproduced without being lost on the reproduced electrocardiogram signal.

次に本発明の一実施例を示した図面を参照して本発明の
詳細な説明する。第4図は本発明の一実施例を示す図で
あり、構成要素を説明すると、1は2次微分フィルタで
あシディジタル信号に変換されている原信号に2次微分
操作をおこなう。2は振幅レベル判定装置であり、ピー
ク点やゼロ交差点と雑音との弁別を行なう。3はピーク
検出装置であり、ピーク点を検出する。4は零交差点検
出装置であシ零交差点を検出する65は原信号参照装置
であシある時刻における原信号の振幅値データを抽出す
る。6は信号遅延装置であり、ある一定時間だけ原信号
の出力を遅延させる。7は減算装置であり入力された各
時点の振幅値データの差分を求める。8は電圧一時間比
較装置であり電圧一時間比がある一定閾値以上にある原
信号を検出する装置である。
Next, the present invention will be described in detail with reference to the drawings showing one embodiment of the present invention. FIG. 4 is a diagram showing an embodiment of the present invention. To explain the constituent elements, 1 is a second-order differential filter that performs a second-order differential operation on the original signal that has been converted into a sidigital signal. Reference numeral 2 denotes an amplitude level determination device, which discriminates between peak points, zero crossing points, and noise. 3 is a peak detection device that detects peak points. Reference numeral 4 denotes a zero intersection detection device, which detects zero intersections. Reference numeral 65 denotes an original signal reference device, which extracts amplitude value data of the original signal at a certain time. A signal delay device 6 delays the output of the original signal by a certain period of time. 7 is a subtraction device which calculates the difference between the input amplitude value data at each point in time. Reference numeral 8 denotes a voltage-to-hour comparator, which detects an original signal whose voltage-to-hour ratio is above a certain threshold value.

次に本方式の動作について以下に述べる。処理2   
  対象信号はまず2次微分フィルタIKかけられ、2
次微分操作が行われる。2次微分された信号はピークな
いしは零交叉する有意信号かどうか判定される。ピーク
検出装置3および零交差点検出装置4においてフィルタ
リング出力部のピーク点と零交差点をIa!識し、その
時刻を検出する。次に検出された時刻の原信号を参照装
置5によりその振幅値を求める。次に、遅延装置6の出
力信号である直前の時系列信号の振幅値と上記にて得ら
れた現時点の信号の振幅値を減算装置7でその差をと9
、振幅値の差分を求める。この差分振幅値および遅延時
間が圧縮データとして保存される。一方電圧一時間比較
装置8によって電圧一時間比がある一定閾値を超える原
信号については別途遅延装置6からの出力との差分をと
シ、原信号が忠実に再現できるようKする。
Next, the operation of this method will be described below. Processing 2
The target signal is first subjected to a second-order differential filter IK, and then
A second derivative operation is performed. It is determined whether the second-order differentiated signal is a significant signal that peaks or crosses zero. In the peak detection device 3 and the zero intersection detection device 4, the peak point and zero intersection of the filtering output section are Ia! and detect the time. Next, the amplitude value of the original signal at the detected time is determined by the reference device 5. Next, a subtraction device 7 calculates the difference between the amplitude value of the immediately preceding time series signal, which is the output signal of the delay device 6, and the amplitude value of the current signal obtained above.
, find the difference in amplitude values. This differential amplitude value and delay time are stored as compressed data. On the other hand, for the original signal whose voltage-to-hour ratio exceeds a certain threshold value, the voltage-to-hour comparator 8 separately calculates the difference between the original signal and the output from the delay device 6, so that the original signal can be faithfully reproduced.

本発明を心電図信号に適用し圧縮された心電図の再生波
形(blおよび原信号(alt第5図に示す。
The reproduced waveform (bl) and original signal (alt) of a compressed electrocardiogram obtained by applying the present invention to an electrocardiogram signal are shown in FIG.

以上、本発MK依ると従来の方式に比べて次のような効
果が得られる。
As described above, according to the MK of the present invention, the following effects can be obtained compared to the conventional system.

している。are doing.

(2)本方式にて採用した2次微分フィルタは微小レベ
ル信号についても鋭敏に検知するためたとえば心電図の
微小P波などに対しても良好な再現性を示している。
(2) The second-order differential filter employed in this method can sensitively detect minute level signals, and therefore exhibits good reproducibility even for minute P waves in electrocardiograms.

(3)本方式にて採用した2次微分フィルタは良好な低
域特性を待ったや雑音の重畳した生体信号に対しても嵐
好な再現性を持つデータ圧縮を実現している。
(3) The second-order differential filter adopted in this method not only has good low-frequency characteristics, but also achieves data compression with excellent reproducibility even for biological signals with superimposed noise.

(4)本方式は単純な構成であることからリアルタイム
データ圧縮などの高速データ処理が可能である。
(4) Since this method has a simple configuration, high-speed data processing such as real-time data compression is possible.

(5)本方式によって処理され再生された信号は原信号
に比較して平滑化を行り九ことと同等の効果金玉げてい
る。
(5) The signal processed and reproduced by this method is smoothed compared to the original signal, and has the same effect as the original signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるフィルタリング動作を説明する
ための図、第2図は心電図信号を示す図、第3図は心電
図信号を2次微分した波形を示す図、第4図は本発明の
一実施例を示す図、第5図は本発明によシ圧縮されたデ
ータから再現した心電図波形を示す図1 穿1 回 (cL) (り 茅つヅ (久λ (レノ 第S珊
Fig. 1 is a diagram for explaining the filtering operation in the present invention, Fig. 2 is a diagram showing an electrocardiogram signal, Fig. 3 is a diagram showing a waveform obtained by second-order differentiation of the electrocardiogram signal, and Fig. 4 is a diagram showing a waveform obtained by second-order differentiation of the electrocardiogram signal. FIG. 5 shows an electrocardiogram waveform reproduced from data compressed according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 入力信号に2次微分フィルタリング処理を加えるフィル
タと、前記フィルタ出力を受けこのフィルタ出力が所定
の条件を満す時刻列を抽出する手段と、前記時刻列にお
ける入力信号の振幅値を計る手段と、前記時刻列の相隣
合う時刻における振幅値の差分を取る手段とを具備し、
前記時刻列を示すデータと前記差分を示すデータとで前
記入力信号を表わすことを特徴とするデータ圧縮処理装
置。
a filter that applies a second-order differential filtering process to an input signal; means for receiving the filter output and extracting a time sequence in which the filter output satisfies a predetermined condition; and means for measuring the amplitude value of the input signal in the time sequence; means for taking a difference between amplitude values at adjacent times in the time sequence;
A data compression processing device characterized in that the input signal is represented by data indicating the time sequence and data indicating the difference.
JP10740782A 1982-06-22 1982-06-22 Data compression processor Pending JPS58223927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10740782A JPS58223927A (en) 1982-06-22 1982-06-22 Data compression processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10740782A JPS58223927A (en) 1982-06-22 1982-06-22 Data compression processor

Publications (1)

Publication Number Publication Date
JPS58223927A true JPS58223927A (en) 1983-12-26

Family

ID=14458360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10740782A Pending JPS58223927A (en) 1982-06-22 1982-06-22 Data compression processor

Country Status (1)

Country Link
JP (1) JPS58223927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541890A (en) * 2010-09-10 2013-11-14 クゥアルコム・インコーポレイテッド Method and apparatus for low complexity compression of signals
US9075446B2 (en) 2010-03-15 2015-07-07 Qualcomm Incorporated Method and apparatus for processing and reconstructing data
JP2019527819A (en) * 2016-06-23 2019-10-03 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Periodic analysis of AC signals from nanopore sequencing
US11531021B2 (en) 2017-12-28 2022-12-20 Roche Sequencing Solutions, Inc. Measuring and removing noise in stochastic signals from a nanopore DNA sequencing system driven by an alternating signal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075446B2 (en) 2010-03-15 2015-07-07 Qualcomm Incorporated Method and apparatus for processing and reconstructing data
US9658825B2 (en) 2010-03-15 2017-05-23 Qualcomm Incorporated Method and apparatus for processing and reconstructing data
JP2013541890A (en) * 2010-09-10 2013-11-14 クゥアルコム・インコーポレイテッド Method and apparatus for low complexity compression of signals
KR101528541B1 (en) * 2010-09-10 2015-06-12 퀄컴 인코포레이티드 Method and apparatus for low complexity compression of signals
US9136980B2 (en) 2010-09-10 2015-09-15 Qualcomm Incorporated Method and apparatus for low complexity compression of signals
US9356731B2 (en) 2010-09-10 2016-05-31 Qualcomm Incorporated Method and apparatus for low complexity compression of signals employing differential operation for transient segment detection
JP2019527819A (en) * 2016-06-23 2019-10-03 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Periodic analysis of AC signals from nanopore sequencing
US11124827B2 (en) 2016-06-23 2021-09-21 Roche Sequencing Solutions, Inc. Period-to-period analysis of AC signals from nanopore sequencing
US11531021B2 (en) 2017-12-28 2022-12-20 Roche Sequencing Solutions, Inc. Measuring and removing noise in stochastic signals from a nanopore DNA sequencing system driven by an alternating signal

Similar Documents

Publication Publication Date Title
US5772603A (en) Device for filtering ECG signals
EP1363533B1 (en) Determining heart rate
US5117833A (en) Bi-spectral filtering of electrocardiogram signals to determine selected QRS potentials
ES8800587A1 (en) Heart rate detection utilizing autoregressive analysis.
CA1258099A (en) Egg with delta wave recognition by double
JPS58223927A (en) Data compression processor
US5008940A (en) Method and apparatus for analyzing and reconstructing an analog signal
Almeida et al. Automatic delineation of T and P waves using a wavelet-based multiscale approach
EP0634137B1 (en) Device for eliminating ringings in filtered ECG-signals
US5457457A (en) Digital to analog conversion device which decreases low level high frequency noise
Wagner A simple test for phase characteristics of chart recorders
JPS644328Y2 (en)
RU2417050C1 (en) Device to eliminate drift of isoelectric line of electro-cardiosignal
JPH05212006A (en) Heartbeat interval measuring instrument
Wahab Detection of QRS complexes in ECG signals based on Poisson Transform and Root Moments
JPH0299037A (en) Detection of micropotential in electrocardiogram
JP2718686B2 (en) Analog-to-digital converter
JPS5858625B2 (en) signal processing device
JPS5858028A (en) Apparatus for cyclic noise of living body signal
AU2002224661B2 (en) Determining heart rate
JPS61206428A (en) Biosignal artifact detection and removal method
JPS58198330A (en) Signal treating apparatus
JPS6111017A (en) Bio-signal processing system
Jenkins et al. Continuous intrapartum fetal electrocardiography using a real-time computer
Neejarvi et al. A new class of sinusoidal-preserving FMH filters