JPS58223560A - Liquid honing method and liquid injection device - Google Patents
Liquid honing method and liquid injection deviceInfo
- Publication number
- JPS58223560A JPS58223560A JP10211482A JP10211482A JPS58223560A JP S58223560 A JPS58223560 A JP S58223560A JP 10211482 A JP10211482 A JP 10211482A JP 10211482 A JP10211482 A JP 10211482A JP S58223560 A JPS58223560 A JP S58223560A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- ground
- nozzle
- grinding
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims description 116
- 238000000034 method Methods 0.000 title claims description 12
- 238000002347 injection Methods 0.000 title claims description 9
- 239000007924 injection Substances 0.000 title claims description 9
- 239000000463 material Substances 0.000 claims description 31
- 239000002002 slurry Substances 0.000 claims description 30
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000003082 abrasive agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 241001232700 Carex aquatilis Species 0.000 description 1
- 241000234653 Cyperus Species 0.000 description 1
- 235000002848 Cyperus flabelliformis Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C5/00—Devices or accessories for generating abrasive blasts
- B24C5/02—Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
- B24C5/04—Nozzles therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明は鋼板等の被研削材・表面を広い面積に。[Detailed description of the invention] The present invention can widen the surface area of materials and surfaces to be ground, such as steel plates.
亘ってデスク−リング、研削または清掃する液体ホーニ
ング方法及びこの方法の実施に使用する液体噴射装置に
係り、特に液体ビーム状vc噴射した2本の高圧液体を
衝突させて扇状に拡がる液体膜上形成し、゛この液体膜
の少なくとも片面に外部から研削材金倉んだスラリ全供
給させ、研削力が大きく均一な研削ができ、かつメンテ
ナンスの簡易化を計れる液体ホーニング方法及び液体噴
射装置に関する。It relates to a liquid honing method for grinding or cleaning a disk ring, and a liquid jetting device used to carry out this method, and in particular to forming a liquid film on a fan-shaped liquid film by colliding two high-pressure liquids jetted in the form of a liquid beam. The present invention also relates to a liquid honing method and a liquid jetting device that can supply a slurry containing an abrasive material from the outside to at least one side of the liquid film, thereby achieving uniform grinding with a large grinding force and simplifying maintenance.
従来この種の液体ホーニング方法及びその装置としては
、例えば第1図と第2図に示すものが知られている0第
2図のものは特公昭55−3103号公報に記載された
発明であり、第1図のものは該公報にも記載されている
公知技術である。第1図の構成は、ここで繰り返して説
明すると、ノズルブロック1に高圧水Pと研削材を含む
スラリSの供給口が設けられ、高圧水Pはノズルチラノ
2金通じて所定距離り離れた被研削材3上に交点ft有
するように配置されたもので、次のような欠点がある。Conventionally, as this type of liquid honing method and device, the ones shown in FIGS. 1 and 2 are known. The one shown in FIG. 2 is an invention described in Japanese Patent Publication No. 55-3103 , the one shown in FIG. 1 is a known technique that is also described in the publication. The configuration of FIG. 1 will be described repeatedly here. A nozzle block 1 is provided with a supply port for high-pressure water P and a slurry S containing an abrasive material, and the high-pressure water P is supplied to a target a predetermined distance apart through a nozzle tyrannometal. It is arranged so as to have an intersection point ft on the abrasive material 3, and has the following drawbacks.
(1) スラリか高圧水スゲレイにより包まれて加速
されるもののその加速が中心部まで及ばず研削能率が悪
い。(1) Although it is surrounded by slurry or high-pressure water sedge and is accelerated, the acceleration does not reach the center, resulting in poor grinding efficiency.
(2) スラリ詰りか生じた場合1.ノズルブロック1
とスラリ供給装置との切離しが必要となり、しかも悪環
境のため作業性が困難でメンテナンス上問題がある。(2) In case of slurry clogging 1. Nozzle block 1
It is necessary to separate the equipment from the slurry supply device, and the harsh environment makes it difficult to work and causes problems in terms of maintenance.
また、第2図のものは高圧水供給管4にフラットスルレ
イノズル5が取り付はうしており、このノズルから噴射
されるフラットスゲレイにスラリ供給管6からスラリS
が与えられた構成であり、従来のスポット的なノズルと
異なり極めて高能率で且つ幅方向に一様な表面加工がで
きるとされている。しかしながら、実際問題として次の
ような欠点かあること明らかである。In addition, in the one shown in Fig. 2, a flat slug nozzle 5 is attached to the high-pressure water supply pipe 4, and slurry S is supplied from the slurry supply pipe 6 to the flat slag ray sprayed from this nozzle.
Unlike conventional spot nozzles, this nozzle is said to be extremely efficient and capable of uniform surface processing in the width direction. However, as a practical matter, it is clear that there are the following drawbacks.
(1) フラットスプレィによる高圧水の被研削材への
衝突力が第1図のものに比して、使用する圧力、水量か
等しい場合等距MLでは減少する。(1) The impact force of high-pressure water on the material to be ground due to flat spray is reduced in equidistant ML when the pressure and water volume used are the same, compared to that in Fig. 1.
従って距離りが100mm前後と比較的短い場合には有
効であるが、鋼板等の研削においては通常、鋼板は移送
されつつ研削されるので形状の不良やバタ付きが有り、
L=400龍前彼の長い距離全保持しないと通板作業が
困難となり、通板中にノズル損傷などが生じる。ところ
が、かがる長い距離では研削能力はフラットスプレィを
採用しているがゆえVC第1図のものに比して著しく低
下する。Therefore, it is effective when the distance is relatively short, around 100 mm, but when grinding steel plates, etc., the steel plates are usually ground while being transferred, so there may be defects in shape or flapping.
L = 400 If the long distance is not maintained completely, threading will be difficult and damage to the nozzle will occur during threading. However, over a long distance, the grinding ability is significantly lower than that of the VC shown in Fig. 1 because flat spray is used.
(2) フラットスプレィであるため被研削材における
衝突力が端と中央とでは差が生じておジ、この差は特に
広幅材全研削する場合、複数個のノズル全幅方向にずら
して使用することとなるが、研削むらの原因と雇り均一
な表面加工が期待できない。(2) Because it is a flat spray, there is a difference in the impact force on the material to be ground between the edges and the center.This difference makes it necessary to use multiple nozzles offset in the width direction, especially when completely grinding a wide material. However, it is the cause of uneven grinding and uniform surface finishing cannot be expected.
そこで、本発明者は従来の液体ホーニングにおける問題
点に鑑み鋭意研究の結果、二本の液体ビームを衝突させ
ることにより安定かつ高速の液体膜が形成されるという
現象全積極的に利用して、上記問題点全有効に解決すべ
く本発明全創案するに至ったものである。Therefore, in view of the problems in conventional liquid honing, the inventors of the present invention have conducted intensive research and have actively utilized the phenomenon of forming a stable and high-speed liquid film by colliding two liquid beams. The present invention has been devised to effectively solve all of the above problems.
従って本発明の目的とするところは、相隣る二点よ!l
l高圧液体を互に交差する方向に液体ビームとして噴射
し、被研削材に至る上流側において衝突させて扇状に拡
がる液体膜を形成し、この液体膜の少なくとも片面に研
削材を含むスラIJ を供給させ、被研削材までの距離
が長くても研削力が大きく、かつ均一な研削が行なえ、
メンテナンスの簡易化を言することかできる液体ホーニ
ング方法及び液体噴射装置全提供するにある。Therefore, the purpose of the present invention is to focus on two adjacent points! l
l High-pressure liquid is injected as a liquid beam in directions that intersect with each other, and the liquid beams collide with each other on the upstream side of the workpiece to form a fan-shaped liquid film, and a slurry IJ containing abrasive material is formed on at least one side of this liquid film. Even if the distance to the material to be ground is long, the grinding force is large and uniform grinding is possible.
The present invention provides a liquid honing method and a liquid injection device that can simplify maintenance.
以下に本発明の好適一実施例全添付図面に従って詳述す
る。A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
第3図は、本発明方法を実施化した液体噴射装置の先端
に散り付けられるノズル端子10単体の構造例を示す概
略断面図である。図示する如く上記ノズル端子10は、
両端が開口した円筒形本体11の一端にこの開口を塞ぐ
べく円盤状のノズルチップ12を1高圧液体をシールす
るためのQ IJング13を介して挿入し、次いで中央
に円形窓を開けたキャラf14で締付けて固定したもの
であり、一端外周には上記キャッゾ14の被嵌用のネジ
溝15が、そして他端外周には取付用のネジ溝15がそ
れぞれ刻設されている。ノズルチップ12は第4図にも
示す如く、円筒形本体11内へ流入する高圧液体を液体
ビームBとして2本噴射し、この噴射方向を前方8点で
互に又差するように臨ませた、円柱状′または円錐状パ
ターンで形成された二りのノズル16を有し、このノズ
ル16の又差角をθ、またノズル間隔itとしている。FIG. 3 is a schematic cross-sectional view showing an example of the structure of a single nozzle terminal 10 that is sprinkled on the tip of a liquid ejecting device implementing the method of the present invention. As shown in the figure, the nozzle terminal 10 is
A disk-shaped nozzle tip 12 is inserted into one end of the cylindrical body 11, which is open at both ends, through a QIJ ring 13 for sealing the high-pressure liquid, and then a cylinder with a circular window in the center is inserted. It is fixed by tightening with f14, and a thread groove 15 for fitting the above-mentioned casso 14 is formed on the outer periphery of one end, and a thread groove 15 for mounting is formed on the outer periphery of the other end. As shown in FIG. 4, the nozzle tip 12 injects two high-pressure liquids flowing into the cylindrical body 11 as liquid beams B, and the directions of these injections are directed at eight points in the front so as to cross each other. , two nozzles 16 formed in a cylindrical or conical pattern, the angle of difference between the nozzles 16 is θ, and the nozzle interval is it.
第5図はかかるノズル端子10を取り付けて成る液体噴
射装置ITとこれとは別に設けたスラリ供給手段18と
組合せた基本的な液体ホーニング装置の概略構成を示す
。液体噴射装置17はチャンバグロック19と上記ノズ
ル端子10とから構成されている。チャンノぐノロツク
19は−I11面に中央に取付用ネジ孔を有する閉塞板
’1Qfdfル)止めしてその開口を塞ぎ、他側向に図
示していない高圧ポンプより適切な圧力と流量の高圧液
体Pが供給される^圧液体供給管の7ランジ21’&−
がルト止めして内部に上記高圧液体が供給されるチャン
バ22が形成されている。そして、ノズル端子10は上
記チャンバ22と連通すべくチャンバブロック19の一
側面に形成されている上記取付用ネジ孔にその他端をね
じ込まれておジ、チャンバブロック19に対し着脱自在
に取り付けられるようになっている。このように構成さ
れた液体噴射装置17は同図に示すように、ノズル端子
10から噴射される液体ビームBが被研削材C7C対し
効率よく投射されるように被研削材Cの斜め上方に適宜
の手段で所定距離I4−保持して固定されている。一方
、スラリ供給手段18は上記液体噴射装置11と向かい
合せ、液体ビームBの被研削材Cに至る上流側において
、図示しないスラリ供給ポンプから供給される研削材を
含むスラリSをその液体ビームBの片面に供給するよう
に、スラリ出口23t−斜め下方に向けて適宜の手段で
固定されている。尚、被研削材Cは紙面と直角に幅方向
金有し移送の向きが矢印2で示されて因る。FIG. 5 shows a schematic configuration of a basic liquid honing device that combines a liquid ejecting device IT equipped with such a nozzle terminal 10 and a slurry supply means 18 provided separately. The liquid ejecting device 17 is composed of a chamber lock 19 and the nozzle terminal 10 described above. The channel gun lock 19 is a closing plate (1Qfdf) with a mounting screw hole in the center on the -I11 side to close the opening, and a high-pressure liquid with an appropriate pressure and flow rate is supplied from the high-pressure pump (not shown) in the other direction. 7 langes 21'&- of the pressure liquid supply pipe to which P is supplied
A chamber 22 is formed into which the high-pressure liquid is supplied. The other end of the nozzle terminal 10 is screwed into the mounting screw hole formed on one side of the chamber block 19 so as to communicate with the chamber 22, so that the nozzle terminal 10 can be detachably attached to the chamber block 19. It has become. As shown in the figure, the liquid ejecting device 17 configured in this manner is appropriately directed diagonally above the workpiece C to be ground so that the liquid beam B jetted from the nozzle terminal 10 is efficiently projected onto the workpiece C7C. It is held and fixed at a predetermined distance I4- by means of. On the other hand, the slurry supply means 18 faces the liquid injection device 11, and on the upstream side of the liquid beam B reaching the workpiece C, the slurry S containing the abrasive material supplied from a slurry supply pump (not shown) is supplied to the liquid beam B. The slurry outlet 23t is fixed diagonally downward by appropriate means so as to be supplied to one side of the slurry outlet 23t. Note that the material to be ground C has a width direction perpendicular to the plane of the paper, and the direction of conveyance is indicated by an arrow 2.
以上のように構成された本発明の基本的な液体ホーニン
グ装置の作用について述べる。The operation of the basic liquid honing device of the present invention configured as described above will be described.
第6図はノズル端子10から交差角θで噴射された2本
の液体ビームBがe点で衝突してこの点より噴射方向に
平坦な扇状の液体膜りが形成される様子を示している。Figure 6 shows how two liquid beams B injected from the nozzle terminal 10 at an intersection angle θ collide at point e, and a flat fan-shaped liquid film is formed from this point in the injection direction. .
この現象は、2本の液体ビームを相対向して正面衝突さ
せた場合に偏j突点において液体ビーム方向に対し直交
する平面に円板状の液体膜が形成さ九ることからも容易
に推察することができる。本発明にあっては形成される
げ体膜に方向性を付与するために液体ビSムの対向角、
すなわち交差角θを180°以下としたものである。第
7図乃至第9図は交差角θのときの爾芙点eにおける液
体ビームB速度の正面崗、側面囚及び平面図のベクトル
表示である−0これより明らかなように、各液体e−ム
速度V。はその衝突点eにおいて被研削材CIC対し直
角方向の成分Vyと水平方向の成分vxとに分けること
ができ、そのうちの水平方向の成分vxは互に相殺され
て零となり、直角方向の成分■yは重畳されて2倍、す
なわちv == 2vy = 2v、cts iとなる
。そして、この速度vをもった液体膜りがe点より角度
αの拡が9で、ノズル16間金結ぶ直線mと直交する平
面上を、液体ビームBに置き換わって被研削材CK向か
つて投射されることとなる。この液体膜りの拡がり角度
αはノズル16間の距離41文差角θ及び高圧液体の液
圧・液量により変化し、また上記液体膜りの速度Vは第
1O図に示す如く邸θの関数、即ち交差角θにより変化
する。液体膜りの拡がり角度α及びその速度■を決定す
る上記ノぐラメータは第5図における投射距離りに応じ
て研削量が最大となるよう適切に決められる。かくして
、相隣る二点より高圧液体Pを互に交差する方向に噴射
した液体ビームBは、被研削材CK至る上流側のe点に
おいて衝突してこれより扇状に拡がる液体膜りとなり、
この液体膜り上の片面(第5図では上面)にグラ1ノ供
給手、−ふ。This phenomenon can be easily explained by the fact that when two liquid beams face each other and collide head-on, a disc-shaped liquid film is formed on a plane perpendicular to the liquid beam direction at the eccentric point. It can be inferred. In the present invention, in order to impart directionality to the formed rod film, the opposing angle of the liquid beam,
That is, the intersection angle θ is 180° or less. 7 to 9 are vector representations of the front angle, side angle, and top view of the velocity of the liquid beam B at the point e when the intersection angle θ is -0 As is clear from this, each liquid e- speed V. can be divided into a component Vy in the perpendicular direction to the material to be ground CIC and a component vx in the horizontal direction at the collision point e, of which the horizontal component vx cancels each other out and becomes zero, and the component in the perpendicular direction ■ y is superimposed and multiplied by 2, i.e. v == 2vy = 2v, cts i. Then, the liquid film with this velocity v is projected from the point e toward the workpiece CK, replacing the liquid beam B, on a plane perpendicular to the straight line m connecting the nozzles 16 with an angle α extending 9. It will be done. The spread angle α of this liquid film varies depending on the distance between the nozzles 16 and the angle θ of the distance between the nozzles 16 and the pressure and volume of the high-pressure liquid, and the velocity V of the liquid film varies depending on the distance θ as shown in FIG. It changes depending on the function, that is, the intersection angle θ. The above-mentioned nozzle meter, which determines the spreading angle α of the liquid film and its velocity (2), is appropriately determined in accordance with the projection distance shown in FIG. 5 so that the amount of grinding is maximized. In this way, the liquid beam B injecting the high-pressure liquid P from two adjacent points in mutually intersecting directions collides at point e on the upstream side to the material to be ground CK, forming a liquid film that spreads in a fan shape from this point.
A grating supply hand is placed on one side of the liquid film (top side in Figure 5).
段1&1からスラリS全上乗せする如く供給される。Slurry S is supplied from stage 1 & 1 so as to be completely on top of it.
液体膜り上に供給されたスラリSは液体膜りが液体ビー
ムB速度のはは2倍の速度で移動しているのでそのすべ
てを捕捉され、かつ液体膜りは角度αで拡がっているの
で均一に拡散されることとなり、そのまま従来の液体ホ
ーニング技術と同じ作用によって被研削材C表面を加工
するに至る。従って、供給されたスラ+7Sが水膜から
零れり“鳴動に研削に寄与することができ、またスラリ
Sの拡散によりスラリS中の研削材の有効加速も計るこ
とができる。そして、これに加えて被研削材Cとノズル
端子10間の投射距離りに応じた最適な交差角θを求め
ることにより衝突力の大きな液体膜り全形成し得て研削
量全可及的に増大させることができる。尚、上記実施例
においてスラリSを液体膜りの上面から供給するように
したが、下面から液体膜DKこれに沿わせるように噴射
して供給することも、液体膜りの速度が大きいので可能
である。また、液体噴射装置11を被研削材Cの斜め下
方に固定し、液体ビームB自体を上方に向けるようにし
ても同様に液体膜は形成されるので、液体の噴射方向は
実施例に限定されるものではない。All of the slurry S supplied onto the liquid film is captured because the liquid film is moving at twice the speed of the liquid beam B, and the liquid film is spreading at an angle α. The liquid is uniformly diffused, and the surface of the material to be ground C is machined by the same action as the conventional liquid honing technology. Therefore, the supplied slurry +7S spills from the water film and contributes to the grinding by causing "ringing," and the diffusion of the slurry S also makes it possible to measure the effective acceleration of the abrasive material in the slurry S. By determining the optimal intersection angle θ according to the projection distance between the material C to be ground and the nozzle terminal 10, it is possible to form a liquid film with a large collision force and increase the amount of grinding as much as possible. Although the slurry S was supplied from the upper surface of the liquid film in the above embodiment, it is also possible to spray the slurry S from the lower surface along the liquid film DK and to supply the slurry S from the lower surface, since the speed of the liquid film is large. It is possible.Also, even if the liquid jet device 11 is fixed diagonally below the material to be ground C and the liquid beam B itself is directed upward, a liquid film will be formed in the same way, so the direction of the liquid jet can be adjusted depending on the direction. The examples are not limited.
次に、上述した液体噴射装置の具体例全二つ挙げてより
詳細に述べる。Next, two specific examples of the liquid ejecting device described above will be listed and described in more detail.
第11図、第12図はそのうちの一例を示したものであ
り、図示する如くチャンバブロック25の前面にボルト
止めした閉塞板26に、被研削材Cの幅方向(図にあっ
ては横方向)−列に複数のノズル端子10′に等間隔V
C取付け、かつ谷ノズル端子10の方向、即ち二つのノ
ズル16間を結ぶ直線mが互いに平行となるように固定
したものである。この直線mlc対して直交する平面上
に液体ビームBの衝突による液体膜りが形成されるので
該直線mは被研削材Cの幅方向上向かないようにするこ
とが望ましい。被研削材C表面に衝突する液体膜り平面
が被研削材Cの長手、方向と平行となり非研削部ができ
るからである。第12図の如くノズル端子10の取付は
角度を決めると、被研削材C表面上には第13図の如き
幅方向に一列で、かつ個々には斜めを向いた略小判状の
研削部dが形成できることとなる。この場合、ノズル端
子10単体の望ましい被研削材C上における液ル。FIGS. 11 and 12 show an example of this, and as shown in the figure, a blockage plate 26 bolted to the front surface of the chamber block 25 is attached to a block plate 26 in the width direction (in the figure, in the lateral direction) of the material to be ground C. ) - a plurality of nozzle terminals 10' in a row at equal intervals V
C mounting and fixed so that the direction of the valley nozzle terminal 10, that is, the straight line m connecting the two nozzles 16 is parallel to each other. Since a liquid film is formed by the collision of the liquid beam B on a plane perpendicular to the straight line mlc, it is desirable that the straight line m does not face upward in the width direction of the material to be ground C. This is because the plane of the liquid film that collides with the surface of the material to be ground C is parallel to the length and direction of the material to be ground, creating a non-grinded portion. When the mounting angle of the nozzle terminal 10 is determined as shown in Fig. 12, approximately oval-shaped grinding portions d are formed on the surface of the material to be ground C in a line in the width direction as shown in Fig. 13, and are individually oriented diagonally. can be formed. In this case, the liquid droplet on the desired material C of the nozzle terminal 10 alone.
分布は第14図に示す如く、両端において若干中央部よ
りも流量を少なくし、@り合う研削部dの重なり合う部
分が中央部と等しい研削部になるようにして、総研制量
の均一化を計るようにする。As shown in Fig. 14, the distribution is made so that the flow rate is slightly lower at both ends than at the center, and the overlapping part of the grinding parts d becomes the same grinding part as the center part, thereby making the total grinding amount uniform. Try to measure it.
なお、スラリSの供給は、各ノズル端子1oが形成する
液体膜りの集合を1つの大きな液体膜と見立てて1台の
スラリ供給手段18にょジ一括供給するようにしても、
又は各液体膜りに個別的にスラリSの供給を行なうよう
にしても良い。従って、この具体例によれば被研削材C
の幅方向にノズル端子10単体で形成される研削部d全
重畳させることなく連らねていけるので、幅広な被研削
材?均一に研削する場合、特に有効となる。Note that the slurry S may be supplied all at once to one slurry supply means 18 by treating the collection of liquid films formed by each nozzle terminal 1o as one large liquid film.
Alternatively, the slurry S may be supplied to each liquid film individually. Therefore, according to this specific example, the material to be ground C
Since the grinding part d formed by a single nozzle terminal 10 can be connected in the width direction without overlapping, it is possible to grind a wide material. This is particularly effective when grinding uniformly.
第15図、第16丙は他の具体例を示したものであフ、
図示する如りノズル端子1oをチャンバブロック27の
前面に、被研削材C上にできる各研削部dが幅方向に対
して傾斜するように、多列に取り付けて構成したもので
ある。この構、成孔よれば研削部d同士の間隔を大きく
保持できるので、ノズル端子10の方向を揃えなくとも
直接研削部dが血なり合うことがなく、したがって個々
にノズル端子10の調整が行なえ均一な研削を一層確実
なものとすることができる。Figures 15 and 16 C show other specific examples.
As shown in the figure, the nozzle terminals 1o are attached to the front surface of the chamber block 27 in multiple rows so that each grinding portion d formed on the material C to be ground is inclined with respect to the width direction. With this configuration and hole formation, it is possible to maintain a large distance between the ground parts d, so even if the directions of the nozzle terminals 10 are not aligned, the ground parts d do not directly touch each other, and therefore the nozzle terminals 10 can be adjusted individually. Uniform grinding can be further ensured.
尚、上述のいずれの実施例においてもノズル端子10を
チャ/バブロック19の前面VCある閉塞&20に取付
けるようにしたが、ノズル16間12を直接閉塞板20
Vc取句けるようにしても良く、またチャンバブロック
19番一つではなく複数個並べることにより種々の被研
削材CK対処することも可能である。In each of the above-described embodiments, the nozzle terminal 10 is attached to the front face VC of the chamber block 19, but the nozzle 12 between the nozzles 16 is directly connected to the block plate 20.
It is also possible to handle various materials to be ground CK by arranging not one but a plurality of chamber blocks 19.
以上、要するに本発明によれば次のような優れた効果全
発揮する。In summary, according to the present invention, the following excellent effects can be achieved.
(1) 本方法によれば、液体ビームの交差角ヲ変える
ことにより被研削材とノズル間の投射距離に応じて衝突
力が大きくなるように液体膜を形成し得、またこの形成
された液体膜は連続して安定であるとともに扇状に拡が
るため、供給されるスラリか液体膜から零れることなく
確実に捕捉されて拡散するので含まれている研削材が有
効に研削に寄与し得、もって研削量t′i3J及的に大
きくすることができ、被研削材の移送速度を上げること
ができるので、短時間に多電の研削を行なうことができ
る。また、液体ビームの衝突により液体膜を形成するよ
うにしたので指向性が良く研削を正NVC行なうことが
できると共に、少なり研削材、スラリ量および高圧液体
発生動力(圧力×流量に比例する)が小きくて済み高い
イリF削能率を可能にすることができる。(1) According to this method, by changing the intersection angle of the liquid beam, a liquid film can be formed so that the collision force increases depending on the projection distance between the workpiece to be ground and the nozzle, and the formed liquid Since the film is continuous and stable and spreads out in a fan shape, the supplied slurry is reliably captured and diffused without spilling from the liquid film, so that the abrasive contained therein can effectively contribute to the grinding process, thereby improving the grinding process. Since the amount t'i3J can be increased and the transport speed of the material to be ground can be increased, multi-current grinding can be performed in a short time. In addition, since a liquid film is formed by the collision of the liquid beam, it has good directionality and allows for positive NVC grinding, and requires less abrasive material, slurry amount, and high-pressure liquid generation power (proportional to pressure x flow rate). It is possible to achieve high iris F cutting efficiency with a small amount.
(2)本装置によればノズル端子をチャンバに対し着脱
自在としたことにより、スラリの詰9などが生じても容
易に交換することができてメンテナンスが極めて簡単で
あり、また液体ビームの形成は既存のノズルがそのまま
使用できるので、フラットスゲレイノズルよりもエネル
ギー損失が少なく装置も簡便となる。そして、ノズル端
子全一列に取り付けたことにより研削部の幅方向の面!
itを増大することができるので、特に幅広の被研削材
の研削に極めて有効となる。(2) According to this device, since the nozzle terminal is detachable from the chamber, it can be easily replaced even if slurry clogging 9 occurs, and maintenance is extremely simple. Because the existing nozzle can be used as is, energy loss is lower than with a flat sedge nozzle, and the equipment is simpler. And by installing all the nozzle terminals in one row, the widthwise surface of the grinding part!
Since it is possible to increase it, it is extremely effective especially for grinding wide materials to be ground.
(3)また、本装置によればノズル端子をチャンバに対
し多列に取付けたことにより、隣り合うノズル端子によ
り形成される被研削材上の研削部同士の間隔を広くと9
得て研削部の重畳範囲全ノズル端子の個別的な方向調整
により最適にすることができるので、幅方向に亘ってよ
り均一な研削を行なうことができる。(3) Also, according to this device, by attaching the nozzle terminals to the chamber in multiple rows, the distance between the grinding parts on the workpiece formed by the adjacent nozzle terminals can be widened.
Since the overlapping range of the grinding portion can be optimized by individual direction adjustment of all nozzle terminals, more uniform grinding can be performed across the width direction.
第1図、第2図は従来の液体ホーニング装置を示す概略
説明図、第3図は本発明に係る液体噴射装置の要部とな
るノズル端子の概略断面図、第4図は同じくノズルチッ
プの正面図、第5図は本発明に係る液体ホーニング装置
の基本的構成図、第61はノズル端子から噴射した液体
ビームが液体膜を形成する様子を説明した概略断面図、
第7図から第9図は二本の液体ビームが衝突により液体
膜仏形成する原理を説明したペク)/し図であって、そ
れぞれ正面図、側面図及び平面図、また第10図は同上
液体膜の交差角度θに対する速度特性図、第11図及び
第12図は液体噴射装置の具体例金示した平面図及び正
四図、第13図は同具体例により被研削材表面上に現わ
れる研削状況を示す被研削材の平面図、第14図はノズ
ル端子単体の被研削材上に投射される重重しい液量分布
を示J−説明図、第15図は液体噴射装置の他の具体例
勿示した正面図、第・16図は同上研削状況を示す被研
削材の平面図である。
尚、図中10はノズル端子、16はノズル、1γは液体
噴射装置、22はチャンバ、Bは液体ビーム、Cは被研
削材、Dは液体膜、θは交差角度、eは衝突点、Pは尚
圧液体、Sはスラリである。
特 許 出 願 人 石川島播M嵐工業株式会社代理
人 弁理士 絹 谷 伯 雄
第゛3図
7θ
第5図
第4図
6
0
第6図
↓
第11図1 and 2 are schematic explanatory diagrams showing a conventional liquid honing device, FIG. 3 is a schematic sectional view of a nozzle terminal, which is a main part of a liquid ejecting device according to the present invention, and FIG. 4 is a schematic sectional view of a nozzle tip. 5 is a basic configuration diagram of a liquid honing device according to the present invention; 61 is a schematic sectional view illustrating how a liquid beam injected from a nozzle terminal forms a liquid film;
Figures 7 to 9 are diagrams illustrating the principle of forming a liquid film by collision of two liquid beams, and are respectively a front view, a side view, and a plan view, and Figure 10 is the same as above. Figures 11 and 12 are diagrams of velocity characteristics with respect to the crossing angle θ of the liquid film. Figures 11 and 12 are plan views and square views showing a specific example of the liquid injection device. Figure 13 is a diagram showing the grinding that appears on the surface of the workpiece by the same specific example. A plan view of the material to be ground showing the situation, Fig. 14 is an explanatory diagram showing the heavy liquid volume distribution projected onto the material to be ground by a single nozzle terminal, and Fig. 15 is another specific example of the liquid injection device. Of course, the front view shown in FIG. 16 is a plan view of the material to be ground showing the same grinding situation as above. In the figure, 10 is a nozzle terminal, 16 is a nozzle, 1γ is a liquid injection device, 22 is a chamber, B is a liquid beam, C is a material to be ground, D is a liquid film, θ is an intersection angle, e is a collision point, and P is a pressurized liquid and S is a slurry. Patent applicant: Ishikawajima Ban M Arashi Kogyo Co., Ltd. Agent Patent attorney: Hakuo Kinutani Figure 3 7θ Figure 5 Figure 4 6 0 Figure 6 ↓ Figure 11
Claims (3)
体ビームとして噴射し、被研削材に至る上流側において
衝突させて扇状に拡がる液体膜を形成し、この液体膜の
少なくとも片面に研削材を含むスラリ全供給することt
%徴とする液体ホーニング方法。(1) V high-pressure liquid is injected as a liquid beam from two adjacent points in a direction that intersects with each other, and they collide on the upstream side leading to the material to be ground to form a liquid film that spreads in a fan shape, and at least Supply the entire slurry containing the abrasive to one side.
Liquid honing method with percentage characteristics.
、該チャンバに供給された高圧液体を液体ビームとして
噴射し被研削材に至る上流側で衝矢させて液体膜を形成
すべく互に交差方向に臨ませた二つのノズルを有するノ
ズル端子のおのおのを、着脱自在に取り付けて構成した
ことを特徴とする液体噴射装置。(2) The high-pressure liquid supplied to the chamber is injected as a liquid beam onto the front row of the chambers to which the high-pressure liquid is supplied, and the high-pressure liquid is sprayed in the form of a liquid beam on the upstream side to reach the material to be ground, so as to form a liquid film. A liquid ejecting device characterized in that each nozzle terminal having two nozzles facing in a cross direction is detachably attached.
該チャンバに供給された高圧液体を液体ビームとして噴
射し被研削材に至る上流側で衝突させて液体膜上形成す
べく互に交差方向に臨ませた二つのノズルを有するノズ
ル端子のおのおの金、着脱自在に取り付けて構成したこ
とを行値とする液体噴射装置。(3) In multiple rows in front of the chamber to which high-pressure liquid is supplied,
Each nozzle terminal has two nozzles facing each other in a cross direction so that the high-pressure liquid supplied to the chamber is injected as a liquid beam and collides with the material on the upstream side to form a liquid film on the material to be ground; A liquid injection device whose value is that it is configured to be detachably attached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10211482A JPS58223560A (en) | 1982-06-16 | 1982-06-16 | Liquid honing method and liquid injection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10211482A JPS58223560A (en) | 1982-06-16 | 1982-06-16 | Liquid honing method and liquid injection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58223560A true JPS58223560A (en) | 1983-12-26 |
Family
ID=14318771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10211482A Pending JPS58223560A (en) | 1982-06-16 | 1982-06-16 | Liquid honing method and liquid injection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58223560A (en) |
-
1982
- 1982-06-16 JP JP10211482A patent/JPS58223560A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1096908A (en) | Airless spray nozzle and method of making it | |
US4923743A (en) | Apparatus and method for spraying moving substrates | |
KR890002516B1 (en) | Cooling equipment for continous casting device | |
US4641785A (en) | Flat jet nozzle for coolant spraying on a continuously conveyed billet | |
EP1585601A1 (en) | Method and injection nozzle for interspersing a gas flow with liquid droplets | |
US2778685A (en) | Jet assembly | |
JP2927746B2 (en) | Injection nozzle | |
JPS58223560A (en) | Liquid honing method and liquid injection device | |
KR101311200B1 (en) | Spray gun for powder electrostatic coating | |
US3107860A (en) | Washing apparatus and method | |
JPH025899Y2 (en) | ||
CN101502821B (en) | Wide slit nozzle | |
JP3172306B2 (en) | nozzle plate | |
US4346724A (en) | Apparatus for spraying a coolant on a steel slab | |
US3806033A (en) | Pulse jet pressure nozzle | |
JP4452093B2 (en) | Injection nozzle and injection method | |
JPS59159260A (en) | Mist cooling method and cooling mist ejection device in continuous casting equipment | |
US4397694A (en) | Spray nozzle assembly for filter devices | |
CS231153B2 (en) | Method of molten metal spraying in making metal powder and device to perform the method | |
CN215236237U (en) | Surface washing device for jet descaling system of steel plate | |
CA1318181C (en) | Dampener nozzle for printing presses | |
JPS58202775A (en) | Liquid honing method and device | |
JP3010093B2 (en) | Injection processing method and injection gun used therefor | |
SU1050623A1 (en) | Deflector-type liquid sprayer | |
JPS59206065A (en) | Nozzle for airless painting |