JPS58223334A - Method for flattening an uneven substrate - Google Patents
Method for flattening an uneven substrateInfo
- Publication number
- JPS58223334A JPS58223334A JP57105474A JP10547482A JPS58223334A JP S58223334 A JPS58223334 A JP S58223334A JP 57105474 A JP57105474 A JP 57105474A JP 10547482 A JP10547482 A JP 10547482A JP S58223334 A JPS58223334 A JP S58223334A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- layer
- substrate
- liquid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 30
- 229920005989 resin Polymers 0.000 claims abstract description 63
- 239000011347 resin Substances 0.000 claims abstract description 63
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 238000005530 etching Methods 0.000 claims abstract description 9
- 230000008018 melting Effects 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 229920002050 silicone resin Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 238000009832 plasma treatment Methods 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 4
- 239000000178 monomer Substances 0.000 abstract description 3
- 239000012299 nitrogen atmosphere Substances 0.000 abstract description 3
- 239000012298 atmosphere Substances 0.000 abstract description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 abstract 1
- 239000012495 reaction gas Substances 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 239000000377 silicon dioxide Substances 0.000 description 12
- 235000012239 silicon dioxide Nutrition 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000004641 Diallyl-phthalate Substances 0.000 description 5
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920006015 heat resistant resin Polymers 0.000 description 4
- -1 polymethylsiloxane Polymers 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HGTUJZTUQFXBIH-UHFFFAOYSA-N (2,3-dimethyl-3-phenylbutan-2-yl)benzene Chemical group C=1C=CC=CC=1C(C)(C)C(C)(C)C1=CC=CC=C1 HGTUJZTUQFXBIH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- QABCGOSYZHCPGN-UHFFFAOYSA-N chloro(dimethyl)silicon Chemical compound C[Si](C)Cl QABCGOSYZHCPGN-UHFFFAOYSA-N 0.000 description 1
- XSDCTSITJJJDPY-UHFFFAOYSA-N chloro-ethenyl-dimethylsilane Chemical compound C[Si](C)(Cl)C=C XSDCTSITJJJDPY-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Local Oxidation Of Silicon (AREA)
- Drying Of Semiconductors (AREA)
- Element Separation (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の技術分野
本発明は半導体装置の凹凸基板を平坦化する方法に関す
るものであり、特に半導体装置の素子間又は配線層間を
絶縁分離するために凹凸基板を平坦化する方法に関する
ものである。Detailed Description of the Invention (1) Technical Field of the Invention The present invention relates to a method for planarizing an uneven substrate of a semiconductor device, and particularly to a method for planarizing an uneven substrate for insulating and separating between elements or wiring layers of a semiconductor device. This relates to a method of flattening.
(2)技術の背景
半導体装置において、素子と素子との間、又は配線と配
線の間で電気的に影響を受けないようにする必要がある
。その方法としては基本的にはPN接合分離、絶縁層分
離、及び空気層分離、その他これらの組合せによる分離
方法がある。(2) Background of the Technology In semiconductor devices, it is necessary to prevent electrical influences between elements or between interconnects. The methods basically include PN junction separation, insulation layer separation, air layer separation, and other separation methods using combinations of these.
(3)従来技術の問題点
AtJ述の絶縁層による分離を用いて、凹凸基板を平坦
化する方法として、特に気相成長法(CVD法)によっ
て例えば第1に二酸化シリコン(S102)層及び、燐
をドーピングしたy、裁拝ml力゛うたン(PSG)層
を形成する方法、第2にフェノール系又はアクリル系等
のレジスト材料、又はポリイミド、ポリシルセスキオキ
サン等の耐熱樹脂を絶縁材料として用い、回転塗布法に
よって膜形成を行々う方法、第3に前述の気相成長法に
よって二酸化シリコン層上に前述の耐熱樹脂を塗布硬化
した後全面エツチングによってまず上層の該耐熱樹脂を
除去し、次に突出部の二酸化シリコン層の一部を除去す
る。(3) Problems with the Prior Art As a method for planarizing a textured substrate using separation using an insulating layer as described in AtJ, for example, first a silicon dioxide (S102) layer and The second method is to form a layer of phosphorus-doped polyester resin (PSG), and the second method is to use a resist material such as phenolic or acrylic, or a heat-resistant resin such as polyimide or polysilsesquioxane as an insulating material. The third method is to apply and cure the above-mentioned heat-resistant resin on the silicon dioxide layer by the above-mentioned vapor phase growth method, and then first remove the upper layer of the heat-resistant resin by etching the entire surface. Then, a portion of the silicon dioxide layer on the protrusion is removed.
ことによって平坦な絶縁分離層を得る方法等が知られて
いる。A method for obtaining a flat insulating separation layer is known.
第1の方法では凹凸基板の溝の幅(以下スペースと称す
る。)が0.5μm以下の場合には該凹凸基板の平坦化
効果が認められる。しかしながら該凹凸基板のスペース
が0.5μmを超えた場合、少なくとも1.5μm以上
にガるとステップカバレジが良い状態となり平坦化効果
がなくなる。In the first method, when the groove width (hereinafter referred to as space) of the uneven substrate is 0.5 μm or less, the effect of flattening the uneven substrate is recognized. However, if the space of the uneven substrate exceeds 0.5 .mu.m, if the spacing exceeds at least 1.5 .mu.m, step coverage will be good and the planarization effect will be lost.
また第2の方法では絶縁層として有機樹脂を用いるため
耐熱性に限界があるだけで々くスペース及び凹凸基板の
突出部(以下ラインと称す)の幅が5μm以上になると
平坦化効果は少なくガリ、10μm以上になるとライン
とスに一部の境界部の々だらかきは保たれるものの実効
的な平坦化はされなくなる。すなわち従来、回転塗布に
よって層を形成した前述のレジスト材料及び耐熱樹脂に
その樹脂液の樹脂分が5〜40容扇俤、残部が有機酷刑
からなっており、蒸発後の残りの樹脂は室温(30℃以
下)で固体にガる特性を有していた。In addition, in the second method, since an organic resin is used as the insulating layer, the heat resistance is limited, and if the width of the space and the protruding part (hereinafter referred to as line) of the uneven substrate is 5 μm or more, the flattening effect is small and it becomes rough. If the thickness exceeds 10 .mu.m, the unevenness of some boundaries between lines and spaces may be maintained, but effective flattening will not be achieved. That is, conventionally, the above-mentioned resist material and heat-resistant resin were formed into a layer by spin coating, and the resin content of the resin liquid was 5 to 40 volumes, and the remainder was organic liquid, and the remaining resin after evaporation was kept at room temperature ( It had the property of becoming solid at temperatures below 30°C.
このような樹脂液を蹴布乾燥してゆく過程における樹脂
表面状態は第1A図及び第1B図で概略的に示されてい
る。第1A図によれば基板1上にライン2及び幅1μm
の狭いスペース4、幅12μmの広いスペース5そして
樹脂分20容量係を有する樹脂液3aが示されている。The state of the resin surface during the process of drying such a resin liquid is schematically shown in FIGS. 1A and 1B. According to FIG. 1A, there is a line 2 on the substrate 1 and a width of 1 μm.
A resin liquid 3a having a narrow space 4 with a width of 12 μm, a wide space 5 with a width of 12 μm, and a resin content of 20 volumes is shown.
この第1A図では該樹脂液3aが回転塗布された直後の
状綿で樹脂液3a表面ははy水平であるが、樹脂液中の
溶剤乾燥に伴々い、第1B図に示されるように樹脂層表
面に凹凸を生じ、この凹凸(段差)は、樹脂液によって
も異なるが1000〜】0000X程度となυ平坦化は
不可能であった。本発明の場合は第2図に示すように平
坦な樹脂層6が形成される。In Fig. 1A, the surface of the resin liquid 3a is horizontal after the resin liquid 3a has been spin-coated, but as the solvent in the resin liquid dries, as shown in Fig. 1B, the surface of the resin liquid 3a is horizontal. Irregularities were formed on the surface of the resin layer, and although the irregularities (steps) varied depending on the resin solution, it was impossible to flatten the surface to about 1000 to 0000X. In the case of the present invention, a flat resin layer 6 is formed as shown in FIG.
まだ第3の方法では、第2の方法で問題となったことが
解゛消されず前述の方法と同じく10μm以上の広いス
ペース部分の平坦化は他の方法、例えば広いスペースの
部分をマスクして全面エツチングする方法をとらざるを
得なかった。With the third method, the problem with the second method has not been resolved, and as with the previous method, planarization of a wide space part of 10 μm or more can be achieved using other methods, such as masking the wide space part. I had to resort to etching the entire surface.
(4)発明の目的
本発明は上記欠点を誕み少なくとも10μm以上の幅を
含む溝を有する凹凸基板を平坦化する方法を提供するこ
とを目的とする。(4) Object of the Invention The object of the present invention is to provide a method for flattening an uneven substrate having grooves having a width of at least 10 μm or more, which avoids the above-mentioned drawbacks.
(5)発明の構成
上記本発明の目的は幅が10μrnμ上の溝を少なくと
も1個以上有する凹凸基板表面に溝の深さ以上の厚さを
有する絶縁層を該凹凸基板表面上に形成し、該絶縁層上
に樹脂液を塗布1〜、加熱によって該樹脂液を硬化せし
めて樹脂層を形成し、エツチングすることによって該基
板の溝に絶縁層を有する平坦な基板を形成する凹凸基板
の平坦化方法において前記樹脂液として室温以上の温度
で硬化可能で、且つ硬化前に溶剤を含まない状態で流動
性を示す樹脂液を用いることを特徴とする凹凸基板の平
坦化方法によって達成される。(5) Structure of the Invention The object of the present invention is to form an insulating layer having a thickness equal to or greater than the depth of the groove on the surface of the uneven substrate having at least one groove having a width of 10 μrnμ, Applying a resin liquid on the insulating layer 1~ Curing the resin liquid by heating to form a resin layer, and etching to form a flat substrate having an insulating layer in the grooves of the substrate. Flattening of the uneven substrate. This is achieved by a method for planarizing an uneven substrate, which is characterized in that the resin liquid is a resin liquid that can be cured at a temperature higher than room temperature and exhibits fluidity in a solvent-free state before curing.
すなわち本発明では凹凸基板上に形成された凹凸形状を
有する絶縁層の該溝の幅が10μm以上ある場合であっ
ても該絶縁層上に、10μm以下の溝の部分と同様に、
全面エツチング工程前にほぼ水平な樹脂層が形成される
のである。このような樹脂層が形成されることによって
該樹脂層の全面エツチングで厚さ方向の均一なエツチン
グが可能となシ最終的に凹凸基板を平坦化することが可
能となるのである。That is, in the present invention, even if the width of the groove in the insulating layer having an uneven shape formed on the uneven substrate is 10 μm or more, the width of the groove is 10 μm or less on the insulating layer.
A substantially horizontal resin layer is formed before the entire surface etching step. By forming such a resin layer, it becomes possible to perform uniform etching in the thickness direction by etching the entire surface of the resin layer, and finally it becomes possible to flatten the uneven substrate.
雰囲気温度が25℃以下の温度の場合に液状樹脂を用い
ることが好ましくこれに適用する樹脂としてオイル状の
ポリブタジェン、エポキシ4tJllがある。また雰囲
気温度が25℃を超える温度の場合、溶融温度が40℃
以下であり且つ樹脂濃度が40%以上の樹脂を用いるこ
とが好ましくこれに適用する樹脂としてエポキシ樹1指
、ジアリルフタレート樹脂等がある。更に溶融温度が4
0℃を超えるもので、且つ熱硬化温度が溶融温度より5
0℃以上高い樹脂を用いることが好ましくこれに適用す
る樹脂として分子量が1500以下の伺加重合型のポリ
イミド等がある。更に又、溶融温度が50℃以下で且つ
一般式(R&810b)nで示されるシリコーン樹脂(
Rは一価の炭化水素基、aば1と2の間の正数、bは1
と1.5の間の正数)を用いることが好ましい。When the ambient temperature is 25° C. or lower, it is preferable to use a liquid resin, and suitable resins include oily polybutadiene and epoxy 4tJll. In addition, if the ambient temperature exceeds 25℃, the melting temperature will be 40℃.
It is preferable to use a resin having a resin concentration of 40% or more, and suitable resins include epoxy resin, diallyl phthalate resin, etc. Furthermore, the melting temperature is 4
The temperature exceeds 0℃, and the thermosetting temperature is 5 degrees higher than the melting temperature.
It is preferable to use a resin with a temperature higher than 0°C, and examples of resins that can be used for this include polyimide of the cross-polymerization type with a molecular weight of 1500 or less. Furthermore, a silicone resin (
R is a monovalent hydrocarbon group, a is a positive number between 1 and 2, and b is 1
and 1.5) is preferably used.
(6)発明の実施例 以下本発明の実施例を図面に基づいて説明する。(6) Examples of the invention Embodiments of the present invention will be described below based on the drawings.
半導体素子の素子間分離を想定し、シリコン基板11に
深さ0.8μm幅1,2.5,10.50μmの穴をド
ライエツチングによシあけその上に気相成長法によって
厚さ1μmの二酸化シリコン層12を形成した。その概
略断面図を第3A図に示す。第3A図で1.3 、14
、15はそれぞれ幅が1,2.及び50μmの穴を示
す。Assuming isolation between semiconductor devices, holes with a depth of 0.8 μm and widths of 1, 2.5, and 10.50 μm are drilled in the silicon substrate 11 by dry etching, and then holes with a thickness of 1 μm are formed by vapor phase growth. A silicon dioxide layer 12 was formed. A schematic sectional view thereof is shown in FIG. 3A. 1.3, 14 in Figure 3A
, 15 have widths of 1, 2 . and 50 μm holes are shown.
次に第3A図に示されたように二酸化シリコン層12を
形成したシリコン基板11を酸素雰囲気中で700℃で
10分間熱処理した後溶融温度が約50℃のジアリルフ
タレート樹脂DAP 100 L(大阪曹達製)5gと
ジアリルフタレートモノマーDAP100モノマー(大
阪曹達製)5gとジクミル、f−オキサイド0.3gを
ジアセトンアルコールlogに溶解し0.2μmメツシ
ュのフィルタで加圧ヂ過した樹脂液を回転数6QOOr
pmで回転塗布し、流動性を出すために窒素雰囲気中で
80℃、60分間熱処理した。次いで熱処理温度を20
0℃に上昇し60分間熱処理を施し、樹脂を硬化させ第
3B図に示されるように樹脂層16を形成した。Next, as shown in FIG. 3A, the silicon substrate 11 on which the silicon dioxide layer 12 was formed was heat-treated at 700° C. for 10 minutes in an oxygen atmosphere, and then diallylphthalate resin DAP 100 L (Osaka Soda) having a melting temperature of about 50° C. ), 5 g of diallyl phthalate monomer DAP100 monomer (manufactured by Osaka Soda), dicumyl, and 0.3 g of f-oxide were dissolved in log diacetone alcohol, and the resin solution was filtered under pressure through a 0.2 μm mesh filter at a rotation speed of 6QOOr.
pm, and heat-treated at 80° C. for 60 minutes in a nitrogen atmosphere to improve fluidity. Then the heat treatment temperature was increased to 20
The temperature was raised to 0° C. and a heat treatment was performed for 60 minutes to harden the resin and form a resin layer 16 as shown in FIG. 3B.
表面粗さ計により樹脂層表面粗さを測定した結果、幅5
0μmの穴の上に形成された樹脂表面は他の樹脂表面と
比較し0.05μm低かったが他の部分はほとんど平坦
であった。次に酸素を反応ガスとするプラズマ全面エツ
チングを行ない二酸化シリコン層の凹部にのみジアリル
フタレー)層17を第3C図に示しだように残し、次に
第3D図に示したようにC3F8を用いたプラズマ処理
によυ二酸化シリコン層をエツチングし更にプラズマ処
理をして第3E図に示す二酸化シリコン埋込み層を形成
した。このようにして溝幅が10μmより大きな穴15
に、溝幅が10μmより小さ方式13゜14と同様に上
述の樹脂液を用いて同時に二酸化シリコン埋め込み層1
2′を形成することが出来た。As a result of measuring the surface roughness of the resin layer using a surface roughness meter, the width was 5.
The resin surface formed over the 0 μm hole was 0.05 μm lower than the other resin surfaces, but the other parts were almost flat. Next, plasma etching is performed on the entire surface using oxygen as a reactive gas, leaving diallylphthalate layer 17 only in the concave portions of the silicon dioxide layer, as shown in Figure 3C, and then C3F8 is etched as shown in Figure 3D. The silicon dioxide layer was etched by plasma treatment, and further plasma treatment was performed to form a buried silicon dioxide layer as shown in FIG. 3E. In this way, the hole 15 whose groove width is larger than 10 μm
Similarly to the method 13゜14 where the groove width is smaller than 10 μm, the silicon dioxide buried layer 1 is simultaneously formed using the resin liquid described above.
2' could be formed.
実施例2
樹脂液として室温で液体であるポリブタジェンB200
0 (日本石油化学制)の80係トルエン溶液を用い
て、実施例1と同様のプロセスによって素子間分離を行
なった。樹脂の熱処理条件は窒素雰囲気中80℃ 30
分及び空気中150℃60分であり、結果として実施例
1と同様の二酸化シリコン埋込み1輪を平坦に形成する
ことが出来た。Example 2 Polybutadiene B200 which is liquid at room temperature as resin liquid
Separation between elements was performed by the same process as in Example 1 using a 80% toluene solution of 0 (Japan Petrochemical System). The heat treatment conditions for the resin are 80℃ in a nitrogen atmosphere 30
The temperature was 150° C. in air for 60 minutes, and as a result, a silicon dioxide-embedded ring similar to that of Example 1 could be formed flat.
実施例3
ツメチルジェトキシシランに0.5%塩酸水溶液を加え
85℃で還流して得た末端シラノール封鎖ポリツメチル
シロキサン10g、トリエチルアミン塩酸塩5g、メチ
ルトリクロルシラン12!:I。Example 3 10 g of silanol-terminated polymethylsiloxane obtained by adding 0.5% aqueous hydrochloric acid to trimethyljethoxysilane and refluxing at 85°C, 5 g of triethylamine hydrochloride, and 12 methyltrichlorosilane! :I.
ビニルトリクロルシラン3gをメチルイソブチルケトン
(MIBK) 4 (1gと混合し、氷冷した水30g
を攪拌しつつ滴下し、次に還流温度で2時間反応させ水
洗後減圧下で溶剤を除去し得られた液状樹脂をトルエン
に溶かし固形分濃度70係の樹脂液とした。この樹脂液
を上記基板に回転塗布法により塗布し、100℃20分
で乾燥後窒素中で360℃30分加熱した。次いで (
J(F、 −02(10%)を反応ガスとするプラズマ
ライトエツチングを行ないシリコン基板の穴に平坦な二
酸化シリコン埋め込みj−を形成することが出来た。Mix 3 g of vinyltrichlorosilane with 1 g of methyl isobutyl ketone (MIBK) and 30 g of ice-cold water.
was added dropwise with stirring, and then reacted at reflux temperature for 2 hours, washed with water, and the solvent was removed under reduced pressure. The resulting liquid resin was dissolved in toluene to obtain a resin liquid with a solid content concentration of 70%. This resin liquid was applied to the above substrate by a spin coating method, dried at 100°C for 20 minutes, and then heated at 360°C for 30 minutes in nitrogen. Then (
By performing plasma light etching using J(F, -02 (10%)) as a reactive gas, it was possible to form a flat silicon dioxide embedded j- in a hole in a silicon substrate.
実施例4
ジメチルシロキザンの末端がジメチルビニルクロルシラ
ンでシリル化されたポリジメチルシロキサン及び末端が
ジメチルクロルシランでシリル化されたポリジメチルシ
ロキサン及び微量の白金触媒からなるシリコーン樹脂(
液状、25℃での粘度60センチ4eイズ)をトルエン
に溶かし実施例3とはソ同様の操作を実施した結果シリ
コン基板の1〜50μmの穴を同時に且つはy平坦に5
102層で埋込みすることが出来た。Example 4 A silicone resin consisting of polydimethylsiloxane in which the terminal end of dimethylsiloxane was silylated with dimethylvinylchlorosilane, polydimethylsiloxane in which the terminal end was silylated with dimethylchlorosilane, and a trace amount of platinum catalyst.
Liquid, viscosity 60 cm 4e at 25°C) was dissolved in toluene and the same operation as in Example 3 was carried out. As a result, holes of 1 to 50 μm in the silicon substrate were simultaneously and flatly 5
It was possible to embed it in 102 layers.
(7)発明の効果
以上詳細にN5)。明したように本発明によれば少なく
とも10μm以上の溝幅を含んで々る凹凸形状の半導体
基板を絶縁層で平坦化可能とカリ、半導体装置の配線層
間絶縁層の平坦化、及び薄膜磁気ヘッド、・々プルメモ
リ等の配線層間絶縁層の平坦化そして父、ジョセフソン
素子内の絶縁層の平坦化に利用される。(7) Effects of the invention in more detail N5). As explained above, according to the present invention, it is possible to flatten an uneven semiconductor substrate including a groove width of at least 10 μm or more with an insulating layer, and to flatten an insulating layer between wiring layers of a semiconductor device, and to use a thin film magnetic head. , etc. It is used for planarizing the insulating layer between wiring layers in pull memories, etc., and for planarizing the insulating layer in Josephson devices.
第1八図ないし第1B図は従来における樹脂液の回転塗
布による表面状態を説明するだめの概略断面図であり、
第2図は本発明に係る樹脂表面を示す概略断面図であシ
、第3A図ないし第3E図は本発明を半導体装置の素子
間分離に用いた場合を説明するだめの概略断面図である
。
1・・・基板、2・・・ライン、3a・・・樹脂液、3
b・・・いスペース、6・・・本発明に係る樹脂液を用
いて、溶剤乾燥した後の樹脂層、11・・・シリコン基
板、12・・・二酸化シリコン(SIO2)層、12′
・・・凹凸シリコン基板に埋込まれた二酸化シリコン層
、13・・・溝幅(スに一ス)1μmの穴、14・・・
溝幅2μmの穴、15・・・溝幅50μmの穴、16.
17・・・樹脂層。
特許出願人
富士通株式会社
特許出願代理人
弁理士 青 木 朗
弁理士 西 舘 和 之
弁理士 内 1)幸 男
弁」浬士 山 口 昭 之
142−
峡FIGS. 18 to 1B are schematic cross-sectional views for explaining the surface condition by conventional spin coating of resin liquid,
FIG. 2 is a schematic cross-sectional view showing a resin surface according to the present invention, and FIGS. 3A to 3E are schematic cross-sectional views for explaining the case where the present invention is used for isolation between elements of a semiconductor device. . 1... Board, 2... Line, 3a... Resin liquid, 3
b...Impair space, 6...Resin layer after solvent drying using the resin liquid according to the present invention, 11...Silicon substrate, 12...Silicon dioxide (SIO2) layer, 12'
...Silicon dioxide layer embedded in an uneven silicon substrate, 13...A hole with a groove width of 1 μm, 14...
Hole with a groove width of 2 μm, 15... Hole with a groove width of 50 μm, 16.
17...Resin layer. Patent applicant Fujitsu Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate (Patent attorney) 1) Yukioben” Akira Yamaguchi Akira 142-kyo
Claims (1)
凹凸基板表面に溝の深さ以上の厚さを有する絶縁層を該
凹凸基板表面上に形成し、該絶縁層上に樹脂液を塗布し
、加熱によって該樹脂液を硬化せしめて樹脂層を形成し
、エツチングすることによって該基板の溝に絶縁層を有
する平坦な基板を形成する凹凸基板の平坦化方法におい
て;前記樹脂液として、25℃以上の温度で硬化可能で
、且つ硬化前に溶剤を含まない状態で流動性を示す樹脂
液を用いることを特徴とする凹凸基板の平坦化方法。 2 雰囲気温度が25℃以下の温度の場合に液状樹脂を
用いることを特徴とする特許請求の範囲第1項記載の方
法。 3 雰囲気温度が25℃を超える温度の場合、溶融温奪
が40℃以下であり且つ樹脂濃度が40チ以上の樹脂を
用いることを特徴とする特許請求の範囲第1項記載の方
法。 4 溶融温度が40℃を超えるもので、且つ熱硬化温度
が溶融温度より50℃以上高い樹脂を用いることを特徴
とする特許請求の範囲第1項記載の方法。 5 溶融源IWが50℃以下で且つ一般式(RlSlO
b)n で示されるシリコン樹脂(Rけ一価の炭化水素
基、島は1と2の間の正数、bけ1と1.5の間の正数
)を用いることを特徴とする特許請求の範囲第1項記載
の方法。[Scope of Claims] 1. An insulating layer having a thickness equal to or greater than the depth of the groove is formed on the surface of the uneven substrate having at least one groove having a width of 10 μm or more, and on the insulating layer. In a method for flattening an uneven substrate, the method comprises applying a resin liquid, curing the resin liquid by heating to form a resin layer, and etching to form a flat substrate having an insulating layer in the grooves of the substrate; A method for planarizing an uneven substrate, characterized in that a resin liquid that can be cured at a temperature of 25° C. or higher and exhibits fluidity in a solvent-free state before curing is used as the liquid. 2. The method according to claim 1, wherein the liquid resin is used when the ambient temperature is 25° C. or lower. 3. The method according to claim 1, characterized in that when the ambient temperature exceeds 25°C, a resin having a melting temperature of 40°C or less and a resin concentration of 40% or more is used. 4. The method according to claim 1, characterized in that a resin having a melting temperature exceeding 40°C and a thermosetting temperature higher than the melting temperature by 50°C or more is used. 5 The melting source IW is 50°C or less and the general formula (RlSlO
b) A patent characterized by using a silicone resin represented by n (where R is a monovalent hydrocarbon group, where island is a positive number between 1 and 2, and b is a positive number between 1 and 1.5) The method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57105474A JPS58223334A (en) | 1982-06-21 | 1982-06-21 | Method for flattening an uneven substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57105474A JPS58223334A (en) | 1982-06-21 | 1982-06-21 | Method for flattening an uneven substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58223334A true JPS58223334A (en) | 1983-12-24 |
Family
ID=14408588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57105474A Pending JPS58223334A (en) | 1982-06-21 | 1982-06-21 | Method for flattening an uneven substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58223334A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245229A (en) * | 1984-05-21 | 1985-12-05 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of semiconductor device |
KR100609993B1 (en) * | 1999-02-03 | 2006-08-09 | 삼성전자주식회사 | Planarization method of semiconductor device |
-
1982
- 1982-06-21 JP JP57105474A patent/JPS58223334A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245229A (en) * | 1984-05-21 | 1985-12-05 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of semiconductor device |
KR100609993B1 (en) * | 1999-02-03 | 2006-08-09 | 삼성전자주식회사 | Planarization method of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3420590B2 (en) | Substrate flattening method, coated substrate and semiconductor device manufacturing method | |
EP0262024A1 (en) | Planarization method | |
JPS63107122A (en) | Method for flattening uneven substrate | |
JP2001098218A (en) | Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film | |
JPS6046826B2 (en) | semiconductor equipment | |
JPH0444741B2 (en) | ||
JPS58223334A (en) | Method for flattening an uneven substrate | |
US4868096A (en) | Surface treatment of silicone-based coating films | |
TWI225262B (en) | A process for spin-on coating with an organic material having a low dielectric constant | |
JP3982073B2 (en) | Low dielectric constant insulating film forming method | |
JP2823878B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPH06267943A (en) | Method for manufacturing semiconductor device | |
JPH09241518A (en) | Resin composition and method for forming multilayer wiring | |
JPS62290139A (en) | Heat resistant resin composition | |
JP2901211B2 (en) | Method for manufacturing semiconductor device | |
JPH04359056A (en) | Resin composition and method for forming interlayer insulating film | |
JPS6346576B2 (en) | ||
JPH01313942A (en) | Semiconductor device | |
JPH02192729A (en) | Manufacture of insulating layer | |
JPH0263057A (en) | Photosensitive heat resistant resin composition and production of integrated circuit | |
JPS6138853B2 (en) | ||
JPH0449258B2 (en) | ||
JPS63137433A (en) | Manufacturing method of semiconductor device | |
JPS62290151A (en) | Heat resistant resin composition | |
JPH01307227A (en) | Fine working method |