[go: up one dir, main page]

JPS5821965B2 - Method for forming side electrodes of tuning fork type piezoelectric vibrator - Google Patents

Method for forming side electrodes of tuning fork type piezoelectric vibrator

Info

Publication number
JPS5821965B2
JPS5821965B2 JP52069593A JP6959377A JPS5821965B2 JP S5821965 B2 JPS5821965 B2 JP S5821965B2 JP 52069593 A JP52069593 A JP 52069593A JP 6959377 A JP6959377 A JP 6959377A JP S5821965 B2 JPS5821965 B2 JP S5821965B2
Authority
JP
Japan
Prior art keywords
conductive thin
electrodes
thin film
crystal resonator
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52069593A
Other languages
Japanese (ja)
Other versions
JPS544094A (en
Inventor
祢■田六己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushima Kogyo KK
Original Assignee
Matsushima Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushima Kogyo KK filed Critical Matsushima Kogyo KK
Priority to JP52069593A priority Critical patent/JPS5821965B2/en
Publication of JPS544094A publication Critical patent/JPS544094A/en
Publication of JPS5821965B2 publication Critical patent/JPS5821965B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は腐蝕抜き加工により形成される超小型の音叉型
圧電振動子の側面電極形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming side electrodes of an ultra-small tuning fork type piezoelectric vibrator formed by corrosion removal processing.

本発明の目的は、腐蝕抜き加工により形成される音叉型
圧電振動子に側面電極を簡易的に形成し、より高性能な
音叉型圧電振動子を安価に得ることにある。
An object of the present invention is to easily form side electrodes on a tuning fork type piezoelectric vibrator formed by corrosion removal processing, and to obtain a higher performance tuning fork type piezoelectric vibrator at a low cost.

近来、水晶発振式電子腕時計の普及に伴い、時間標準と
しての水晶振動子にはさらに小型化、高性能化、低価格
化が要求されている。
BACKGROUND ART In recent years, as crystal oscillation type electronic wristwatches have become widespread, crystal resonators used as time standards are required to be further downsized, higher in performance, and lower in price.

このため、従来の機械加工による水晶振動子に変って、
腐蝕抜き加工による水晶振動子が実用化され、その普及
が期待されている。
For this reason, instead of the conventional machined crystal resonator,
A corrosion-free crystal resonator has been put into practical use, and its widespread use is expected.

しかし、該水晶振動子は従来の機械加工振動子に比較し
、小型化、低価格化においては優れているが、性能面に
おいて不充分である。
However, although this crystal resonator is superior in terms of size and cost reduction compared to conventional mechanically processed resonators, it is insufficient in terms of performance.

性能面でとりわけCI値が高いという点で劣っており、
腐蝕抜き加工による超小型振動子の普及に大きな阻害要
因となっている。
It is inferior in terms of performance, especially in terms of high CI value,
This is a major impediment to the widespread use of ultra-compact resonators that require corrosion removal processing.

CI値の高い原因は、従来の腐蝕抜き加工により形成さ
れる水晶振動子が、その腐蝕加工面である側面に電極を
有さないことに起因する。
The reason for the high CI value is that the crystal resonator formed by conventional corrosion removal processing does not have electrodes on the side surface that is the corrosion processing surface.

第1図に従来の側面電極を有さない腐蝕抜き加工による
水晶振動子の一例を示す。
FIG. 1 shows an example of a conventional quartz crystal resonator which does not have side electrodes and has been subjected to corrosion removal processing.

第1図Aに該水晶振動子の平面図を示し、そのM−M’
断面における加工工程の代表例を第1図B−Fに示す。
FIG. 1A shows a plan view of the crystal resonator, and its M-M'
Representative examples of processing steps in cross section are shown in FIGS. 1B-F.

第1図Aにおいて、1は水晶振動子、2.3は該水晶振
動子の表面に設けられた2個の電極であり、該水晶振動
子の裏面には、電極2,3とそれぞれ電気的に同相の電
極4,5が水晶振動子の平面に関して、表面電極と鏡像
関係に設けられている。
In FIG. 1A, 1 is a crystal oscillator, 2 and 3 are two electrodes provided on the surface of the crystal oscillator, and electrodes 2 and 3 are provided on the back surface of the crystal oscillator, respectively. In-phase electrodes 4 and 5 are provided in a mirror image relationship with the surface electrodes with respect to the plane of the crystal resonator.

第1図B−Fに示す該水晶振動子の一般的な腐蝕抜き加
工の工程は、第1図Bの、水晶薄板7に水晶腐蝕液に対
して耐蝕性を有する導電性薄膜6を振動子外形形状に形
成する工程、第1図Cの該導電性薄膜6の上に電極形状
のフォトレジスト8を形成する工程、第1図りの該導電
性薄膜6を耐蝕膜として水晶を振動子外形形状1に腐蝕
抜き加工する工程、第1図Eの前記フォトレジスト8を
耐蝕膜として前記導電性薄膜6を腐蝕加工することによ
り、電極2.3,4.5を形成する工程、第1図Fの前
記フォトレジストを除去する工程とから成る。
The general corrosion removal processing process for the crystal resonator shown in FIGS. A step of forming an electrode-shaped photoresist 8 on the conductive thin film 6 shown in FIG. A step of forming electrodes 2.3, 4.5 by etching the conductive thin film 6 using the photoresist 8 shown in FIG. 1E as a corrosion-resistant film, FIG. 1F. and removing the photoresist.

以上、従来の腐蝕抜き加工による水晶振動子では、その
腐蝕加工面である側面に電極を有さず、表裏面のみに電
極が形成されているため、電界を印加した場合電気力線
が局在し、効率の良い励磁ができず、したがってCI値
が高くなるという欠点を有している。
As mentioned above, the conventional corrosion-removed crystal oscillators do not have electrodes on the side surfaces, which are the corroded surfaces, and electrodes are formed only on the front and back surfaces, so when an electric field is applied, the lines of electric force are localized. However, it has the disadvantage that efficient excitation cannot be performed, resulting in a high CI value.

このため、腐蝕抜き加工による水晶振動子に側面電極を
形成しようという試みがなされており、第2図に従来の
腐蝕抜き加工により側面電極を有する水晶振動子の実施
例を示す。
For this reason, attempts have been made to form side electrodes on a crystal resonator by a corrosion removal process, and FIG. 2 shows an example of a crystal resonator having side electrodes formed by a conventional corrosion removal process.

第2図Aは従来の側面電極を有する水晶振動子の平面図
であり、9は水晶振動子、10.11は該水晶振動子の
表面に設けられた2個の電極、12.13は側面電極で
ある。
FIG. 2A is a plan view of a conventional crystal resonator having side electrodes, where 9 is the crystal resonator, 10.11 is the two electrodes provided on the surface of the crystal resonator, and 12.13 is the side surface. It is an electrode.

また第2図Bは電極のネガティブパターンをフォトレジ
ストで形成した図を示し、14はフォトレジストである
Further, FIG. 2B shows a diagram in which the negative pattern of the electrode is formed of photoresist, and 14 is the photoresist.

第2図C−Gは該水晶振動子のo−o’断面における従
来の腐蝕抜き加工工程についての実施例を示す説明図で
あり、第2図H−Lは該水晶振動子のPp/断面におけ
る従来の腐蝕抜き加工工程についての実施例を示す説明
図である。
FIG. 2 C-G is an explanatory diagram showing an example of the conventional corrosion removal processing process on the o-o' cross section of the crystal resonator, and FIG. FIG. 3 is an explanatory diagram showing an example of a conventional corrosion removal process in FIG.

第2図C,Hは水晶薄板15に形成された振動子外形形
状の2層の導電性薄膜16.17の上に第2図Bに示す
電極のネガティブパターンのフォトレジスト14を形成
する工程、第2図り、Iは該導電性薄膜を耐蝕膜として
水晶薄板を振動子外形形状に腐蝕抜き加工する工程、第
2図E、Jは表面からスパッタリングすることにより、
導電性薄膜16と同一の導電性薄膜18および他の導電
性薄膜17と同一の導電性薄膜19を形成し、次に裏面
からスパッタリングすることにより、導電性薄膜16と
同一の導電性薄膜20および他の導電性薄膜17と同一
の導電性薄膜21を形成する工程、第2図F。
2C and 2H show a step of forming a photoresist 14 having a negative pattern of an electrode shown in FIG. 2B on a two-layer conductive thin film 16, 17 having the external shape of a vibrator formed on a crystal thin plate 15; In the second diagram, I is a process of removing corrosion from a crystal thin plate into the external shape of a vibrator using the conductive thin film as a corrosion-resistant film, and in Figure 2 E and J, sputtering is performed from the surface.
By forming a conductive thin film 18 that is the same as the conductive thin film 16 and a conductive thin film 19 that is the same as the other conductive thin film 17, and then sputtering from the back side, a conductive thin film 20 that is the same as the conductive thin film 16 and a conductive thin film 19 that is the same as the other conductive thin film 17 are formed. FIG. 2F is a step of forming a conductive thin film 21 that is the same as another conductive thin film 17.

Kはリフトオフ法により前記フォトレジストを剥離する
工程、第2図G、Lは導電性薄膜をそれぞれ1層ずつ腐
蝕加工により除去する工程である。
K is a step in which the photoresist is removed by a lift-off method, and G and L in FIG. 2 are steps in which each layer of the conductive thin film is removed by etching.

以上の従来の製造方法により側面電極を有する水晶振動
子は以下に列挙する欠点を有する。
The crystal resonator having side electrodes produced by the conventional manufacturing method described above has the following drawbacks.

(1) リフトオフ法により確実にフォトレジストを
剥離し、かつ該フォトレジスト上に形成された導電性薄
膜を除去するには、フォトレジストを厚くする必要があ
るためフォトレジストのパターン精度が低下する。
(1) In order to reliably peel off the photoresist and remove the conductive thin film formed on the photoresist by the lift-off method, it is necessary to thicken the photoresist, which reduces the pattern accuracy of the photoresist.

したがって超小型振動子。に設ける微細な電極形状の形
成を困難にしている。
Therefore, it is an ultra-small oscillator. This makes it difficult to form fine electrode shapes.

(2)音叉又部に形成されたフォトレジストは水晶薄板
の腐蝕抜き加工中に剥離したり、形状変化を生じやすく
、そのため又部での電極間ショートが発生しやすい。
(2) The photoresist formed on the orifice of the tuning fork is likely to peel off or change shape during the corrosion removal process of the crystal thin plate, and therefore short-circuits between the electrodes at the orifice are likely to occur.

(3)音叉又部に形成されたフォトレジストが水晶薄板
の腐蝕抜き加工中腐蝕液の循環の妨げとなり、音叉又部
の腐蝕抜き形状が悪くなる。
(3) The photoresist formed on the orifice of the tuning fork obstructs the circulation of the corrosive liquid during etching removal of the crystal thin plate, and the shape of the orifice of the tuning fork deteriorates.

次に従来の腐蝕抜き加工により側面電極を有する水晶振
動子の他の実施例を第3図に示す。
Next, FIG. 3 shows another embodiment of a crystal resonator having side electrodes formed by conventional corrosion removal processing.

第3図Aは本例における水晶振動子の平面図であり、第
3図BはQ−Q’断面における断面図であり、22は水
晶振動子、23.24は該水晶振動子の表面に形成され
た2個の電極であり、該水晶振動子の裏面には電極23
.24とそれぞれ電気的に同相の電極25.26が水晶
振動子の平面に関して表裏電極と鏡像関係に形成されて
いる。
FIG. 3A is a plan view of the crystal resonator in this example, and FIG. 3B is a cross-sectional view taken along the Q-Q' cross section. There are two electrodes formed on the back surface of the crystal resonator.
.. Electrodes 25 and 26, which are electrically in phase with 24, are formed in a mirror image relationship with the front and back electrodes with respect to the plane of the crystal resonator.

27゜28.29.30は本実施例において形成される
側面電極である。
27°28.29.30 are side electrodes formed in this example.

本実施例においては、振動子外形形状の腐蝕抜き加工お
よび表裏電極の腐蝕加工の後、第3図Cに示すように、
音叉腕の側面および側面と表裏電極の接続部のみにスパ
ッタリングにより導電性薄膜が形成できるような孔形状
を有するマスク31゜32を該水晶振動子に密着させて
、スパッタリングにより側面電極を形成するものである
In this example, after the corrosion removal process of the external shape of the vibrator and the corrosion process of the front and back electrodes, as shown in FIG. 3C,
A side electrode is formed by sputtering by closely contacting the crystal resonator with a mask 31° 32 having a hole shape that allows a conductive thin film to be formed by sputtering only on the side surface of the tuning fork arm and the connecting portion between the side surface and the front and back electrodes. It is.

第3図りはR−R’断面における断面図である。The third diagram is a sectional view taken along the line R-R'.

本実施例に示す水晶振動子は以下に列挙する欠点を有す
る。
The crystal resonator shown in this example has the following drawbacks.

(1)マスクの寸法精度は少なくとも水晶振動子の外側
の電極の幅以下が必要であるが、一般的にはマスクの寸
法精度は厚板の±15係程鹿のため、寸法精度を良くす
るためにはマスクの板厚を薄くしなければならない。
(1) The dimensional accuracy of the mask must be at least less than the width of the outer electrode of the crystal resonator, but generally the dimensional accuracy of the mask is ±15 degrees of thick plate, so the dimensional accuracy should be improved. To achieve this, the thickness of the mask must be made thinner.

しかし、マスクの板厚を薄くした場合には破損しやすく
なり、また作業性も悪くなるためマスクの板厚は100
μm程度が限度と考えられる。
However, if the thickness of the mask is made thinner, it becomes easier to break and workability becomes worse, so the thickness of the mask is 100 mm.
The limit is considered to be around μm.

したがって超小型振動子に設ける微細な電極形状への適
用は困難である。
Therefore, it is difficult to apply it to minute electrode shapes provided in ultra-small vibrators.

(2)マスクと水晶振動子との合せ作業およびマスクと
水晶振動子とを均一に密着させて固定する作業に手間が
かかる。
(2) It takes time and effort to align the mask and the crystal resonator and to fix the mask and the crystal resonator evenly and closely together.

またマスクと水晶振動子との合せ精度が悪い場合、ある
いはマスクのソリ、ゴミの介在等により水晶振動子とマ
スクとが密着していない場合には電極間ショートが生ず
る。
Further, if the precision of alignment between the mask and the crystal resonator is poor, or if the crystal resonator and the mask are not in close contact due to warping of the mask, intervening dust, etc., a short circuit between the electrodes will occur.

またマスクと水晶振動子とを均一に固定せずに一部を強
く固定した場合、水晶振動子の割れ、マスクの破損が生
ずる。
Furthermore, if the mask and the crystal resonator are not fixed evenly and some parts are strongly fixed, the crystal resonator will crack and the mask will be damaged.

以上、従来の側面電極を有する腐蝕抜き加工による水晶
振動子は、水晶振動子の超小型化によりさらに適用が困
難である。
As mentioned above, it is even more difficult to apply the conventional quartz crystal resonator having side electrodes processed by corrosion removal processing due to miniaturization of the crystal resonator.

本発明は、腐蝕抜き加工による超小型音叉型圧電振動子
の側面電極を簡易的に形成でき、より涜性能な圧電振動
子を低価格で供するものであり、本発明の一実施例を第
4図に示す。
The present invention enables the side electrodes of an ultra-small tuning fork type piezoelectric vibrator to be easily formed by corrosion removal processing, and provides a piezoelectric vibrator with better performance at a low cost. As shown in the figure.

第4図Aは第1図に示した水晶振動子の表裏電極形成後
の状態であシ、第4図Bは該水晶振動子の表裏面より2
種類の、第1の導電性薄膜としてCr1第2の導電性薄
膜としてAuをスパッタリングした状態を示す第4図B
において、一例としてまず表面から第1の導電性薄膜と
してCr33をスパッタリングし、次に第2の導電性薄
膜としてAu34をスパッタリングする。
FIG. 4A shows the state of the crystal resonator shown in FIG. 1 after the front and back electrodes are formed, and FIG.
Figure 4B shows a state in which Cr is used as the first conductive thin film and Au is sputtered as the second conductive thin film.
As an example, Cr33 is first sputtered from the surface as a first conductive thin film, and then Au34 is sputtered as a second conductive thin film.

この際、Cr33およびAu34は表面はもちろん、側
面および裏面の一部にも形成される。
At this time, Cr33 and Au34 are formed not only on the front surface but also on a part of the side surface and the back surface.

次に裏面からCr 35をスパッタリングし、次にAu
a6をスパッタリンクする。
Next, sputter Cr35 from the back side, then Au
Sputterlink a6.

この際cr35およびAu36は裏面はもちろん、側面
および表面の一部にも形成される。
At this time, cr 35 and Au 36 are formed not only on the back surface but also on the side surfaces and a part of the front surface.

したがって、本図に示すように該水晶振動子の表裏面に
はCr、Auがそれぞれ1層ずつ新たに形成され、側面
および側面と表裏面の接続部にはCr、Auがそれぞれ
2層ずつ形成される。
Therefore, as shown in this figure, one layer each of Cr and Au is newly formed on the front and back surfaces of the crystal resonator, and two layers each of Cr and Au are formed on the side surfaces and the connecting portions between the side surfaces and the front and back surfaces. be done.

つぎに、外側のAu 36を内側のCr35を耐食膜と
して腐食加工により除去し、この腐食加工により外表面
に表われたCr35を今度は内側のAu34を耐食膜と
して腐食加工により除去することにより、第4図Cに示
すように側面および側面と表裏面の接続部にはスパッタ
リングにより形成されたCr、Auの膜が1層′ずつ残
り、その他の表裏面には第4図Aに示す電極があられれ
る。
Next, the outer Au 36 is removed by corrosion processing using the inner Cr 35 as a corrosion resistant film, and the Cr 35 that appeared on the outer surface by this corrosion processing is then removed by corrosion processing using the inner Au 34 as a corrosion resistant film. As shown in Figure 4C, a single layer of Cr and Au films formed by sputtering remain on the side surfaces and the connections between the side surfaces and the front and back surfaces, and the electrodes shown in Figure 4A are left on the other front and back surfaces. Hail!

こうして第4図りに示すように側面電極3Tが形成され
るわけであるが、このままでは2個の電極が側面電極を
介してショートするため、又部の導電性薄膜38をレー
ザー光照射等により除去する。
In this way, the side electrode 3T is formed as shown in the fourth diagram, but since the two electrodes will short-circuit through the side electrode if left as is, the conductive thin film 38 at the other end will be removed by laser beam irradiation, etc. do.

以上、本発明によれば以下に列挙する利点を有する。As described above, the present invention has the following advantages.

(1)振動子外形形状の腐蝕抜き加工および表裏電極の
形成は、従来の側面電極を有さない腐蝕抜き加工による
圧電振動子と同一の工程によるため、振動子外形形状お
よび電極形状の精度が良く、超小型圧電振動子に容易に
適用することができる。
(1) Corrosion removal processing of the vibrator external shape and formation of front and back electrodes are performed in the same process as conventional piezoelectric vibrators using corrosion removal processing without side electrodes, so the accuracy of the vibrator external shape and electrode shape is It can be easily applied to ultra-small piezoelectric vibrators.

(2)スパッタリングの際、マスクと圧電振動子との合
せ作業および治具への固定作業が必要ないため、作業が
簡単となる。
(2) During sputtering, there is no need to align the mask and the piezoelectric vibrator and to fix the piezoelectric vibrator to a jig, which simplifies the work.

また本発明の技術的前提とゲるスパッタリングによる導
電性薄膜の1 側面および反対側の平面の一部への形成
については、スパッタリング条件、圧電振動子のスパッ
タリング時の設置方法等を選択することにより容易に達
成できるものである。
Furthermore, according to the technical premise of the present invention, the formation of a conductive thin film on one side and a part of the opposite plane by sputtering is possible by selecting the sputtering conditions, the method of installing the piezoelectric vibrator during sputtering, etc. This is easily achieved.

次に本発明の応用例を第5図に示す。Next, an application example of the present invention is shown in FIG.

第5図Aフにおいては、第1図Aに例示した水晶振動子
の又部付近にフォトレジスト39を形成する。
In FIG. 5A, a photoresist 39 is formed near the crotch portion of the crystal resonator illustrated in FIG. 1A.

導電性薄膜をスパッタリングした場合、該フォトレジス
トの形成されている又部付近のみは導電性薄膜は形成さ
れない。
When a conductive thin film is sputtered, the conductive thin film is not formed only in the vicinity of the groove where the photoresist is formed.

したがって第4図B、Cと同様にデ少なくとも2種類以
上の導電性薄膜を第5図Aの水晶振動子の表裏面よりス
パッタリングし、該導電性薄膜をそれぞれ1層ずつ腐蝕
加工により除去し、さらに前記フォトレジストを除去す
れば、第5図Bに示すように、表裏電極と接続する2個
の2個面電極40.41が形成される。
Therefore, similarly to FIGS. 4B and 4C, at least two types of conductive thin films are sputtered from the front and back surfaces of the crystal resonator shown in FIG. 5A, and each layer of the conductive thin films is removed by etching. Further, when the photoresist is removed, two double-sided electrodes 40 and 41 connected to the front and back electrodes are formed, as shown in FIG. 5B.

以上、本発明は腐蝕抜き加工による水晶振動子に、簡易
的に側面電極を形成することができるが本発明は水晶振
動子に限るものでなく、タンタル酸リチウム、ニオブ酸
リチウム等、腐蝕抜き加工;によって外形形状を形成す
るあらゆる音叉型圧電振動子に応用可能であり、また電
極構造も本例に限るものではない。
As described above, the present invention allows side electrodes to be simply formed on a crystal resonator that has been subjected to corrosion removal processing, but the present invention is not limited to crystal resonators. It can be applied to any tuning fork type piezoelectric vibrator whose external shape is formed by; and the electrode structure is not limited to this example.

本発明は腐蝕抜き加工による圧電振動子の特徴である超
小型化、低価格化を損なうことなく、さ・らに従来の機
械加工による比較的大型な圧電振動子に匹敵する性能が
容易に得られるという点でその効果は非常に太きい。
The present invention can easily achieve performance comparable to relatively large piezoelectric vibrators produced by conventional machining, without sacrificing the characteristics of ultra-miniaturization and low cost of piezoelectric vibrators produced by corrosion removal processing. The effect is very strong in that it can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の側面電極を有さない腐蝕抜き加工による
水晶振動子の一例。 第2図は従来の側面電極を有する腐蝕抜き加工による水
晶振動子の一例。 第3図は従来の側面電極を有する腐蝕抜き加工による水
晶振動子の他の例。 第4図は本発明の一実施例。 第5図は本発明の応用例。111380.水晶振動子、
2,3・・曲表面電極、4゜5・・・・・・裏面電極、
6・・・・・・導電性薄膜、7・・・・・・水晶薄板、
8・・・・・・フォトレジスト、9・・・・・・水晶振
動子、10.11・・・・・・表面電極、12,13・
・・・・・側面電極、14・・・・・・フォトレジスト
、15・・・・・・水晶薄板、16.17.18.19
,20.21・・・・・・導電性薄膜、22・・・・・
・水晶振動子、23.24・・・・・・表面電極、25
.26・・・・・・裏面電極、27,28゜29.30
・・・・・・側面電極、31.32・・・・・・マスク
、33.34,35.36・・・・・・導電性薄膜、3
7・・・・・・側面電極、38・・・・・・又部の導電
性薄膜、39・・・・・・フォトレジスト、40,41
・・・・・・側面電極。
Figure 1 is an example of a conventional quartz crystal resonator that does not have side electrodes and has been processed to eliminate corrosion. Figure 2 is an example of a conventional corrosion-removed crystal resonator with side electrodes. FIG. 3 shows another example of a conventional corrosion-removed crystal resonator with side electrodes. FIG. 4 shows an embodiment of the present invention. FIG. 5 shows an example of application of the present invention. 111380. Crystal oscillator,
2, 3...Curved surface electrode, 4゜5...Back surface electrode,
6... Conductive thin film, 7... Crystal thin plate,
8...Photoresist, 9...Crystal resonator, 10.11...Surface electrode, 12,13.
... Side electrode, 14 ... Photoresist, 15 ... Crystal thin plate, 16.17.18.19
, 20.21... Conductive thin film, 22...
・Crystal resonator, 23.24...Surface electrode, 25
.. 26... Back electrode, 27, 28° 29.30
...Side electrode, 31.32...Mask, 33.34, 35.36...Conductive thin film, 3
7... Side electrode, 38... Also conductive thin film, 39... Photoresist, 40, 41
・・・・・・Side electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 音叉型圧電振動子の外形形状に腐蝕抜き加工されて
いる圧電性薄板の表、真冬平面に導電性薄膜が形成され
ている音叉型圧電振動子の側面電極形成方法において、
前記導電性薄膜によって表裏面に電極形成する第1の工
程、前記電極の形成されている薄板の表面に、少なくと
も第1の導電性薄膜と第2導電性薄膜とをスパッタリン
グにより表面と裏面の両方向からスパッタリングして薄
板の表、真冬平面に少なくとも各2層、側面に少なくと
も4層の導電性薄膜を形成する第2の工程、その後外側
に形成されている2層の導電性薄膜を内側に形成されて
いる導電性薄膜を耐食膜として腐食加工により除去する
第3の工程を有することを特徴とする音叉型圧電振動子
の側面電極形成方法。
1. In a method for forming side electrodes of a tuning fork type piezoelectric vibrator, in which a conductive thin film is formed on the surface and midwinter plane of a piezoelectric thin plate that has been subjected to corrosion removal processing to give the external shape of the tuning fork type piezoelectric vibrator,
A first step of forming electrodes on the front and back surfaces using the conductive thin film, sputtering at least a first conductive thin film and a second conductive thin film on the surface of the thin plate on which the electrodes are formed, both on the front and back surfaces. A second step of sputtering to form at least two conductive thin films each on the front and midwinter planes of the thin plate and at least four layers on the side surfaces, followed by forming the two conductive thin films formed on the outside on the inside. A method for forming side electrodes of a tuning fork type piezoelectric vibrator, comprising a third step of removing the conductive thin film as a corrosion-resistant film by corrosion processing.
JP52069593A 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator Expired JPS5821965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52069593A JPS5821965B2 (en) 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52069593A JPS5821965B2 (en) 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPS544094A JPS544094A (en) 1979-01-12
JPS5821965B2 true JPS5821965B2 (en) 1983-05-06

Family

ID=13407274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52069593A Expired JPS5821965B2 (en) 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPS5821965B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005812A1 (en) * 1998-07-24 2000-02-03 Seiko Epson Corporation Piezo-oscillator and production method thereof
JP2008042794A (en) * 2006-08-10 2008-02-21 Citizen Holdings Co Ltd Piezoelectric device and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583316A (en) * 1978-12-20 1980-06-23 Citizen Watch Co Ltd Electrode structure of tuning-fork type crystal vibrator
JPS5961210A (en) * 1982-09-29 1984-04-07 Kinseki Kk Metal film structure of crystal resonator
JP6673669B2 (en) * 2015-11-04 2020-03-25 エスアイアイ・クリスタルテクノロジー株式会社 Manufacturing method of piezoelectric vibrating reed, wafer and piezoelectric vibrating reed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100693A (en) * 1975-03-04 1976-09-06 Citizen Watch Co Ltd Atsudenshindoshino denkyokumakukoseiho
JPS5263093A (en) * 1975-11-19 1977-05-25 Seiko Instr & Electronics Ltd Method of manufacturing piezo-electric oscillator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100693A (en) * 1975-03-04 1976-09-06 Citizen Watch Co Ltd Atsudenshindoshino denkyokumakukoseiho
JPS5263093A (en) * 1975-11-19 1977-05-25 Seiko Instr & Electronics Ltd Method of manufacturing piezo-electric oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005812A1 (en) * 1998-07-24 2000-02-03 Seiko Epson Corporation Piezo-oscillator and production method thereof
US6961981B2 (en) 1998-07-24 2005-11-08 Seiko Epson Corporation Method of producing a piezoelectric resonator
JP2008042794A (en) * 2006-08-10 2008-02-21 Citizen Holdings Co Ltd Piezoelectric device and its manufacturing method

Also Published As

Publication number Publication date
JPS544094A (en) 1979-01-12

Similar Documents

Publication Publication Date Title
US7485238B2 (en) Etching method, etched product formed by the same, and piezoelectric vibration device, method for producing the same
US6661162B1 (en) Piezoelectric resonator and method of producing the same
US8093787B2 (en) Tuning-fork-type piezoelectric vibrating piece with root portions having tapered surfaces in the thickness direction
US8182703B2 (en) Tuning fork resonator element and tuning fork resonator
JP4414987B2 (en) Piezoelectric vibrator manufacturing method, piezoelectric vibrator and electronic component
JP2009060478A (en) Method of manufacturing piezoelectric vibrating piece and tuning fork type piezoelectric vibrating piece
JP2007329879A (en) Tuning-fork type bending crystal oscillator piece and manufacturing method therefor
JPS5821965B2 (en) Method for forming side electrodes of tuning fork type piezoelectric vibrator
US7518296B2 (en) Piezoelectric resonator with short-circuits preventing means
CN1557048B (en) Corrosion method and corroded formed product formed by the method
JP4400651B2 (en) Manufacturing method of tuning fork type resonator element
JP2008085631A (en) Manufacturing method of vibration reed, vibration reed, and vibrator
US6355496B2 (en) Electrode for optical waveguide element
JPS5836848B2 (en) Method for forming side electrodes of tuning fork type piezoelectric vibrator
JPH10145171A (en) Surface acoustic wave element and its manufacture
JP2004173218A (en) Manufacturing method for quartz oscillator
JP5002304B2 (en) Manufacturing method of crystal unit
JPH10270967A (en) Manufacturing method of crystal unit
JP4874023B2 (en) Piezoelectric vibrator manufacturing method, piezoelectric vibrator and electronic component
JPH04130810A (en) Manufacturing method of AT-cut crystal vibrating piece
JPS6127929B2 (en)
JPS6353729B2 (en)
JPS624888B2 (en)
JPH03219716A (en) Structure and its manufacture for surface acoustic wave converter with minute interdigital gap
JP2000091866A (en) Piezoelectric vibrator, piezoelectric oscillator, and method of manufacturing piezoelectric vibrating element used therein