JPS58218646A - Ultrasonic microscope - Google Patents
Ultrasonic microscopeInfo
- Publication number
- JPS58218646A JPS58218646A JP57102400A JP10240082A JPS58218646A JP S58218646 A JPS58218646 A JP S58218646A JP 57102400 A JP57102400 A JP 57102400A JP 10240082 A JP10240082 A JP 10240082A JP S58218646 A JPS58218646 A JP S58218646A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- reflected wave
- sample
- acoustic
- wave signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 230000002463 transducing effect Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は超音波顕微鏡に関するものである。[Detailed description of the invention] The present invention relates to an ultrasound microscope.
超音波顕微鏡は従来種々のものが提案されており、例え
ば第1図に示す構成のものがある。この超音波顕微鏡に
おいては、高周波パルス発生器1で超高周波数のバース
ト波電気信号を発振させてサーキュレータ2を介して圧
電トランスジューサ8に供給し、ここで電気信号から超
音波に変換して音響レンズ(超音波集束レンズ)4およ
び液体6を介して走査制御装置6によりX軸およびY軸
方向に2次元的に移動する試料台?上に載置された試料
8上にスポット状に投射している。また、試料8からの
反射波は音響レンズ4で集音し、圧電トランスジューサ
3により電気信号に変換してサーキュレータ2を介して
ゲート回路9に供給し1ここで不要な信号を除去して試
料8からの反射波に対応する信号を取出し、これを・増
幅・検波回路IOで増幅、検波して反射波の強度に応じ
た検波信号を得、この検波信号を輝度信号としてスキャ
ンコンバータ11により走査制御袋[aによる試料台7
の走査と同期させて超音波像を陰極管12上に表示させ
るようにしている。なお、高周波パルス発生器11走査
制御装置t6、ゲート回路9およびスキャンコンバータ
11の動作は制御回路1Bにより制御している。Various types of ultrasonic microscopes have been proposed in the past, including one having the configuration shown in FIG. 1, for example. In this ultrasonic microscope, a high-frequency pulse generator 1 oscillates an ultra-high frequency burst wave electric signal, which is supplied to a piezoelectric transducer 8 via a circulator 2, where the electric signal is converted into an ultrasonic wave and is transmitted through an acoustic lens. A sample stage that moves two-dimensionally in the X-axis and Y-axis directions by the scanning controller 6 via the (ultrasonic focusing lens) 4 and the liquid 6? A spot is projected onto the sample 8 placed above. In addition, the reflected waves from the sample 8 are collected by an acoustic lens 4, converted into electrical signals by a piezoelectric transducer 3, and supplied to a gate circuit 9 via a circulator 2. A signal corresponding to the reflected wave is extracted, and this is amplified and detected by the amplification/detection circuit IO to obtain a detection signal corresponding to the intensity of the reflected wave, and this detection signal is used as a brightness signal to perform scanning control by the scan converter 11. Sample stage 7 with bag [a
The ultrasonic image is displayed on the cathode tube 12 in synchronization with the scanning. The operations of the high frequency pulse generator 11 scan controller t6, gate circuit 9 and scan converter 11 are controlled by a control circuit 1B.
上述した超音波顕微鏡においては、圧電トランスジュー
サ3から音響レンズ4に発射された超音波は、第2図に
示すように、音響レンズ4の凹面状のレンズ部4aと圧
電トランスジューサ3との間で多重反射すると共に、レ
ンズ部4aから側壁4bに乱反射し、これらの音響レン
ズ4内での反射波が圧電トランスジューサ8でそれぞれ
電気信号に変換されてサーキュレータ2を経てゲート回
路9に供給される。In the ultrasonic microscope described above, the ultrasonic waves emitted from the piezoelectric transducer 3 to the acoustic lens 4 are multiplexed between the concave lens portion 4a of the acoustic lens 4 and the piezoelectric transducer 3, as shown in FIG. At the same time, the waves are reflected diffusely from the lens portion 4a to the side wall 4b, and these reflected waves within the acoustic lens 4 are converted into electrical signals by the piezoelectric transducer 8 and supplied to the gate circuit 9 via the circulator 2.
第8図は試料8がないときにゲート回路9に入力する信
号の分布を示すもので、Poは高周波パルス発生器lの
サーキュレータ2からの漏洩信号を表わし、P 、P
およびP8は圧電トランスシュ2
一す3とレンズ部4aとの間での第1.第2および第8
の多重反射波信号を表わす。レンズ部4aで反射され、
側壁4bを経て圧電トランスジューサ3に入射する乱反
射波信号は、第1反射波信号P0と第2反射波信号P2
との間および第2反射波信号P2と第3反射波信号P8
との間に現われる。Figure 8 shows the distribution of signals input to the gate circuit 9 when there is no sample 8, where Po represents the leakage signal from the circulator 2 of the high frequency pulse generator l, P , P
and P8 is the first point between the piezoelectric transformer 2 and the lens portion 4a. 2nd and 8th
represents the multiple reflected wave signal of It is reflected by the lens part 4a,
The diffusely reflected wave signal that enters the piezoelectric transducer 3 via the side wall 4b is a first reflected wave signal P0 and a second reflected wave signal P2.
and between the second reflected wave signal P2 and the third reflected wave signal P8.
appears between.
ここで、試料8からの所要の反射波信号が、例(8)
えば第1反射波信号P□と第2反射波信号P2との間に
現われるとすると、この反射波信号は乱反射波信号と干
渉してしまうため、ゲート回路9において、これを取出
してもノイズ成分が多く画質の良好な超音波像を得るこ
とができない欠点がある。Here, if the desired reflected wave signal from the sample 8 appears between the first reflected wave signal P□ and the second reflected wave signal P2 in example (8), this reflected wave signal is a diffusely reflected wave signal. Because of this interference, there is a drawback that even if the gate circuit 9 extracts it, there are many noise components and it is not possible to obtain an ultrasonic image with good image quality.
なお、上述した乱反射は、レンズ部4aに反射防止膜を
設けても同様に発生する。Note that the above-mentioned diffused reflection occurs in the same way even if an antireflection film is provided on the lens portion 4a.
本発明の目的は、上述した欠点を除去し、音響レンズ内
での不要な反射波信号を有効に除去して観察試料からの
反射波信号を高感度で得られるよう適切に構成した超音
波顕微鏡を提供しようとするものである。An object of the present invention is to provide an ultrasonic microscope appropriately configured to eliminate the above-mentioned drawbacks, effectively remove unnecessary reflected wave signals within an acoustic lens, and obtain reflected wave signals from an observation sample with high sensitivity. This is what we are trying to provide.
本発明の超音波顕微鏡は、形状および物理特性がほぼ同
等の2個の音響レンズと、これら2個の各々の音響レン
ズに設けられ、各音響レンズを通して超音波を発生させ
ると共に、その反射波を電気信号に変換する電気音響変
換素子とを具え、前 、1記2個の音響レンズの一
方を試料観察用とし、他 □方を補正用として、この
補正用音響レンズに対応する電気音響変換素子から得ら
れる主として音響(4)
レンズ内部での反射波信号により、前記試料観察用音響
レンズに対応する電気音響変換素子からの出力を補正す
るよう構成したことを特徴とするものである。The ultrasonic microscope of the present invention includes two acoustic lenses having substantially the same shape and physical characteristics, and each of these two acoustic lenses is provided with an ultrasonic microscope that generates ultrasonic waves through each acoustic lens and emits reflected waves. An electroacoustic transducer element for converting into an electric signal, one of the two acoustic lenses described in 1 above is used for sample observation, the other □ is used for correction, and the electroacoustic transducer element corresponds to this correction acoustic lens. The present invention is characterized in that the output from the electroacoustic transducer corresponding to the sample observation acoustic lens is corrected based on the reflected wave signal inside the lens (4) mainly obtained from the acoustic lens.
以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.
第4図は本発明の超音波顕微鏡の一例の構成を示す線図
である。本例では制御回路21により高周波パルス発生
器22を制御してバースト波を発生させ、これを分配器
23により2分して一方は試料観察用としてサーキュレ
ータ24aを経て圧電トランスジューサ25aに供給し
、ここで電気信号から超音波に変換して音響レンズ26
aおよび液体27を介して試料台28に載置された試料
29上に集束させ、他方は補正用としてサーキュレータ
24bを経て圧電トランスジューサ25bに供給し、こ
こで電気信号から超音波に変換して音響レンズgabを
介して容器80に収容した液体31中に投射する。圧電
トランスジューサ25a + z5bおよび音響レンズ
gaa、g6bはそれぞれ形状および物理特性がほぼ同
等のものを用い、また液体81は音響レンズgabから
投射された超音波が十分減衰してその反射波が圧゛電ト
ランスジューサ25bで検出できない程度の深さとする
。このようにすれば、圧電トランスジューサ25bから
は音響レンズgBb内での反射波信号のみが得られ、ま
た圧電(ランスジューサ25aからは圧電トランスジュ
ーサ25bから得られる反射波信号とほぼ同じ反射波信
号と試料29からの反射波信号とが得られる。なお、音
響レンズ26aおよび試料29は制御回路21により走
査制御装置82を介してX軸およびY軸方向に相対的に
2次元的に移動させる。FIG. 4 is a diagram showing the configuration of an example of the ultrasonic microscope of the present invention. In this example, a high-frequency pulse generator 22 is controlled by a control circuit 21 to generate a burst wave, which is divided into two by a distributor 23 and one is supplied to a piezoelectric transducer 25a via a circulator 24a for sample observation. converts electrical signals into ultrasonic waves and transmits them to the acoustic lens 26.
a and liquid 27 onto a sample 29 placed on a sample stage 28, and the other is supplied for correction to a piezoelectric transducer 25b via a circulator 24b, where the electric signal is converted into an ultrasonic wave and acoustic It is projected into the liquid 31 contained in the container 80 through the lens gab. The piezoelectric transducer 25a + z5b and the acoustic lenses gaa and g6b have substantially the same shape and physical characteristics, and the liquid 81 sufficiently attenuates the ultrasonic waves projected from the acoustic lens gab so that the reflected waves become piezoelectric. The depth is such that it cannot be detected by the transducer 25b. In this way, only the reflected wave signal within the acoustic lens gBb can be obtained from the piezoelectric transducer 25b, and the reflected wave signal from the piezoelectric transducer 25a that is almost the same as the reflected wave signal obtained from the piezoelectric transducer 25b can be obtained from the sample. The acoustic lens 26a and the sample 29 are relatively two-dimensionally moved in the X-axis and Y-axis directions by the control circuit 21 via the scanning control device 82.
圧電トランスジューサ25aから得られる反射波信号は
、サーキュレータ24aを経て減衰器88に供給し、こ
こでそのレベルを圧電トランスジューサ25bから得ら
れる反射波信号と同程度となるように調整して高周波差
動増幅器84の非反転入力端子に供給する。また、圧電
トランスジューサ25bから得られる反射波信号はサー
キュレータ24bを経て移相器85に供給し、ここで圧
電トランスジューサ25aから得られる反射波信号との
位相を調整して高周波差動増幅器84の反転入力端子に
供給する。このようにすれば、高周波差動増幅器84か
らは、音響レンズ26a内での不要な反射波信号が相殺
除去された試料反射波信号のみが得られる。この試料反
射波信号は検波回路86に供給して反射波の強度に応じ
た検波信号を得、この検波信号からゲート回路87にお
いて制御回路21からのゲート制御パルスにより試料2
9の反射波の多重反射波信号を除き、直接の試料反射波
信号のみを取出し、これをビデオプロセス回路38を経
て輝度信号としてスキャンコンバータ89に供給し、こ
のスキャンコンバータ39により走査制御装置82によ
る音響レンズ26aおよび試料台28の相対的な2次元
走査と同期させて超音波像を陰極管40上に表示させる
。The reflected wave signal obtained from the piezoelectric transducer 25a is supplied to an attenuator 88 via the circulator 24a, where its level is adjusted to be comparable to that of the reflected wave signal obtained from the piezoelectric transducer 25b, and a high frequency differential amplifier is used. 84 non-inverting input terminal. Further, the reflected wave signal obtained from the piezoelectric transducer 25b is supplied to the phase shifter 85 via the circulator 24b, where the phase with the reflected wave signal obtained from the piezoelectric transducer 25a is adjusted, and the inverted input of the high frequency differential amplifier 84 is performed. Supply to the terminal. In this way, only the sample reflected wave signal from which unnecessary reflected wave signals within the acoustic lens 26a have been canceled out can be obtained from the high frequency differential amplifier 84. This sample reflected wave signal is supplied to the detection circuit 86 to obtain a detection signal corresponding to the intensity of the reflected wave, and from this detection signal, a gate control pulse from the control circuit 21 is sent to the gate circuit 87 to detect the sample 2.
Excluding the multiple reflected wave signals of the reflected waves of 9, only the direct sample reflected wave signal is extracted, and this is supplied as a luminance signal to the scan converter 89 via the video processing circuit 38. An ultrasonic image is displayed on the cathode tube 40 in synchronization with the relative two-dimensional scanning of the acoustic lens 26a and the sample stage 28.
なお本発明は上述したように試料29の超音波像を陰極
線管40上に表示する場合に限らず、例えば音響レンズ
26aと試料29との間の距離(Zlを変化させていわ
ゆるη7)特性を得、これにより(7)
試料の特性を調べる場合にも有効に適用することができ
る。Note that the present invention is not limited to the case where an ultrasonic image of the sample 29 is displayed on the cathode ray tube 40 as described above. As a result, (7) can be effectively applied to investigating the characteristics of a sample.
以上述べたように、本発明においては形状および物理特
性がほぼ同等の2個の音響レンズを用い、その一方を試
料観察用とし、他方を補正用として、補正用音響レンズ
に対応する電気音響変換素子から得られる主として音響
レンズ内部での反射波信号により、試料観察用音響レン
ズに対応する電気音響変換素子からの出力を補正するよ
うにしたから、試料観察用音響レンズ内での不要な反射
波信号を有効に除去でき、観察試料からの所要の反射波
信号のみを常に高感度で得ることができる。As described above, in the present invention, two acoustic lenses having substantially the same shape and physical characteristics are used, one of which is used for sample observation, and the other is used for correction, and electroacoustic conversion corresponding to the correction acoustic lens is used. Since the output from the electroacoustic conversion element corresponding to the acoustic lens for sample observation is corrected by the reflected wave signal obtained from the element mainly inside the acoustic lens, unnecessary reflected waves within the acoustic lens for sample observation are corrected. Signals can be effectively removed, and only the required reflected wave signals from the observation sample can always be obtained with high sensitivity.
第1図は従来の超音波顕微鏡の構成を示す線図、第2図
は音響レンズ内での超音波の反射態様を示す線図、
第8図は音響レンズ内での不要反射によって現われる反
射波信号の態様を示す波形図、第4図は本発明の超音波
B微鏡の一例の構成を示す線図である。
(8)
21・・・制御回路 22・・・高周波パルス発生
器28・・・分装置 24a、24b・・・サ
ーキュレータ 25 a、 25 b
・・・圧電トランスジューサ 26a、 26
b・・・音響レンズ27・・・液体 28・
・・試料台29・・・試料 30・・・容器3
1・・・液体 82・・・走査制御装置38・
・・減衰器 34・・・高周波差動増幅器a5・
・・移相器 86・・・検波回路87・・・ゲー
ト回路 88・・・ビデオプロセス回路39・・・ス
キャンコンバータ
40・・・陰極管
第1図Figure 1 is a diagram showing the configuration of a conventional ultrasound microscope, Figure 2 is a diagram showing how ultrasound is reflected within the acoustic lens, and Figure 8 is a diagram showing reflected waves caused by unnecessary reflection within the acoustic lens. FIG. 4 is a waveform diagram showing the aspect of the signal. FIG. 4 is a diagram showing the configuration of an example of the ultrasonic B microscope of the present invention. (8) 21... Control circuit 22... High frequency pulse generator 28... Minute device 24a, 24b... Circulator 25 a, 25 b
...Piezoelectric transducer 26a, 26
b...Acoustic lens 27...Liquid 28.
...Sample stand 29...Sample 30...Container 3
1...Liquid 82...Scanning control device 38.
...Attenuator 34...High frequency differential amplifier a5.
... Phase shifter 86 ... Detection circuit 87 ... Gate circuit 88 ... Video process circuit 39 ... Scan converter 40 ... Cathode tube Figure 1
Claims (1)
と、これら2個の各々の音響レンズに設けられ、各音響
レンズを通して超音波を発生させると共に、その反射波
を電気信号に変換する電気音響変換素子とを具え、前記
2個の音響レンズの一方を試料観察用とし、他方を補正
用として、この補正用音響レンズに対応する電気音響変
換素子から得られる主として音響レンズ内部での反射波
信号により、前記試料観察用音響レンズに対応する電気
音響変換素子からの出力を補正するよう構成したことを
特徴とする超音波顕微鏡。L: Two acoustic lenses with approximately the same shape and physical characteristics, and an electroacoustic sensor installed in each of these two acoustic lenses that generates ultrasonic waves through each acoustic lens and converts the reflected waves into electrical signals. one of the two acoustic lenses is used for sample observation and the other is used for correction, and a reflected wave signal mainly inside the acoustic lens obtained from the electroacoustic conversion element corresponding to the correction acoustic lens. An ultrasonic microscope characterized in that it is configured to correct an output from an electroacoustic transducer corresponding to the acoustic lens for sample observation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57102400A JPS58218646A (en) | 1982-06-15 | 1982-06-15 | Ultrasonic microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57102400A JPS58218646A (en) | 1982-06-15 | 1982-06-15 | Ultrasonic microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58218646A true JPS58218646A (en) | 1983-12-19 |
Family
ID=14326391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57102400A Pending JPS58218646A (en) | 1982-06-15 | 1982-06-15 | Ultrasonic microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58218646A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6254159A (en) * | 1985-09-03 | 1987-03-09 | Olympus Optical Co Ltd | Phase difference type ultrasonic microscope |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56103365A (en) * | 1980-01-21 | 1981-08-18 | Hitachi Ltd | Ultrasonic image pickup apparatus |
-
1982
- 1982-06-15 JP JP57102400A patent/JPS58218646A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56103365A (en) * | 1980-01-21 | 1981-08-18 | Hitachi Ltd | Ultrasonic image pickup apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6254159A (en) * | 1985-09-03 | 1987-03-09 | Olympus Optical Co Ltd | Phase difference type ultrasonic microscope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5846712B2 (en) | Siderutsu King Sonar Souchi | |
JPH08317926A (en) | Ultrasonic tomography device | |
US6901157B2 (en) | Ultrasonic diagnostic apparatus | |
JPS58218646A (en) | Ultrasonic microscope | |
US4248091A (en) | Ultrasonic pulse-echo apparatus | |
KR860001814B1 (en) | Device for diagnosis using ultrasonic waves | |
JPH04326056A (en) | Supersonic microscope | |
JPS5842938B2 (en) | scanning electron microscope | |
JPH0457975B2 (en) | ||
JPH08110331A (en) | Ultrasonic microscope | |
SU981885A1 (en) | Device for acoustic field visulization | |
JPS5844041A (en) | Waveform control system of ultrasonic diagnostic apparatus | |
JPS58218648A (en) | Ultrasonic microscope | |
JP2987719B2 (en) | Ultrasound diagnostic equipment | |
JPS6321047A (en) | Ultrasonic diagnostic apparatus | |
MXPA99010729A (en) | Dynamic focus voltage amplitude controller and high frequency compensation. | |
JPS63203143A (en) | Ultrasonic diagnostic apparatus | |
JPS6342743B2 (en) | ||
JPH0158458B2 (en) | ||
JPS6229021B2 (en) | ||
SU983822A1 (en) | Pulze corpuscular microscore | |
JPS61238236A (en) | Ultrasonic diagnostic apparatus | |
JPH0323864B2 (en) | ||
JPS59104548A (en) | Ultrasonic microscope | |
JPWO2005060832A1 (en) | Ultrasonic diagnostic apparatus and ultrasonic imaging method |