JPS58217708A - Load control device in composite cycle plant - Google Patents
Load control device in composite cycle plantInfo
- Publication number
- JPS58217708A JPS58217708A JP9854782A JP9854782A JPS58217708A JP S58217708 A JPS58217708 A JP S58217708A JP 9854782 A JP9854782 A JP 9854782A JP 9854782 A JP9854782 A JP 9854782A JP S58217708 A JPS58217708 A JP S58217708A
- Authority
- JP
- Japan
- Prior art keywords
- load
- gas turbine
- steam
- turbine
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000004044 response Effects 0.000 claims abstract description 14
- 238000010793 Steam injection (oil industry) Methods 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims abstract description 6
- 239000007924 injection Substances 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims description 11
- 238000011084 recovery Methods 0.000 claims description 8
- 238000010795 Steam Flooding Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 abstract 5
- 238000002485 combustion reaction Methods 0.000 abstract 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000002912 waste gas Substances 0.000 abstract 1
- 239000002918 waste heat Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、ガスタービンと蒸気タービンを組み合せた複
合サイクル発電プラントにおいて、負荷応答性を向上さ
せた負荷制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a load control device that improves load response in a combined cycle power plant that combines a gas turbine and a steam turbine.
近年、火力発電プラントでは、その高効率化を図るため
、ガスタービンと蒸気タービンを組み合せた複合サイク
ルプラントが多用されるようになってきた。In recent years, in order to improve the efficiency of thermal power plants, combined cycle plants that combine a gas turbine and a steam turbine have come into widespread use.
この複合サイクルプラントには、種々の方式があるが、
プラント運用上、定格および部分負荷での高効率化、ガ
スタービンの運転特性を利用した負荷応答性の向上が要
請されている。There are various methods for this combined cycle plant, but
In terms of plant operation, there is a need for higher efficiency at rated and partial loads, as well as improved load response by utilizing the operating characteristics of gas turbines.
第1図は従来の複合サイクルプラントの一例を示すもの
で、発電機】には圧縮機2、ガスタービン3および蒸気
タービン4がカップリング5.6を介して結合されてい
る。FIG. 1 shows an example of a conventional combined cycle plant, in which a generator is connected to a compressor 2, a gas turbine 3, and a steam turbine 4 via a coupling 5.6.
吸気系7より吸込まれた空気は、圧縮機2により昇圧さ
れ、燃焼器8で、燃料系9からの燃料を燃焼させ、高温
高圧ガスとしてガスタービン3に導入される。The air sucked through the intake system 7 is pressurized by the compressor 2, and the combustor 8 combusts the fuel from the fuel system 9, and the air is introduced into the gas turbine 3 as high-temperature, high-pressure gas.
ガスタービン3で仕事をした高温高圧ガスは排気系10
を通して排熱回収熱交換器11 に導かれ、給水系12
かも供給される復水を加熱して蒸気を発生させ、自身は
冷却されて煙道】3へ排出される。The high-temperature, high-pressure gas that has worked in the gas turbine 3 is transferred to the exhaust system 10.
through the exhaust heat recovery heat exchanger 11, and the water supply system 12
It heats the supplied condensate to generate steam, which is then cooled and discharged to the flue.
排熱回収熱交換器11で発生した蒸気は蒸気タービン4
に導入され、これを駆動する。The steam generated in the exhaust heat recovery heat exchanger 11 is transferred to the steam turbine 4.
was introduced and is driving this.
従って、発電機1はガスタービン3と蒸気タービン4の
合計発生トルクによって回転駆動される。Therefore, the generator 1 is rotationally driven by the total torque generated by the gas turbine 3 and the steam turbine 4.
第2図は上述のように構成した複合サイクルプラントに
おける出力一時間特性を例示するもので。FIG. 2 shows an example of the hourly output characteristics of the combined cycle plant configured as described above.
複合サイクルプラント出力PN(t)は蒸気タービン出
力pH(t)とガスタービン出力p□(t)の合計値で
示される。The combined cycle plant output PN(t) is represented by the sum of the steam turbine output pH(t) and the gas turbine output p□(t).
いま、時間t−toにおいて負荷要求PDが出されたと
すると、ガスタービンの出力PG (t )は燃料供給
量の増加に応じて、急速に増加するが、蒸気タービンの
出力P3(t)は負荷応答性の遅れにより緩慢に上昇す
る。Now, if the load request PD is issued at time t-to, the output PG (t) of the gas turbine will rapidly increase in accordance with the increase in the amount of fuel supplied, but the output P3 (t) of the steam turbine will increase due to the load. It rises slowly due to a delay in response.
この場合、ガスタービンの出力pG(t)がガスタービ
ン定格出力PGoに達すると、その時点t1以降のガス
タービン出力はタービン入口温度制限値により、定格出
力P。0に保たれる。In this case, when the gas turbine output pG(t) reaches the gas turbine rated output PGo, the gas turbine output after that point t1 is the rated output P due to the turbine inlet temperature limit value. It is kept at 0.
このため、プラントの総出力pN(t)が負荷要求値P
Dに達するまでには時間△t−t2−toを要すること
になる。Therefore, the total output pN(t) of the plant is equal to the load demand value P
It takes time Δt-t2-to to reach D.
上述のように従来の複合サイクルプラントにおいて、負
荷要求が増加した場合には過渡的にガスタービンの出力
増加によって対応することになるが、従来のガスタービ
ンは定格出力を超えることができないため、負荷要求値
が満足させるまでにはかなりの時間を必要とするという
不都合があった。As mentioned above, in conventional combined cycle plants, when the load demand increases, it is responded to by temporarily increasing the output of the gas turbine.However, since conventional gas turbines cannot exceed the rated output, the load There is an inconvenience that it takes a considerable amount of time to satisfy the required value.
本発明は背景技術における上述の如き不都合を除去し、
応答性のすぐれた複合サイクルプラントの負荷制御装置
を提供することを目的とするものである。The present invention eliminates the above-mentioned disadvantages in the background art,
The object of the present invention is to provide a load control device for a combined cycle plant with excellent responsiveness.
本発明の複合サイクルプラントの負荷制御装置は上述の
目的を達成するため、圧縮機により昇圧させた空気を燃
料系からの燃料と共に燃焼器に導き、得られた高温高圧
ガスをガスタービンに導入し、このガスタービンで仕事
を終えた高温高圧ガスを排熱回収熱交換器に導入し、そ
の発生蒸気によって蒸気タービンを駆動する複合サイク
ルプラントにおいて、前記燃焼器には水または蒸気の噴
射系を設け、負荷要求に対してガスタービンのオーバー
ロードとなる際、前記噴射系を作動させてガスタービン
の出力を増加させるよう構成されている。In order to achieve the above-mentioned object, the load control device for a combined cycle plant of the present invention guides air pressurized by a compressor to a combustor together with fuel from a fuel system, and introduces the resulting high-temperature and high-pressure gas into a gas turbine. In a combined cycle plant in which high-temperature, high-pressure gas that has finished work in the gas turbine is introduced into an exhaust heat recovery heat exchanger, and the generated steam drives a steam turbine, the combustor is provided with a water or steam injection system. The injection system is configured to operate the injection system to increase the output of the gas turbine when the gas turbine becomes overloaded in response to a load request.
以下、第6図ないし第5図を参照して本発明の実施例と
、その作用を説明する。Embodiments of the present invention and their effects will be described below with reference to FIGS. 6 to 5.
なお、第6図では、第1図におけると同一の構成要素に
は、それらと同じ符号を付しである。In FIG. 6, the same components as in FIG. 1 are given the same reference numerals.
第3図において、発電機1に圧縮機2、ガスタービン3
および蒸気タービン4をカップリング5゜6を介して結
合し、吸気系7より吸込まれた空気を圧縮機2により昇
圧して燃焼器8に導き、燃料系9から供給される燃料を
燃焼させ、得られた高温高圧ガスをガスタービン3に導
入して、これを駆動させ、このガスタービンで仕事をし
た高温高圧ガスを排熱回収熱交換器11に導いて蒸気を
発生させ、この発生蒸気によって蒸気タービン4を駆動
させるようにした点は第1図に示した従来例におけると
同様である。In Fig. 3, a generator 1, a compressor 2, a gas turbine 3
and a steam turbine 4 are coupled via a coupling 5°6, air taken in from an intake system 7 is pressurized by a compressor 2 and guided to a combustor 8, where fuel supplied from a fuel system 9 is combusted; The obtained high-temperature, high-pressure gas is introduced into the gas turbine 3 to drive it, and the high-temperature, high-pressure gas that has done work in the gas turbine is guided to the exhaust heat recovery heat exchanger 11 to generate steam, and the generated steam generates steam. The point that the steam turbine 4 is driven is the same as in the conventional example shown in FIG.
本発明の特徴点は燃焼器8に燃料系9に並列して水また
は蒸気の噴射系14を設けた点にある。A feature of the present invention is that a water or steam injection system 14 is provided in the combustor 8 in parallel with the fuel system 9.
この噴射系14は負荷要求に対してガスタービンが過渡
的にオーバーロードとなる際、その出力を増加するよう
作動する。The injection system 14 operates to increase the output when the gas turbine is transiently overloaded in response to a load demand.
これを第4図につき説明すると、時間t −t 1、ツ
マリ、ガスタービンが定格出力PG(tl)−PGOト
なるまでは、第2図に示す従来方式と同じであるが、時
間t≧t1において、ガスタービン3の出力PG(t)
がその定格出力PGOを上回った場合には燃焼器8内に
、水または蒸気噴射を行ない、過渡的にガスタービンの
出力増加(第4図斜線部分PGI(t))をはかる。To explain this with reference to FIG. 4, it is the same as the conventional system shown in FIG. 2 until the time t - t 1 and the gas turbine reaches the rated output PG (tl) - PGO, but the time t≧t1 In, the output PG(t) of the gas turbine 3
When the output exceeds its rated output PGO, water or steam is injected into the combustor 8 to temporarily increase the output of the gas turbine (the shaded area PGI(t) in FIG. 4).
これによって、蒸気タービン出力p8(t)の不足分が
補なわれ、時点t−t2’でPD −PNとなるので、
負荷要求はΔt −t2’ −t(、の短い時間で満足
される。As a result, the shortfall in the steam turbine output p8(t) is compensated for, and PD -PN at time t-t2',
The load request is satisfied in a short time of Δt −t2′−t(,).
その後t≧t21では、蒸気タービン出力p3(t)の
増加に対応して、PGl(t) を減少させ、蒸気タ
ービン15力p3(t)が設定値に達した時点t−t2
″で燃焼器8に対する水または蒸気噴射を終了させる。After that, when t≧t21, PGl(t) is decreased in response to an increase in steam turbine output p3(t), and the time t-t2 when steam turbine power p3(t) reaches the set value.
'', the water or steam injection to the combustor 8 is terminated.
第5図は第3図の複合サイクルプラントにおいて、負荷
指令が出た場合の制御系を示すもので、負荷指令20は
加算器21にインプットされ、その時点におけろガスタ
ービンと蒸気タービンの合計出力信号22を減算され、
ガスタービン負荷制御信号23となってガスタービン負
荷制御器24へ入る。Figure 5 shows the control system when a load command is issued in the combined cycle plant of Figure 3.The load command 20 is input to the adder 21, and at that point the total of the gas turbine and steam turbine is The output signal 22 is subtracted,
It becomes a gas turbine load control signal 23 and enters a gas turbine load controller 24 .
このガスタービン負荷制御器24から出力される負荷制
御信号25は負荷制限器26からの負荷制限信号27と
共に選択器28にインプットされ、要求負荷がガスター
ビン定格負荷以上かどうかを判断される。The load control signal 25 output from the gas turbine load controller 24 is input to the selector 28 together with the load limit signal 27 from the load limiter 26, and it is determined whether the required load is equal to or higher than the gas turbine rated load.
選択器28で定格以上の負荷要求と判断された場合には
、ガスタービン制御器29が作動して、水まだは蒸気噴
射が行なわれ、ガスタービン30の出力は増加する。When the selector 28 determines that the load request is higher than the rated value, the gas turbine controller 29 is activated to inject water or steam, and the output of the gas turbine 30 is increased.
ガスタービン出力31 と蒸気タービン出力32は加
算器33で合計され、制御系に信号22として、フィー
ドバックされる。The gas turbine output 31 and the steam turbine output 32 are summed by an adder 33 and fed back to the control system as a signal 22.
上述のように、本発明の複合サイクルプラントの負荷制
御装置では要求負荷に対してガスタービンが定格負荷以
上となる場合には、燃焼器8に水または蒸気を噴射する
ようにしだので、タービンの人口温度を上限値に保った
ま壕、タービン通過流量を増大させることができ、従っ
てタービン出力が増加する。As mentioned above, in the load control device for a combined cycle plant of the present invention, water or steam is injected into the combustor 8 when the gas turbine exceeds the rated load relative to the required load, so that the turbine While the population temperature is kept at an upper limit, the flow rate through the turbine can be increased, thus increasing the turbine output.
また、燃焼器に噴射された水または蒸気は排気系に設置
された排熱回収熱交換器に対しても排ガス流量増加によ
り熱伝達を向上させるので、蒸気タービンの負荷応答性
を早めることが可能となる。In addition, the water or steam injected into the combustor improves heat transfer to the exhaust heat recovery heat exchanger installed in the exhaust system by increasing the flow rate of exhaust gas, making it possible to speed up the load response of the steam turbine. becomes.
このように本発明では、蒸気タービンは負荷要求に対し
て何ら制御は受けず、蒸気タービン独自の制御系のみに
支配されるため、コントロールが簡素化される上、信頼
性が向上する。As described above, in the present invention, the steam turbine is not subjected to any control in response to load requests, and is governed only by the steam turbine's own control system, which simplifies control and improves reliability.
さらに、ガスタービン定格負荷以下の負荷要求に対して
は、従来通りの負荷分担による制御が利用される。Furthermore, for load requests below the gas turbine rated load, conventional load sharing control is utilized.
なお1本発明は上述のくし形−軸タービンに限らず、多
軸複式タービン等、種々の形式の複合サイクル発電プラ
ントに適用することができる。Note that the present invention is not limited to the above-mentioned comb-shaft turbine, but can be applied to various types of combined cycle power plants such as multi-shaft compound turbines.
一〇 −
以上述べたように、本発明の複合サイクル発電プラント
においては、定格負荷以上の負荷要求値に対して、ガス
タービン燃焼器内へ水または蒸気噴射を行ない、ガスタ
ービンの出力増加、および排熱回収熱交換器の熱伝達向
上を可能にしたので、ガスタービンの定格出力範囲内に
とどまらず、広範囲な負荷応答性の向上を達成できる。10 - As described above, in the combined cycle power plant of the present invention, water or steam is injected into the gas turbine combustor in response to a load requirement greater than the rated load, thereby increasing the output of the gas turbine and By making it possible to improve the heat transfer of the exhaust heat recovery heat exchanger, it is possible to achieve a wide range of improvements in load response, not just within the rated output range of the gas turbine.
第1図は従来の複合サイクルプラントの構成例を示す系
統図、第2図はその出力一時間特性図、第3図は本発明
の実施例を示す系統図、第4図はその出力一時間特性図
、第5図は本発明の複合サイクルプラントの負荷制御装
置におけるガスタービンの制御ブロック図である。
1・・・・・・発電機
2・・・・・・圧縮機
3・・・・・・ ガスタービン
4・・・・・・蒸気タービン
5.6・・・・・・ カップリング
7・・・・・・吸気系
8・・・・・・燃焼器
9・・・・・・燃料系
10・・・・・・排気系
11・・・・・・排熱回収熱交換器
12・・・・・・給水系
13・・・・・・煙 道
14・・・・・・ 水または蒸気噴射系20・・・・・
・負荷指令
24・・・・・・ ガスタービン負荷制御器26・・・
・・・負荷制限器
28・・・・・・選択器
29・・・・・・ ガスタービン制御器30・・・・・
・ カスタービン
(7317)代理人弁理士 側近 電体(ほか1名)
第1図
第2図
第3図
第4図
第5図Fig. 1 is a system diagram showing a configuration example of a conventional combined cycle plant, Fig. 2 is an hourly output characteristic diagram thereof, Fig. 3 is a system diagram showing an embodiment of the present invention, and Fig. 4 is an hourly output characteristic diagram thereof. The characteristic diagram, FIG. 5, is a control block diagram of the gas turbine in the load control device for the combined cycle plant of the present invention. 1... Generator 2... Compressor 3... Gas turbine 4... Steam turbine 5.6... Coupling 7... ... Intake system 8 ... Combustor 9 ... Fuel system 10 ... Exhaust system 11 ... Exhaust heat recovery heat exchanger 12 ... ... Water supply system 13 ... Flue duct 14 ... Water or steam injection system 20 ...
・Load command 24... Gas turbine load controller 26...
... Load limiter 28 ... Selector 29 ... Gas turbine controller 30 ...
・ Kasturbin (7317) Representative Patent Attorney Aide Dentai (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
共に燃焼器に導き、得られた高温高圧ガスをカスタービ
ンに導入し、このガスタービンで仕事を終えた高温高圧
ガスを排熱回収熱交換器に導入し、その発生蒸気によっ
て蒸気タービンを駆動する複合サイクルプラントにおい
て、前記燃焼器には水または蒸気の噴射系を設け、負荷
要求に対してガスタービンがオーバーロードとなる際、
前記噴射系を作動させてガスタービンの出力を増加させ
るよう構成したことを特徴とする複合サイクルプラント
の負荷制御装置。 2、負荷指令を加算器にインプットして、ガスタービン
と蒸気タービンの合計出力信号を減算し、得られたガス
タービン負荷制御信号をガスタービン負荷制御器に導き
、このガスタービン負荷制御器から出力される負荷制御
信号を、負荷制限器からの負荷制限信号と共に選択器に
インプットし、この選択器によって、負荷要求がガスタ
ービンの定格負荷を超えると判断された場合、選択器の
m9信号によってガスタービン制御器を作動させて水ま
たは蒸気噴射を行なわせるよう構成したことを特徴とす
る特許請求の範囲第1項に記載の複合サイクルプラント
の負荷制御装置。[Claims] 1. The air pressurized by the compressor is guided to the combustor together with the fuel from the fuel system, and the resulting high-temperature, high-pressure gas is introduced into the gas turbine, where the high-temperature, high-pressure gas that has finished its work is In a combined cycle plant in which gas is introduced into an exhaust heat recovery heat exchanger and the generated steam drives a steam turbine, the combustor is equipped with a water or steam injection system to prevent the gas turbine from being overloaded in response to load demands. When
A load control device for a combined cycle plant, characterized in that it is configured to increase the output of a gas turbine by operating the injection system. 2. Input the load command to the adder, subtract the total output signal of the gas turbine and steam turbine, guide the obtained gas turbine load control signal to the gas turbine load controller, and output from the gas turbine load controller. The load control signal to be applied is input to the selector together with the load limit signal from the load limiter, and if the selector determines that the load request exceeds the rated load of the gas turbine, the selector's m9 signal 2. The load control device for a combined cycle plant according to claim 1, wherein the load control device is configured to operate a turbine controller to inject water or steam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9854782A JPS58217708A (en) | 1982-06-10 | 1982-06-10 | Load control device in composite cycle plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9854782A JPS58217708A (en) | 1982-06-10 | 1982-06-10 | Load control device in composite cycle plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58217708A true JPS58217708A (en) | 1983-12-17 |
Family
ID=14222711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9854782A Pending JPS58217708A (en) | 1982-06-10 | 1982-06-10 | Load control device in composite cycle plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58217708A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841721A (en) * | 1985-02-14 | 1989-06-27 | Patton John T | Very high efficiency hybrid steam/gas turbine power plant wiht bottoming vapor rankine cycle |
JPH05507134A (en) * | 1990-04-03 | 1993-10-14 | エイ.アフルストロム コーポレーション | Method and apparatus for generating heat and electricity in a sulfate pulp mill |
JP2021134712A (en) * | 2020-02-26 | 2021-09-13 | 三菱重工業株式会社 | Gas turbine plant |
-
1982
- 1982-06-10 JP JP9854782A patent/JPS58217708A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841721A (en) * | 1985-02-14 | 1989-06-27 | Patton John T | Very high efficiency hybrid steam/gas turbine power plant wiht bottoming vapor rankine cycle |
JPH05507134A (en) * | 1990-04-03 | 1993-10-14 | エイ.アフルストロム コーポレーション | Method and apparatus for generating heat and electricity in a sulfate pulp mill |
JP2021134712A (en) * | 2020-02-26 | 2021-09-13 | 三菱重工業株式会社 | Gas turbine plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5794431A (en) | Exhaust recirculation type combined plant | |
Zohuri et al. | Advanced nuclear open air-Brayton cycles for highly efficient power conversion | |
JPS6388227A (en) | Method of operating gas turbine unit | |
US3505811A (en) | Control system for a combined gas turbine and steam turbine power plant | |
CN107152317A (en) | Combination circulation steam turbine quickly starts warming-up system and method | |
EP0056813B1 (en) | Steam output control system | |
EP0902168B1 (en) | Method and arrangement for a combi power plant | |
US5193337A (en) | Method for operating gas turbine unit for combined production of electricity and heat | |
US3252286A (en) | Gas turbine power plant | |
JPS58217708A (en) | Load control device in composite cycle plant | |
JPH04234534A (en) | Gas turbine device and method for driving same | |
EP0353374B1 (en) | Gas turbine unit for combined production of electricity and heat and method for operating such unit | |
AU573444B2 (en) | Shutdown of a steam injected gas turbine | |
JPH06212910A (en) | Electric power generating plant | |
RU2064060C1 (en) | Method of operation of power plant | |
US3159970A (en) | Thermal power plant with closed circuit of a gaseous working medium and an open gas-turbine plant | |
SU1760136A1 (en) | Gas-and-steam-turbine power plant | |
JPH066908B2 (en) | Cogeneration facility | |
Way | Application of a hot air turbine for efficiency improvement in MHD/steam power plants | |
JP2585328B2 (en) | Operating method of combined plant and apparatus therefor | |
JPH05340205A (en) | Controller for combined power generation plant | |
JPH0688502A (en) | Power generating plant | |
JPS60252109A (en) | Compound generation plant | |
CN114526473A (en) | Deep peak regulation heat supply system based on furnace water cooler and thermoelectric decoupling control method | |
JP2511001B2 (en) | Hot water supply method using double pressure boiler |