JPS58216774A - Control method for heat transfer system connecting nuclear equipment and seawater desalination equipment - Google Patents
Control method for heat transfer system connecting nuclear equipment and seawater desalination equipmentInfo
- Publication number
- JPS58216774A JPS58216774A JP9997082A JP9997082A JPS58216774A JP S58216774 A JPS58216774 A JP S58216774A JP 9997082 A JP9997082 A JP 9997082A JP 9997082 A JP9997082 A JP 9997082A JP S58216774 A JPS58216774 A JP S58216774A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- heat medium
- heat
- steam
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/04—Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
【発明の詳細な説明】
る熱を海水淡水化装偽の熱源として利用する結合プラン
トに関し、特に中間熱媒体を用いて放射能漏洩防止を言
する原子力設備蒸気抽出部と海水淡水化装歯とを結ぶ熱
移送糸の制御方法に関する。[Detailed Description of the Invention] This relates to a coupling plant that utilizes the heat generated by water as a heat source for a seawater desalination system, and in particular uses an intermediate heat medium to connect a nuclear power equipment steam extraction section and a seawater desalination system to prevent radioactivity leakage. The present invention relates to a method of controlling a heat transfer thread.
水需要に対する水供給資源の慢性的不足を来た 一して
いること乃至開発しうる水資源を水需要量が将来明らか
に上回ることが考えられることから、海水の淡水化が企
図され、その装置の開発も進められている。このような
装置の一例として、原子力発電所で発生する熱を利用す
る海水淡水化装置があるが、原子力発電所の発生熱を海
水淡水化装置へ伝える熱移送系方式は第1図に示すごと
き構成になっている。原子力発電タービン1で発生した
熱即ち例えば1 4 kgj/m ab (ここでab
とは絶対圧を意味する)のタービン抽気Sの熱は配管系
2、中間間接熱交換器3、例えば1 6 kin ab
の中間熱媒体に1配管系4、フラッシュタンク5、例え
ば1、 5 k−abの熱媒体h1配管系6及び海水淡
水化装置のブラインヒータ7を経て例えば2 klij
/m abの海水0へ伝えられる。このような構成にお
いて、配管系4中には高圧( 1 6 kg/m ab
)の熱媒体kが還流している故、たとえ中間間接熱交
換器3内において伝熱管部分及び伝熱管取付部等の破損
が生じたとしても、14 kld abの放射能汚染蒸
気が配管系にへ入ることはなく、従って原子炉側から海
水淡水化装置側へ漏洩することはない。ところが、配管
系4を流れる熱媒体kを上述のようにタービン抽気Sよ
りも高圧に設定したとしても、原子力発電タービン1め
負荷は屡大きく変動しこれに伴ないタービン抽気Sも変
動するので、タービン抽気S圧が熱媒体に圧を越える場
合が発生する。このような場合にはその都度作業員が配
管系2に介設しである抽気量制御弁8を絞らなければな
らないので煩雑に耐え得なかった。Chronic shortage of water supply resources to meet water demand Since it is thought that the demand for water will clearly exceed the available water resources in the future, desalination of seawater is being planned and Development is also progressing. An example of such a device is a seawater desalination device that uses the heat generated in a nuclear power plant.The heat transfer system that transfers the heat generated by a nuclear power plant to the seawater desalination device is shown in Figure 1. It is configured. The heat generated in the nuclear power generation turbine 1, for example, 1 4 kgj/m ab (here ab
(means absolute pressure), the heat of the turbine bleed air S is transferred to a piping system 2, an intermediate indirect heat exchanger 3, e.g. 1 6 kin ab
1 piping system 4, a flash tank 5, a heating medium h1 piping system 6 of 1,5 k-ab, and a brine heater 7 of the seawater desalination equipment, for example 2 klij.
/ m ab is transmitted to seawater 0. In such a configuration, high pressure (16 kg/m ab
) is refluxing, so even if the heat exchanger tubes and heat exchanger tube attachments are damaged in the intermediate indirect heat exchanger 3, radioactively contaminated steam of 14 kld ab will not enter the piping system. Therefore, there is no leakage from the reactor side to the seawater desalination equipment side. However, even if the heat medium k flowing through the piping system 4 is set to a higher pressure than the turbine bleed air S as described above, the load on the nuclear power generation turbine 1 often fluctuates greatly and the turbine bleed air S also fluctuates accordingly. There are cases where the turbine bleed air S pressure exceeds the pressure of the heat medium. In such a case, the operator has to throttle the bleed air amount control valve 8, which is installed in the piping system 2, each time, which is unbearable.
このような訳で、原子炉から海水淡水化装置への漏洩防
止機能を有効かつ簡便に行なうことができる熱移送系の
制御方法の開発が待望されている。For this reason, there is a long-awaited development of a control method for a heat transfer system that can effectively and easily perform a leakage prevention function from a nuclear reactor to a seawater desalination apparatus.
本発明の目的は熱発生系か゛ら熱利用系への熱移送に際
してその途中の熱移送部分の中間熱媒体圧を熱発生系の
タービン抽気圧よりも常に高くなるように監視すること
により放射能等の有害物質成分の漏洩防止を有効に達成
しうる原子力設備と海水淡水化装置とを結ぶ熱移送の制
御方法を提供するにある。The purpose of the present invention is to monitor the intermediate heat medium pressure in the heat transfer section during heat transfer from the heat generation system to the heat utilization system so that it is always higher than the turbine extraction pressure of the heat generation system, thereby reducing radioactivity. An object of the present invention is to provide a method for controlling heat transfer connecting a nuclear power facility and a seawater desalination device, which can effectively prevent the leakage of harmful substance components.
本発明によれば、その目的は原子炉側のタービン抽気圧
と海水淡水化装置側の中間熱媒体圧との差圧を常時検出
し、この差圧検出出力、に基づいて中間熱媒体圧をター
ビン抽気圧よりも高くなるよう制御することによって達
成される。According to the present invention, the purpose is to constantly detect the differential pressure between the turbine extraction pressure on the reactor side and the intermediate heat medium pressure on the seawater desalination equipment side, and to calculate the intermediate heat medium pressure based on this differential pressure detection output. This is achieved by controlling the pressure to be higher than the turbine extraction pressure.
以下、添附図面を参照して本発明の好適一実施例を説明
する。Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
第2図において、原子力設備蒸気抽出部(例えば原子力
発電所ターピン抽気部)1aは熱移送系Aを介して海水
淡水化装置9のブラインヒータ7へ結合されている。そ
の熱移送系Aは上記蒸気抽出部1aの配管系2、これに
外管3aが連結された中間間接熱交換器3、この中筒間
接熱交換器3の内管3bに連結された循環熱媒体配管系
4、該配管系4に連結され高温中間熱媒体を蒸発させ蒸
気を発生させるフラッシュタンク5及び該フラッシュタ
ンク5に連結された循環蒸気配管系6から成っている。In FIG. 2, a nuclear equipment steam extraction section (for example, a nuclear power plant turpin extraction section) 1a is coupled via a heat transfer system A to a brine heater 7 of a seawater desalination apparatus 9. The heat transfer system A includes a piping system 2 of the steam extraction section 1a, an intermediate indirect heat exchanger 3 to which an outer tube 3a is connected, and a circulating heat exchanger connected to an inner tube 3b of the intermediate cylinder indirect heat exchanger 3. It consists of a medium piping system 4, a flash tank 5 connected to the piping system 4 for evaporating a high temperature intermediate heat medium to generate steam, and a circulating steam piping system 6 connected to the flash tank 5.
循環蒸気配管系6に結合されたブラインヒータ7には海
水淡水化装置9に導入する海水が還流する海水配管系1
0が連結されている。The brine heater 7 connected to the circulation steam piping system 6 has a seawater piping system 1 through which seawater to be introduced into the seawater desalination device 9 flows back.
0 is concatenated.
そして、この海水配管系10の出口と上記蒸気配管系6
のブラインヒータ7の入口との間には、負荷変動を是正
すべく温度制御系11が配設されている。The outlet of this seawater piping system 10 and the steam piping system 6
A temperature control system 11 is disposed between the inlet of the brine heater 7 and the inlet of the brine heater 7 in order to correct load fluctuations.
」二記蒸気抽出部1aの配管系2の上流側と、熱媒体配
管系4の中間間接熱交換器3出口側とにそれぞれ圧力検
出器14.15が接続されている。Pressure detectors 14 and 15 are connected to the upstream side of the piping system 2 of the vapor extraction section 1a and the outlet side of the intermediate indirect heat exchanger 3 of the heat medium piping system 4, respectively.
圧力検出器14.15の出力は共通の差圧指示調節計1
6へ接続され、その出力は熱媒体配管系4の中間間接熱
交換器3出口側に介設した流量制御弁17の制御入力へ
接続されている。The outputs of the pressure detectors 14 and 15 are the common differential pressure indicating controller 1.
6, and its output is connected to the control input of a flow rate control valve 17 provided on the outlet side of the intermediate indirect heat exchanger 3 of the heat medium piping system 4.
なお、第2図中18は循環ポンプであり本実施例では一
定馬力が与えられている。また、8は抽気量制御弁、1
9はブラインヒータ用復水ポンプである。Note that 18 in FIG. 2 is a circulation pump, and in this embodiment, a constant horsepower is given to it. Further, 8 is a bleed air amount control valve, 1
9 is a condensate pump for the brine heater.
一ト述のごとく構成される本発明の熱輸送系の作用を以
下に説明する。The operation of the heat transport system of the present invention constructed as described above will be explained below.
原子力設備蒸気抽出部1aから抽気される抽出蒸気Sの
標準値を14 kg/m abとした場合、中間間接熱
交換器3において熱媒体配管系4中を還流する中間熱媒
体kにそれより高圧の161s’d abを確保すべく
循環ポンプ18に所定馬力を与えているものとする。ま
た、差圧指示調節計16には差圧Δpcが2k1m a
b <ΔPC< 4 k!9/dの範囲の値以外のとき
出力が出るように予め設定されていることとする。しか
して、蒸気抽気部1aから抽気されだ14 ky/d
abの抽出蒸気圧が原子力タービン1の負荷変動により
上がった場合についてみる。その抽出蒸気圧の圧力は圧
力検出器14で測定され、その出力は差圧指示調節計1
6に入る。一方、循環熱媒体配管系4を流れる中間熱媒
体の圧力(16kgn ab )も同様にして圧力検出
器15を介して差圧指示調節計16に入っている。従っ
て差圧指示調節計16は中間熱媒体圧と抽出蒸気圧との
差圧をΔPC〈2kg/cr/lと検出し、この検出出
力に基づいて流量制御弁17が絞られる。この絞りによ
り循環ポンプ18の負荷が増大し、循環ポンプ18から
中間間接熱交換器3を経由して流量制御弁17に至る熱
媒体配管系4を流れる中間熱媒体圧を」二昇させ上がっ
た抽出蒸気圧力よりも高い差圧設定範囲内に来るように
制御する。今度は逆に抽出蒸気圧が中間熱媒体圧(16
k内ab )との差圧丁限値である1 2 kNcn
abよりも下がった場合についてみると、差圧指示調節
計16は差圧をΔpc > 6 k−abと検出するの
で流量制御弁17を開いて循環ポンプ18の負荷を減少
せしめ、下がった抽出蒸気圧に対し中間熱媒体圧を所定
範囲の値に来るよう下降制御する。なお、循環熱媒体配
管系4は海水淡水化装置9の負荷変動に追従するフラッ
シュタンク5に通じているので、当然中間熱媒体圧をl
61s/d abに保持しておくことはできないが、
そのような場合であっても差圧指示調節計16は絶対値
ではなく飽く迄も差圧を検出しているので変動している
中間熱媒体圧に対しても制御は有効に行なわれ常に抽出
蒸気圧よりも高く維持させる。If the standard value of the extracted steam S extracted from the nuclear equipment steam extraction section 1a is 14 kg/m ab, the intermediate heat medium k flowing back through the heat medium piping system 4 in the intermediate indirect heat exchanger 3 has a higher pressure than that. It is assumed that a predetermined horsepower is given to the circulation pump 18 in order to ensure 161s'd ab. Moreover, the differential pressure Δpc is 2k1m a in the differential pressure indicating controller 16.
b<ΔPC<4k! It is assumed that the setting is made in advance so that the output is output when the value is outside the range of 9/d. Therefore, the steam is extracted from the steam extraction section 1a at a rate of 14 ky/d.
Let us consider the case where the extraction steam pressure of ab increases due to load fluctuations of the nuclear turbine 1. The pressure of the extracted vapor pressure is measured by a pressure detector 14, and its output is measured by a differential pressure indicating controller 1.
Enter 6. On the other hand, the pressure (16 kgn ab ) of the intermediate heat medium flowing through the circulating heat medium piping system 4 is also input to the differential pressure indicating controller 16 via the pressure detector 15 . Therefore, the differential pressure indicating controller 16 detects the differential pressure between the intermediate heat medium pressure and the extracted steam pressure as ΔPC<2 kg/cr/l, and the flow rate control valve 17 is throttled based on this detected output. This throttling increased the load on the circulation pump 18, raising the pressure of the intermediate heat medium flowing through the heat medium piping system 4 from the circulation pump 18 via the intermediate indirect heat exchanger 3 to the flow rate control valve 17. The differential pressure is controlled to be within a set range that is higher than the extraction steam pressure. This time, conversely, the extraction vapor pressure is the intermediate heat medium pressure (16
1 2 kNcn, which is the differential pressure limit value between
Regarding the case where the pressure drops below ab, the differential pressure indicating controller 16 detects the differential pressure as Δpc > 6 k-ab, so the flow rate control valve 17 is opened to reduce the load on the circulation pump 18, and the reduced extracted steam is The intermediate heat medium pressure is controlled to fall within a predetermined range. In addition, since the circulating heat medium piping system 4 is connected to the flash tank 5 that follows the load fluctuation of the seawater desalination equipment 9, it is natural that the intermediate heat medium pressure is
Although it is not possible to keep it at 61s/d ab,
Even in such a case, the differential pressure indicating controller 16 detects the differential pressure rather than the absolute value, so control is performed effectively even with fluctuating intermediate heat medium pressure, and the extracted steam pressure is always maintained. keep it higher than.
このような熱移送系の制御方法であるから、たとえ中間
間接熱交換器3に故障が生じても放射能汚染蒸気が循環
熱媒体配管系4へ入ることはなく、従って原子炉側から
海水淡水化装置側へ漏洩することはない。With this method of controlling the heat transfer system, even if a failure occurs in the intermediate indirect heat exchanger 3, radioactively contaminated steam will not enter the circulating heat medium piping system 4. There is no leakage to the converter side.
なお、上記実施例で差圧指示調節計16の差圧Δpcの
下限を零、即ち中間熱媒体圧と抽出蒸気圧とが等しくな
る場合のみならず幾分高目(実施例では2 k−)にし
たのは安全を見込んだからであり、また上限を設定した
のは流量制御弁17が累積的に絞られ中間熱媒体圧が異
常に高くなるのを防止するようにしたからであるが、こ
れら上限値、下限値は設計により任意に決めることがで
きる。In addition, in the above embodiment, the lower limit of the differential pressure Δpc of the differential pressure indicating controller 16 is set not only to zero, that is, when the intermediate heat medium pressure and the extracted steam pressure are equal, but also to a somewhat higher limit (2 k- in the embodiment). The upper limit was set in consideration of safety, and the upper limit was set to prevent the intermediate heat medium pressure from becoming abnormally high due to cumulative throttling of the flow rate control valve 17. The upper limit value and lower limit value can be arbitrarily determined by design.
また、上記実施例においては差圧指示調節計16の出力
を流量制御弁17に加えるようにしたがこれに限定され
るものではなく、循環ポンプ18に与えポンプ圧を制御
する構成としてもよい。Further, in the above embodiment, the output of the differential pressure indicating controller 16 is applied to the flow rate control valve 17, but the output is not limited to this, and the output may be applied to the circulation pump 18 to control the pump pressure.
この場合、中間熱媒体圧が抽出蒸、気よりも低下したと
きには馬力を上げ、逆に高くなったときには馬力を下げ
るように作用することとなる。In this case, when the intermediate heat medium pressure is lower than the extracted steam or gas, the horsepower is increased, and when it is higher, the horsepower is decreased.
以上要するに本発明によれば次のような効果が得られる
。In summary, according to the present invention, the following effects can be obtained.
(1)抽出蒸気圧と中間熱媒体圧との差圧を検出し、こ
の検出により中間熱媒体圧を抽出蒸気圧よりも高くする
ように制御しているので、抽気蒸気圧及び中間熱媒体圧
の双方が同時に変動する場合であっても原子力設備側か
ら熱移送系へ放射能等の有害物質成分が漏洩することを
防止し得、常に安全な運転を確保することができる。(1) The differential pressure between the extracted steam pressure and the intermediate heat medium pressure is detected, and this detection controls the intermediate heat medium pressure to be higher than the extracted steam pressure. Even if both of these factors fluctuate at the same time, it is possible to prevent harmful substance components such as radioactivity from leaking from the nuclear equipment side to the heat transfer system, and safe operation can always be ensured.
(2) 差圧の検出と、この検出に基づく圧力上昇と
の二つの行程からなり、差圧の検出は同時的に行なわれ
るので短時間に圧力バランスを形成することができる。(2) It consists of two processes: detection of differential pressure and pressure increase based on this detection, and since detection of differential pressure is performed simultaneously, pressure balance can be established in a short time.
第1図は従来熱移送系の制御方法の構成を示す図、第2
図は本発明に係る熱移送系の制御方法の好適一実施例の
構成を示す図である。
図中、1aは原子力設備蒸気抽出部、3は中間間接熱交
換器、9は海水淡水化装置1.14.15は圧力検出器
、16は差圧指示調節計、17は流量制御弁、18は循
環ポンプ、Sは抽出蒸気、kは中間熱媒体、Aは熱移送
系である。Figure 1 is a diagram showing the configuration of a conventional heat transfer system control method;
The figure shows the configuration of a preferred embodiment of the method for controlling a heat transfer system according to the present invention. In the figure, 1a is a nuclear equipment steam extraction part, 3 is an intermediate indirect heat exchanger, 9 is a seawater desalination equipment 1, 14, 15 is a pressure detector, 16 is a differential pressure indicating controller, 17 is a flow rate control valve, 18 is a circulation pump, S is extracted steam, k is an intermediate heat medium, and A is a heat transfer system.
Claims (1)
熱交換器を設け、該間接熱交換器と海水淡水化装置のm
Jを中間熱媒体を介して結ぶ熱移送糸において、抽出蒸
気圧力と中rEI+間接熱交換器の熱媒体出口圧力との
差圧を検出し、この検出出力に基づいて熱媒体圧力が抽
出蒸気圧力よシ高くなるように熱媒体圧力を制拝するこ
とを特徴とする原子力設備と海水淡水化装置とを結ぶ熱
移送系の制御方法。An intermediate indirect heat exchanger is provided between the nuclear equipment steam extraction section and the seawater desalination equipment, and the distance between the indirect heat exchanger and the seawater desalination equipment is
In the heat transfer thread that connects J through the intermediate heat medium, the differential pressure between the extracted steam pressure and the heat medium outlet pressure of the intermediate rEI + indirect heat exchanger is detected, and based on this detection output, the heat medium pressure changes to the extracted steam pressure. A method for controlling a heat transfer system connecting a nuclear facility and a seawater desalination device, characterized by controlling the heat medium pressure so that it becomes higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9997082A JPS58216774A (en) | 1982-06-12 | 1982-06-12 | Control method for heat transfer system connecting nuclear equipment and seawater desalination equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9997082A JPS58216774A (en) | 1982-06-12 | 1982-06-12 | Control method for heat transfer system connecting nuclear equipment and seawater desalination equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58216774A true JPS58216774A (en) | 1983-12-16 |
Family
ID=14261519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9997082A Pending JPS58216774A (en) | 1982-06-12 | 1982-06-12 | Control method for heat transfer system connecting nuclear equipment and seawater desalination equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58216774A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102261334B1 (en) * | 2020-01-06 | 2021-06-04 | 한국해양과학기술원 | Electric generation and heat supply complex apparatus using heat of nuclear waste cooling water tank and sea water |
-
1982
- 1982-06-12 JP JP9997082A patent/JPS58216774A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102261334B1 (en) * | 2020-01-06 | 2021-06-04 | 한국해양과학기술원 | Electric generation and heat supply complex apparatus using heat of nuclear waste cooling water tank and sea water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210202121A1 (en) | Flow Mixing T-Unit of Reactor Volume Control System | |
JPS6337844B2 (en) | ||
US4301650A (en) | Pressure regulating apparatus for a closed water circuit | |
JPS58216774A (en) | Control method for heat transfer system connecting nuclear equipment and seawater desalination equipment | |
JP2758245B2 (en) | Drain water level control device for feed water heater | |
JPS587354B2 (en) | Combined plant with nuclear equipment and water production equipment | |
JP3340866B2 (en) | Hot water system facilities in nuclear power plants | |
JPS58219982A (en) | Connecting plant of nuclear power installation and sea water desalting apparatus | |
JPS59110811A (en) | Steam turbine plant | |
JPS5842779Y2 (en) | Control device for condensate system in nuclear power generation equipment | |
JP3392563B2 (en) | Circulation heater for control rod drive system | |
JP6440479B2 (en) | Reactor heat utilization system | |
JPS6093205A (en) | Control device for dry heater system in power generation plant | |
JPS62106207A (en) | Feedwater supply system in steam turbine plant | |
JPS5851195B2 (en) | condensate equipment | |
JPS63251703A (en) | Feed water heater drain system oxygen concentration control device | |
JPH0275806A (en) | Boiler | |
JPH01102202A (en) | Drain controller for feedwater heater | |
JPH02298701A (en) | Water feed heater drain controller | |
JPH06229505A (en) | Controlling device for feed water temperature of waste heat recovery heat exchanger | |
JPS5977012A (en) | Reheating type steam turbine plant | |
JPS6256401B2 (en) | ||
JPH0650504A (en) | Water level controller for feed water heater | |
JPH01247901A (en) | Heat exchanger | |
JPH06129208A (en) | Composite cycle plant |