JPS58215617A - Telephoto lens - Google Patents
Telephoto lensInfo
- Publication number
- JPS58215617A JPS58215617A JP9753582A JP9753582A JPS58215617A JP S58215617 A JPS58215617 A JP S58215617A JP 9753582 A JP9753582 A JP 9753582A JP 9753582 A JP9753582 A JP 9753582A JP S58215617 A JPS58215617 A JP S58215617A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- focal length
- positive
- lenses
- condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/02—Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は画角18°、 F/3.5の4枚構成のエルノ
スター型望遠写真レンズに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a four-element Ernostar type telephoto photographic lens with an angle of view of 18° and F/3.5.
従来のエルノスター型望遠写真レンズは構成レンズ枚数
が少ないだめに色収差の補正が不十分であり、コンパク
トな構成にした場合色収差が十分補正し得なかった。特
に望遠比が0.9を切るコンパクトなレンズ系では軸上
の色収差および倍率の色収差のだめにC線とg線の像点
位置が一致せず、F線とのずれ量も大であった。Conventional Ernostar-type telephoto photographic lenses have insufficient correction of chromatic aberration due to the small number of constituent lenses, and even with a compact construction, chromatic aberration cannot be sufficiently corrected. In particular, in a compact lens system with a telephoto ratio of less than 0.9, the C-line and G-line image points do not match due to axial chromatic aberration and lateral chromatic aberration, and the amount of deviation from the F-line is large.
本発明は4枚構成の少ないレンズ枚数でしかも望遠比の
小さいコンパクトなレンズ系であって、C線とg線の像
位置を十分近ずけると共にF線のずれ竜も小さくしだ色
収差が十分良好に補正されたエルノスター型望遠写真レ
ンズを提供するものである。The present invention is a compact lens system with a small number of lenses (4 elements) and a small telephoto ratio, which allows the C-line and G-line image positions to be sufficiently close together, reduces the F-line deviation, and has sufficient chromatic aberration. This provides a well-corrected Ernostar-type telephoto lens.
本発明の望遠写真レンズは、正の単レンズのmlレンズ
と、正の単レンズの第2レンズと、負の単レンズの第3
レンズと、正の単レンズの第4レンズの4枚構成で、い
ずれも凸面を物体1則に向けて配置したレンズ系である
。又このレンズ系ハ次、に示す条件(1)乃至(4)を
満足するものである。The telephoto lens of the present invention includes a positive single lens ML lens, a positive single lens second lens, and a negative single lens third lens.
It is a lens system consisting of four lenses: a lens and a fourth lens, which is a positive single lens, and all of the lenses are arranged with their convex surfaces facing toward the object. Further, this lens system satisfies conditions (1) to (4) shown below.
(]、+ 0.34 f < f、2< 0.
4Of(2) 1,7 f < f、’23<
2.3 f(810,05f < d4< 0
,09 f(4) 0,23 f < d4+
d6< 0.3Ofただしfは全系の焦点距離、f1
2はmlレンズ、第2レンズの合成焦点距離、fI23
はmlレンズ、第2レンズ、第3レンズの合成焦点距離
、d4は第2レンズと第3レンズの間の空気間隔、d6
は第3レンズと第4レンズの間の空気間隔である。(], + 0.34 f < f, 2 < 0.
4Of(2) 1,7 f < f, '23 <
2.3 f (810,05f < d4 < 0
,09 f(4) 0,23 f < d4+
d6<0.3Of, where f is the focal length of the entire system, f1
2 is the ml lens, the composite focal length of the second lens, fI23
is the composite focal length of the ml lens, the second lens, and the third lens, d4 is the air distance between the second lens and the third lens, and d6
is the air spacing between the third and fourth lenses.
上記各条件のうち条件(])と条件(2)は、レンズ系
のコンパクト化のだめのものである。レンズ系をコンパ
クト化するためには、mlレンズと第2レンズの合成焦
点距離f12を短くする必要がある。Among the above conditions, condition (]) and condition (2) are for making the lens system more compact. In order to make the lens system more compact, it is necessary to shorten the combined focal length f12 of the ml lens and the second lens.
もしもf12が条件(1)の上限をこえるとmlレンズ
と第2レンズによる屈折力が不足し、望遠比を0.9以
下にすることが不可能になる。一方色収差を良好に補正
するために第1゛レンズにアツベ数の大きいガラスを使
用すると現在あるガラスでは屈折率が低くなってしまう
。その結果mlレンズの曲率を強くせざるを得なくなり
、そのだめに球面収差が補正不足になり又他の収差も発
生しこれを他のレンズで補正しきれなくなる。以上の理
由からf、2が条件(1)の下限以下になるとレンズ系
のコンパクト化のためには望ましいが球面収差が補正不
足になり又色収差等が大きく発生して他のレンズで補正
し得なくなる。If f12 exceeds the upper limit of condition (1), the refractive power of the ml lens and the second lens will be insufficient, making it impossible to reduce the telephoto ratio to 0.9 or less. On the other hand, if glass with a large Abbe's number is used for the first lens in order to properly correct chromatic aberration, the refractive index of existing glasses will be low. As a result, the curvature of the ml lens has to be strengthened, and as a result, spherical aberration becomes insufficiently corrected, and other aberrations also occur, which cannot be corrected completely by other lenses. For the above reasons, if f,2 is less than the lower limit of condition (1), it is desirable to make the lens system more compact, but spherical aberration will be insufficiently corrected, and chromatic aberrations will occur, which cannot be corrected with other lenses. It disappears.
条件(2)は第ルンズ、第2レンズの合成焦点距離f1
2を条件(1)の範囲内に規定した上で更に第ルンズ、
第2レンズ、第3レンズの合成焦点距離f3,3を規定
するものである。つまりf、23を条件(2)の範囲内
にすることによって第3レンズの屈折力を第ルンズ、第
2レンズの屈折率とバランスさせ、これによって第ルン
ズ、第2レンズで発生した各収差を補正するものである
。もしもこの条件の上限を越えると第3レンズの負の屈
折力が強くなり、必然的に第3レンズの像側の面の曲率
が強くなる。これによって各色の球面収差が補正過剰に
なり、特にg線が補正過剰になり他のレンズにて補正で
きなくなる。また第ルンズ、第2レンズ、第3レンズの
パワーが不足してレンズ系ヲコンパクト化することもむ
ずかしくなる。又条件(2)の下限をこえると第3レン
ズの負の屈折力が弱くなり第ルンズ、第2レンズで生じ
た補正不足の球面収差を第3レンズで補正できない。寸
だ上記りように第3レンズの負の屈折力が弱いと第ルン
ズ、第2レンズで生じた色ずれ(mlレンズ、第2レン
ズを通った光が波長によってずれること)を補正するこ
とが出来ず、レンズ系の色収差が悪化する。Condition (2) is the combined focal length f1 of the first lens and the second lens.
2 within the scope of condition (1), and further,
This defines the combined focal length f3,3 of the second lens and the third lens. In other words, by setting f and 23 within the range of condition (2), the refractive power of the third lens is balanced with the refractive index of the second lens and the second lens, thereby reducing each aberration generated in the second lens and the second lens. This is a correction. If the upper limit of this condition is exceeded, the negative refractive power of the third lens will become stronger, and the curvature of the image-side surface of the third lens will inevitably become stronger. As a result, the spherical aberration of each color becomes over-corrected, and in particular, the g-line becomes over-corrected and cannot be corrected by other lenses. Furthermore, the power of the first lens, second lens, and third lens is insufficient, making it difficult to make the lens system compact. Further, if the lower limit of condition (2) is exceeded, the negative refractive power of the third lens becomes weak, and the third lens cannot correct the undercorrected spherical aberration caused by the first lens and the second lens. As mentioned above, if the negative refractive power of the third lens is weak, it is difficult to correct the color shift (the light that passes through the ML lens and the second lens is shifted depending on the wavelength) that occurs in the second lens and the second lens. This will worsen the chromatic aberration of the lens system.
AiJ記のように第ルンズ、第2レンズで色ずれが生ず
るが、この色ずれが大きくならないうちに凹レンズであ
る第3レンズに入射せしめることによってg線とC線の
ずれを補正する必要がある。As mentioned in AiJ, a color shift occurs in the first lens and the second lens, but it is necessary to correct the shift between the g-line and the C-line by letting the light enter the third lens, which is a concave lens, before this color shift becomes large. .
そのため、条件(1,) 、 C2)のもとにおいては
、d4を小さくする必要があり、とのd、が条件(3)
の上限以上になると凹レンズ(第3レンズ)に入射する
時の色ずれが大きくなりしかも人躬高が低いので色ずれ
の補正が不十分になり、色収差が悪化する。又条件(3
)の下限以下になると条件(1) 、 (2)のもとで
は凹レンズの作用が強くなりすぎてg線に対する補正が
強すぎそれを第4レンズで補iEできなくなる。Therefore, under condition (1,), C2), it is necessary to make d4 small, and d, satisfies condition (3).
If the upper limit is exceeded, the color shift when the light enters the concave lens (third lens) becomes large, and since the height of the light is low, the correction of the color shift becomes insufficient and chromatic aberration worsens. Also, condition (3
), under conditions (1) and (2), the effect of the concave lens becomes too strong and the correction for the g-line is too strong and cannot be compensated for by the fourth lens iE.
条件(4)は第4レンズの配置位置を決定するだめのも
ので、これによって軸上の色収差と倍率の色収差のバラ
ンスをとるだめのものである。d4.t、ci6が条件
(4)の下限以下になるとマージナル光線の光線高が高
くなり、このマージナル光線に対する第4レンズの屈折
作用は大きくなるが、軸外主光線の光線高は低くなり倍
率の色収差の補正がむずかしくなる。父上限より大きく
なると第4レンズに入射する光線のg線、C線の色ずれ
が相対的に大きくなりすぎかつレンズの径が大きくなり
、コンパクト化にも反することになる。Condition (4) is used to determine the placement position of the fourth lens, and is used to balance axial chromatic aberration and lateral chromatic aberration. d4. When t and ci6 become less than the lower limit of condition (4), the ray height of the marginal ray increases, and the refractive effect of the fourth lens on this marginal ray increases, but the ray height of the off-axis principal ray decreases, resulting in chromatic aberration of magnification. It becomes difficult to correct. If it is larger than the upper limit, the color shift of the g-line and c-line of the light rays incident on the fourth lens will become relatively large, and the diameter of the lens will become large, which is against the need for compactness.
以上説明したように上記のレンズ構成で条件(1)乃至
条件(4)を満足するレンズ系はコンパクトで色収差が
良好に補正された望遠写真レンズである。As explained above, a lens system that satisfies conditions (1) to (4) with the above lens configuration is a compact telephoto photographic lens in which chromatic aberration is well corrected.
しかし更に歪曲収差等を考慮する場合には、下記の条件
(5)乃至条件(7)を満足するようにすることが望ま
しい。However, when further considering distortion, etc., it is desirable to satisfy the following conditions (5) to (7).
t5) 5f < r、< (1)(6)
(+、8 f < f4< 1,1 f(7)
ν1.ν 〉60.ν3.シイ 〈30ま
ただしr、は第3レンズの物体側の面の曲率半径、fイ
は第4レンズの焦点距離、シ1.シ2,1シ3.シ4は
各レンズ(第ルンズ、第2レンズ、第3レンズ。t5) 5f < r, < (1) (6)
(+, 8 f < f4 < 1, 1 f(7)
ν1. ν〉60. ν3. 〈30〉 is the radius of curvature of the object-side surface of the third lens, f is the focal length of the fourth lens, C2,1 C3. 4 is each lens (first lens, second lens, third lens).
第4レンズ)のアツベ数である。4th lens).
第3レンズの物体側の面はマージナル光線が光軸に対し
て大きく傾いて入射する而である。この面の曲率半径r
、が条件(5)の下限を越えると高次の球面収差の発生
が少なくなり、第ルンズ、第2レンズで発生した補正不
足の球面収差を補正することが出来なくなる。父上限を
越えてr5が負の値になるとこの面が絞りに対してコン
セントリックではなくなり、非点隔差が大きくなる。ま
た球面収差も補正過剰になる。The object-side surface of the third lens is where the marginal ray enters at a large angle with respect to the optical axis. radius of curvature r of this surface
, exceeds the lower limit of condition (5), the occurrence of higher-order spherical aberrations decreases, and it becomes impossible to correct the undercorrected spherical aberrations occurring in the first lens and the second lens. When the upper limit is exceeded and r5 becomes a negative value, this surface is no longer concentric with respect to the aperture, and the astigmatism difference becomes large. In addition, spherical aberration is also overcorrected.
条件(6)は絞りの後に配置されたレンズの屈折力を規
定する条件であって、絞りの前で生じた正の歪曲収差を
補正する条件である。この条件の」−眼を越えると正の
歪曲収差が補正しきれない。又下限を越えると条件(1
,) 、 (2)のもとて軸上の色収差でg線が補正不
足になりg線とC線の焦点位置を一致させることがむず
かしくなる。Condition (6) is a condition that defines the refractive power of the lens placed after the diaphragm, and is a condition for correcting positive distortion that occurs before the diaphragm. Under this condition, the positive distortion cannot be corrected beyond the eye. Also, if the lower limit is exceeded, the condition (1
, ), (2), the g-line is undercorrected due to axial chromatic aberration, making it difficult to match the focal positions of the g-line and the C-line.
条件(7ンにおいてシ1.シ2を60よりも小にすると
、第ルンズ、第2レンズで生ずる色ずれが大きくなり、
第3レンズ、第4レンズで補正できない。Conditions (If C1 and C2 are made smaller than 60 at 7th lens, the color shift caused by the second lens and the second lens will become larger,
It cannot be corrected with the third or fourth lens.
シ3.シ4を30より大きくすると第ルンズ、第2レン
ズで生じだ色ずれを第3レンズ、第4レンズで補正しき
れなくなる。しだがっていずれの条件からはずれてもレ
ンズ系の色収差が悪化する。C3. If shi4 is made larger than 30, the color shift that occurs in the first lens and the second lens cannot be completely corrected by the third lens and the fourth lens. Therefore, deviating from either condition will worsen the chromatic aberration of the lens system.
次に以上説明した本発明の写真レンズの各実施例を示す
。Next, each example of the photographic lens of the present invention described above will be shown.
実施例 1
f=1,0 、 F3,5 、 2 ω
−18゜r、=(1,:う226
d、 =0.0466 n、 =1.48749
v、 =70.15r、、−−−35,5607
d、、 =0.0(+38
r3−=0.2683
d3=0.0409 n、、 =1.56873
シ2=63.16r、 =0.5984
d4 =0.0722
r5==7.1866
d5=0.0522 n3=1.72151
z =29.24r6 =0.1819
d6=0.1,849.。Example 1 f=1,0, F3,5, 2ω
-18°r, = (1,: 226 d, =0.0466 n, =1.48749
v, =70.15r,,---35,5607 d,, =0.0(+38 r3-=0.2683 d3=0.0409 n,, =1.56873
shi2=63.16r, =0.5984 d4 =0.0722 r5==7.1866 d5=0.0522 n3=1.72151
z = 29.24r6 = 0.1819 d6 = 0.1,849. .
r7 =0.6019
d7 =0.0229 n4 =1,84666
ν4 =23.88r8 =2.1347
f =0.368 f 、 f、23==
]、 96] f2
f =0,983f 、 望遠比T =0.88
8絞り位置は面r6より0.0561後方実施例 2
f=1.O、F3,5 、 2 ω= 18゜r
、=0.3172
d、 =0.0466 n、 =1.48749
ν、 =70.+5r2 =〜75,8846
d2=0.0023
r、=0,2746
d3=0.0409 n2=1.56873
v2=63.16r、、=0.6199
d、 =0.0723
r、 =2(入 8409
d、=0.0527 n3月、72151 1/3=
29.2/1r6−0.1842
d6=0.1812
r7−0.6314
d7=0.0229 n4=1.84666
ν4=23.88r8 =2.8223
f4=0.956 f 、 望遠比T =0.89
2絞シ位置は面r6より0.0561後方ただしr、
、 r2・・・、4r8はレンズ各面の曲率半径、d、
、 d2.・・・ld7は各レンズの肉厚および空気
間隔、11. 、 n2. +11. n4は各レンズ
の屈折率1ν3.シ2.シ3.シ4は各レンズのアツベ
数である。r7 =0.6019 d7 =0.0229 n4 =1,84666
ν4 = 23.88r8 = 2.1347 f = 0.368 f, f, 23==
], 96] f2 f =0,983f, telephoto ratio T =0.88
8 Aperture position is 0.0561 behind surface r6 Example 2 f=1. O, F3,5, 2 ω = 18゜r
, =0.3172 d, =0.0466 n, =1.48749
ν, =70. +5r2 =~75,8846 d2=0.0023 r, =0,2746 d3=0.0409 n2=1.56873
v2=63.16r,,=0.6199 d,=0.0723 r,=2(in 8409 d,=0.0527 nMarch, 72151 1/3=
29.2/1r6-0.1842 d6=0.1812 r7-0.6314 d7=0.0229 n4=1.84666
ν4 = 23.88r8 = 2.8223 f4 = 0.956 f, telephoto ratio T = 0.89
The 2nd aperture position is 0.0561 behind surface r6, however,
, r2..., 4r8 is the radius of curvature of each lens surface, d,
, d2. ...ld7 is the wall thickness and air spacing of each lens, 11. , n2. +11. n4 is the refractive index of each lens, 1ν3. C2. C3. C4 is the Atsube number of each lens.
第1図は本発明レンズ系の断面図、第2図および第3図
は夫々本発明実施例1および実施例2の収差曲線図であ
る。
出願人 オリンパス光学工業株式会社代理人 向
寛 −FIG. 1 is a sectional view of the lens system of the present invention, and FIGS. 2 and 3 are aberration curve diagrams of Examples 1 and 2 of the invention, respectively. Applicant Olympus Optical Industry Co., Ltd. Agent Hiroshi Mukai −
Claims (1)
単レンズの第ルンズと正の単レンズの第2レンズと負の
単レンズの第3レンズと正の単レンズの第4レンズとよ
りなり、次の諸条件を満足するエルノスター型望遠写X
[/ 7 ス。 (]、) 0.34 f < f、2<
0.40 f+2) 1,7f < f
< 2.3f23 +a+ 0.(15f < d4<
0,09 f(410,23f < d4+
d6< 0.3Ofただしfは全系の焦点距離
1 f、。は第ルンズと第2レンズの合成焦点距離、f
123 は第ルンズ、第2レンズ、第3レンズの合成
焦点距離、 d4は第2レンズと第3レンズの間の空気
間隔、d6は第3レンズと第4レンズの間の空気間隔で
ある。 (2)次の条件(5ン乃至条件(7)を満足する特許請
求の範囲(1)のエルノスター型望遠写真レンズ。 (5) 5f < r5(■ t6) 0.8 f < f4< 1.1
f(7) シ1.シ2〉60 シ3.シ4〈30 ただしr5は第3レンズの物体側の面の曲率半径、f4
は第4レンズの焦点距離、”11ν2.シ3.シ4は夫
々各レンズのアツベ数である。[Claims] (1) A positive single lens lens, a positive single lens second lens, a negative single lens third lens, and a positive single lens, all of which are arranged with their convex surfaces facing the object side. Ernostar type telephoto X, which is the fourth lens of
[/7 S. (],) 0.34 f < f, 2 <
0.40 f+2) 1,7f < f
<2.3f23 +a+ 0. (15f<d4<
0,09 f (410,23 f < d4+
d6<0.3Of, where f is the focal length of the entire system, 1 f. is the composite focal length of the first lens and the second lens, f
123 is the combined focal length of the first lens, the second lens, and the third lens, d4 is the air distance between the second lens and the third lens, and d6 is the air distance between the third lens and the fourth lens. (2) The Ernostar telephoto lens according to claim (1), which satisfies the following conditions (5 to 7): (5) 5f < r5 (■ t6) 0.8 f < f4 < 1. 1
f(7) C1. C2〉60 C3. C4〈30 However, r5 is the radius of curvature of the object side surface of the third lens, f4
is the focal length of the fourth lens, and ``11ν2.shi3.shi4'' are the Abbe numbers of each lens, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9753582A JPS58215617A (en) | 1982-06-09 | 1982-06-09 | Telephoto lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9753582A JPS58215617A (en) | 1982-06-09 | 1982-06-09 | Telephoto lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58215617A true JPS58215617A (en) | 1983-12-15 |
Family
ID=14194940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9753582A Pending JPS58215617A (en) | 1982-06-09 | 1982-06-09 | Telephoto lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58215617A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0225824A2 (en) * | 1985-12-03 | 1987-06-16 | Pierre Angénieux | A high relative aperture objective lens system with compound focusing |
EP1382985A2 (en) * | 2002-07-18 | 2004-01-21 | Konica Corporation | Image pickup lens, image pickup unit and portable terminal |
KR101089885B1 (en) | 2009-12-22 | 2011-12-05 | 삼성전기주식회사 | Night Vision Optical System |
-
1982
- 1982-06-09 JP JP9753582A patent/JPS58215617A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0225824A2 (en) * | 1985-12-03 | 1987-06-16 | Pierre Angénieux | A high relative aperture objective lens system with compound focusing |
EP1382985A2 (en) * | 2002-07-18 | 2004-01-21 | Konica Corporation | Image pickup lens, image pickup unit and portable terminal |
EP1382985A3 (en) * | 2002-07-18 | 2005-05-04 | Konica Corporation | Image pickup lens, image pickup unit and portable terminal |
KR101089885B1 (en) | 2009-12-22 | 2011-12-05 | 삼성전기주식회사 | Night Vision Optical System |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6038085A (en) | Super wide angle lens | |
JPS5880611A (en) | Objective lens for endoscope | |
JPS6046410B2 (en) | endoscope objective lens | |
JP3397439B2 (en) | Imaging lens | |
JP2740662B2 (en) | Objective lens for endoscope | |
US4323302A (en) | Wide-angle zoom lens system | |
JPH06324264A (en) | Wide angle lens | |
JP3610166B2 (en) | Large aperture wide angle telecentric lens | |
JPH07168095A (en) | Triplet lens | |
JPS6042452B2 (en) | zoom lens | |
JPH05203871A (en) | Retrofocus type lens | |
US4268128A (en) | Ocular of large visual field | |
JPS58215617A (en) | Telephoto lens | |
JPH0850238A (en) | Wide angle lens | |
JPS60177313A (en) | Triplet lens | |
US3958865A (en) | Retrofocus type lens system | |
JPS6190116A (en) | Retrofocus type wide-angle lens | |
JPS60198512A (en) | Xenotar-type photographic lens | |
JPS60227215A (en) | Eyepiece for electronic viewfinder | |
JPH02134610A (en) | Large-aperture-ratio lens capable of close-up photography | |
JPS6034731B2 (en) | wide angle photo lens | |
JPH01108516A (en) | Eyepiece | |
JP3018851B2 (en) | Eyepiece | |
JPH0667091A (en) | Wide-angle image forming lens | |
JPS63274904A (en) | Front aperture lens system |