[go: up one dir, main page]

JPS5821382A - Manufacture of schottky barrier diode - Google Patents

Manufacture of schottky barrier diode

Info

Publication number
JPS5821382A
JPS5821382A JP11765781A JP11765781A JPS5821382A JP S5821382 A JPS5821382 A JP S5821382A JP 11765781 A JP11765781 A JP 11765781A JP 11765781 A JP11765781 A JP 11765781A JP S5821382 A JPS5821382 A JP S5821382A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
poly
metal
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11765781A
Other languages
Japanese (ja)
Inventor
Satoshi Shinozaki
篠崎 慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11765781A priority Critical patent/JPS5821382A/en
Priority to US06/402,541 priority patent/US4476157A/en
Priority to EP82106862A priority patent/EP0071266B1/en
Priority to DE8282106862T priority patent/DE3279193D1/en
Publication of JPS5821382A publication Critical patent/JPS5821382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain the stable Schottky-barrier-diode by a method wherein a window is bored to an oxide film on an N type Si substrate, an N<+> diffusion layer is formed from N type poly Si coating the wndow, a metal is deposited and a silicide is shaped. CONSTITUTION:The window is bored to the SiO2 42 on the N type Si substrate 11, the poly Si 43 is deposited, As ions are implanted, and the N<+> layer 45 with approximately 500Angstrom depth is formed through treatment at 900 deg.C. The poly Si 43 is removed selectively so as to completely coat the window, and Pt 46 is deposited and alloyed in N at 600 deg.C. Accordingly, the poly Si, the Si substrate and an interface are also changed finally into PtSi. The PtSi-Si interface is positioned into the impurity profile of the layer 45 by properly selecting the film thickness of the poly Si and Pt, impurity diffusion from the poly Si, an alloying temperature and time. Lastly, a barrier metal 48 and wiring 49 are stacked, and the diode is completed. Accordingly to this constitution, the characteristics are stabilized, and the diode can be controlled arbitrarily by a forward characteristic and the quantity of the ions doped into the poly Si.

Description

【発明の詳細な説明】 本発明は、シ■ット中一・バリヤ・ダイオード(SBD
)の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single barrier diode (SBD).
).

ショットキー・バリヤ・ダイオードは、***と半導体
との接触により形成されるエネルギー・バリヤをamm
性バリヤするものである。従ノて。
A Schottky barrier diode is a Schottky barrier diode that absorbs the energy barrier formed by the contact between the
It is a sexual barrier. Follow me.

少数キャリアの注入は、ほとんど起らず、又その順方向
電圧がpnダイオードに比べて小さいため、pnli合
のクランプ・ダイオードとして,高連一作を要求する場
合に多く使用される。その典麺としてシ曹ットキー・バ
リヤ・ダイオード・クランプNPN)2ンジスタがあり
、それを用9たシ■ットキーTTLIgl路、低電カシ
曹ットキーTTL回路は現在、高速論理素子として蛾も
多く使われている。
Injection of minority carriers hardly occurs, and its forward voltage is smaller than that of a pn diode, so it is often used as a clamp diode for pnli combinations when high performance is required. One example of this is the switch, barrier, diode, clamp, NPN)2 resistor, and the low-voltage switch TTL circuit that uses it is now widely used as a high-speed logic element. ing.

このシ曹ットキー・バリヤ・ダイオードは従来第1図に
示すように、N形シリコン基板(1)又はN形エピタキ
シャル層上に形成した絶縁膜としての810、II t
2)に開孔部(3)を設け、金−シリサイド層(4)を
介して配線金415)からなる構造を有している。
As shown in FIG. 1, this SiC Otky barrier diode is conventionally used as an insulating film 810, II t formed on an N-type silicon substrate (1) or an N-type epitaxial layer.
2) is provided with an opening (3), and has a structure consisting of wiring gold (415) via a gold-silicide layer (4).

金属シリサイド層(4)としては、配線金属AIとのシ
リサイドが最も良く使われているがこの場合、λノと8
4とのアロイ・ピットが起らないようにシリコン基板は
(111)面が主に使用される。
As the metal silicide layer (4), silicide with wiring metal AI is most often used, but in this case, λ and 8
The (111) plane of the silicon substrate is mainly used to prevent alloy pits from occurring with 4.

一方基板面方位によらず、使用可能な白金シリサイド層
が人!シリサイドの代りに良く使われており、信頼性の
面で優れている。この場合には、Pt8i  と配線金
lllAlとの反応がある丸め、バリヤ・メタルとして
Ti−?Wなどをptsiとム4との間に挟入する必要
がある。第2図にPt81− Ti −Ajのシ曹ット
キー・バリヤ・ダイオードの断面構造を示した。N形り
リコ/基f91上の840. @の開孔部(2)をpt
si化(至)し、バリヤメタル(至)、配線AI@を形
成している。
On the other hand, the platinum silicide layer can be used regardless of the substrate surface orientation! It is often used in place of silicide and has excellent reliability. In this case, Ti-? It is necessary to insert W or the like between the PTSI and the MU 4. FIG. 2 shows the cross-sectional structure of a Pt81-Ti-Aj SiC Schottky barrier diode. 840. on N-type Rico/group f91. Opening part (2) of @ is pt
It is converted into silicon, and a barrier metal and wiring AI@ are formed.

このような従来構造における最大の問題は、絶縁膜とし
ての引0.@を開孔し、Ptを蒸着して熱処理すること
によりPtai層−を形成し九あと。
The biggest problem with such conventional structures is the low tensile strength of the insulating film. A Ptai layer was formed by opening a hole, depositing Pt, and heat-treating it.

バリヤ・メタル、配線金属を蒸着する際、Ptai層上
の酸化物を除去する丸めのHF46場により。
By rounding HF46 field to remove oxide on Ptai layer when depositing barrier metal, wiring metal.

開孔部エツジ(2)、(至)がエツチングされ、Pt5
j 化されていないN形シリコン基板表面(2)が露出
し。
The opening edges (2) and (to) are etched, and Pt5
j The untreated N-type silicon substrate surface (2) is exposed.

バリヤ・メタルとN形シリコン基板が直**触する部分
が現われることである。これにより、第2図に示したよ
うに、 ptsiと引との5BD(至)とTi−8iと
の5BDc19とのパラレル・ダイオードが形成され、
露出S@の面積により全体の88Dの順方向電圧vFが
変−し、安定し九8BDを形成することができない。又
、順方向特性の劣化も招く。これらの問題を解決する方
法として、8BD開孔S*辺にpna合のガード・りン
ダを形成し、願方向、逆方向特性を改善する方法が実用
化されて゛いるが、集積度を落す原因となり、高集積化
デバイスの内部素子として使用できず、もっばら入出力
部のトランジスタ又はダイオードに使用するにとどまっ
ている。
A portion where the barrier metal and the N-type silicon substrate are in direct contact appears. As a result, as shown in Fig. 2, a parallel diode is formed with 5BD (end) of ptsi and 5BDc19 of Ti-8i.
The forward voltage vF of the entire 88D varies depending on the area of the exposed S@, and it is not possible to form a stable 98BD. Further, it also causes deterioration of forward characteristics. As a method to solve these problems, a method has been put into practical use in which a pna-matching guard/linda is formed on the S* side of the 8BD aperture to improve the desired direction and reverse direction characteristics, but this causes a drop in the degree of integration. Therefore, they cannot be used as internal elements of highly integrated devices, and are only used as transistors or diodes in input/output sections.

ここで8BDの順方向電流Jは。Here, the forward current J of 8BD is.

V、は順方向電圧、kはボルツマン定数、nは接合状態
を示す定数、ム0はリチャードノン定款、 qは電荷で
ある。亀度T及びバリヤ・ハイドΦBKより識定される
。り鷹り、−1の大きさにより飽和電流J が左右され
、−8が大型ければJ、は小さく$ なり、順方向電圧vlは高くなる。−万φ8が小さくな
ろと、J、は増加し、実勅的なりFは下がる。
V is the forward voltage, k is Boltzmann's constant, n is a constant indicating the junction state, M0 is Richard Non's Articles of Incorporation, and q is the electric charge. It is identified from the angle T and barrier hide ΦBK. The saturation current J is influenced by the magnitude of -1; if -8 is large, J becomes small and the forward voltage Vl becomes high. - If φ8 becomes smaller, J will increase and the actual ratio F will decrease.

このようなφ8の値をどのように選ぶかにより、8BD
特性は変化するため所望の特性を得ることができるよう
になる。Φ8を変化させるためには、一つは、8BDを
形成する金属のmsを変えて。
Depending on how you choose the value of φ8, 8BD
Since the characteristics change, desired characteristics can be obtained. In order to change Φ8, one is to change the ms of the metal that forms 8BD.

仕事関数の違いKよる半導体fi[におけるバリヤせて
、パ、リヤ・ハイドを引き下げる方法とがある前者は、
実際の使用において、8BD金属を自由に変えることは
、他のプロ七スとのコンパチビリティ−を考慮すると必
ずしも適当な方法ではない。
In the former case, there is a method of lowering the barrier in the semiconductor fi[ due to the difference in work function K, and lowering the barrier and rear-hyde.
In actual use, freely changing the 8BD metal is not necessarily an appropriate method considering compatibility with other pro-7s.

現在、最も一般的に使用している金属としては引く対し
てはAn、Pt81.W等があゆ、それぞれ−8ハ0.
7 eV、  0.85 eV、 0J11 eV(F
)iEt示to 一方後者の牛導体層の不純物一度を変
える方法は、不純物濃度を非常に高くした場合にはオー
イック・コンタクトとなるため、使用す、48BD*I
IKより適当に選ばねばならなくなる。又、亭導体層の
不純′#8機度を^めることは、逆方向耐圧の低下を同
時K18<ことになり、あ!〜好ましい方法ではない。
Currently, the most commonly used metals are An, Pt81. W etc. are ayu, each -8 ha 0.
7 eV, 0.85 eV, 0J11 eV (F
) iEt On the other hand, the latter method of changing the impurity concentration of the conductor layer is used because if the impurity concentration is made very high, it will result in an ohic contact.
You will have to choose more appropriately than IK. Also, increasing the level of impurity in the conductor layer causes a decrease in reverse breakdown voltage at the same time. ~Not a preferred method.

これを改善する方法として、IBgg TramsFI
D  Vol、 nD−27,No、2. 1980 
 p、420゜J、B、 Bindell at al
  K開示されてiるように、半導体の=J&面に^濃
度のイオン注入を行い1表面□近傍での電界強度を著し
く高くして、トンネリンダ現象を超させ、実効的にバリ
ヤ・ハイドを低Fさせる方法が提案されており、バリヤ
・ハイドは、イオンの注入量により制御される。例えば
、O〜I X 10”*−” (7)リン−41ンf 
35 keV テ注入することKよりvlは0.4〜G
、1eV1で変化させることができる。この場合には、
0.4〜0.25eV までのvFの変化に対し、逆方
向電圧VBはほとんど低下していないことが示されてい
る。
As a way to improve this, IBgg TramsFI
D Vol, nD-27, No, 2. 1980
p, 420°J, B, Bindell at al
As disclosed in K, by implanting ions at a concentration of ^ into the =J& plane of the semiconductor, the electric field strength near the 1 surface □ is significantly increased, the tunnel Linda phenomenon is overcome, and the barrier hide is effectively reduced. A method has been proposed in which the barrier hide is controlled by the amount of ion implantation. For example, O~I
When injecting 35 keV, vl is 0.4~G from K
, 1 eV1. In this case,
It is shown that the reverse voltage VB hardly decreases when vF changes from 0.4 to 0.25 eV.

本・員明は、上記vyの制御をイオン注入で行うのでは
なく、同様な効果を得るための新丸な8BDの製造方法
を提案することがある。更に、開孔部端での特性劣化を
紡止得る方法を提案することにある。つまり、−導電形
シリコン基板上に8BDを屡成すべ寝所に選択的にに孔
部を有する絶縁膜を形成し、開孔部を含む全面に一導電
形不純物を含む多結晶シリコンを堆積し、多結晶シリコ
ン中に會資れる不純物をyyコン基板中に拡散し、基板
amに非常に薄い高濃度層を一成する。その後、多結晶
シリコンは目孔部を覆うように残存させ、他を除去し九
あと、金属を堆積し、多結晶シリコンを金属シリナイド
化する。最後に残存金属を除去し、配線金属を形成して
、8BDを作る方法である。
Rather than controlling the above-mentioned vy by ion implantation, Kameaki Moto sometimes proposes a new method for manufacturing 8BD to obtain a similar effect. Furthermore, it is an object of the present invention to propose a method that can prevent property deterioration at the end of the opening. In other words, an insulating film having holes is selectively formed in the area where 8BD is formed on a conductivity type silicon substrate, and polycrystalline silicon containing one conductivity type impurity is deposited on the entire surface including the openings. , the impurities present in the polycrystalline silicon are diffused into the yycon substrate to form a very thin highly doped layer on the substrate am. Thereafter, the polycrystalline silicon remains so as to cover the pores, and the rest is removed, after which metal is deposited to turn the polycrystalline silicon into metal silinide. Finally, the remaining metal is removed, wiring metal is formed, and 8BD is manufactured.

籐3図(1)〜(e)を用いて1本発明の製造方法につ
いて詳細に説明する。第3図(補において、N形シリコ
ン基板又はN形エピタキシャル層四の表面にシリコン酸
化膜−を成長し、8BDll威部を目孔する。第311
(b)において、全面にアンド−ブト多結晶シリコン層
−を例えば1000人堆積し、イオン注入法により例え
ばA$イオン−を多結晶シリコン中に注入する。つづい
て、例えば900℃程度の高温において1人lイオンを
活性化すると同時に第3図(c) K示すようKI91
基板側に拡散し、第4図に示すような不純物プロファイ
ルを得る。
The manufacturing method of the present invention will be explained in detail using rattan figures 3 (1) to (e). In FIG. 3 (Supplementary), a silicon oxide film is grown on the surface of the N-type silicon substrate or the N-type epitaxial layer 4, and holes are formed in the 8BDll part. 311
In (b), an unbuttoned polycrystalline silicon layer of, for example, 1000 layers is deposited on the entire surface, and A$ ions, for example, are implanted into the polycrystalline silicon by an ion implantation method. Next, for example, at a high temperature of about 900°C, KI91 is activated as shown in Figure 3(c).
The impurity is diffused to the substrate side, and an impurity profile as shown in FIG. 4 is obtained.

との時、8ゑ基板側へのム$の拡散禰は100〜500
1楊度であることが望ましい。その級、多結晶シリコン
を88Dli孔部を完全KIIうように残して、他を除
去する。jIS図(d)K示fように例えば白金−を5
ooiを全面に堆積し、600℃、N、雰囲気中にて3
0分合金化する。他の方法として、V−ザあるいは柴外
線照射によって処理してもよい。
At the time of
It is desirable that it be 1 degree. Then, the polycrystalline silicon is left to completely cover the 88Dli hole, and the rest is removed. jIS diagram (d) K As shown in f, for example, platinum is 5
ooi was deposited on the entire surface and heated at 600°C in a N atmosphere for 3
Alloy for 0 minutes. As another method, treatment may be performed by V-ther or Cytoexternal irradiation.

この、場合、多結晶シリコンのPt5l化は、主にグレ
イン・バランブリーに沿って急速に進み、最も大亀なバ
ランブリーである多結晶シリコンと81基板との界面も
ptst化され、Si基板もPt81化の為に消費され
、第4図に示すような位置にPtSi −Si界園がで
き、そこに8BDバリヤが形成される。
In this case, the conversion of polycrystalline silicon to Pt5l proceeds rapidly mainly along the grain ballast, and the interface between the polycrystalline silicon and the 81 substrate, which is the largest ballast, is also converted to ptst, and the Si substrate is also converted to Pt81. As a result, a PtSi--Si field is formed at the position shown in Fig. 4, and an 8BD barrier is formed there.

本発明のポイントは、このptst−sム界面が、不純
物プロファイルの内に位置することが重要であり、その
ようにプロセス条件、例えば、多結晶シリコンの111
[FjIL、白金の膜厚、多結晶シリコンからの不純物
の拡散、合金化温度及び時間が選定されることが必要で
ある。
The point of the present invention is that it is important that this ptst-sm interface is located within the impurity profile, so that the process conditions, e.g.
[FjIL, platinum film thickness, impurity diffusion from polycrystalline silicon, alloying temperature and time need to be selected.

最後に第3図(@)に示すように、白金シリナイド1−
一上にバリヤメタル−及び配線金属−を堆積し、加工し
て8BDを形成する。
Finally, as shown in Figure 3 (@), platinum silinide 1-
Barrier metal and wiring metal are deposited on top of the wafer and processed to form 8BD.

本発明を用いることにより、前述のIBgliTran
s EID−27,Ma2.1980. P420 K
開示されている方法の次のような欠点をなくすことが出
来る。Im紀会知例では、イオン注入で表面近傍に不純
−分布を形成している・ため、その活性化及び照射損傷
除去の島に熱処理が必要であるが、照射損傷を取り除く
丸めの熱処臘秦件と、不純物の再分布が起らない条件1
例えばム畠のイオン注入のプロファイルを維持する条件
とがマツチしない可能性があり、照射損傷を取り除くた
めに再分布しやすいこと、最初に述べたように、開孔部
エツジにおける配線金属前処理での8jO,膜エツチン
グによる順方向特性の不安定さなどの欠点がなる。本発
明はこれらの欠点をなくすことができ、安定した8BD
@性が得られ、かつ順方向特性を多結晶シリコン中に添
加する不純物量により任意に制御することが可能である
By using the present invention, the above-mentioned IBgliTran
s EID-27, Ma2.1980. P420K
The following drawbacks of the disclosed method can be eliminated. According to Imukikai Chiho, ion implantation forms an impurity distribution near the surface, so heat treatment is required to activate it and remove radiation damage. Qin case and condition 1 where redistribution of impurities does not occur
For example, the conditions for maintaining the ion implantation profile of Muhata may not match, and the wiring metal pretreatment at the edge of the opening is likely to cause redistribution to remove irradiation damage. 8jO, there are disadvantages such as instability of forward characteristics due to film etching. The present invention can eliminate these drawbacks and provide stable 8BD
It is possible to obtain @ properties and to arbitrarily control forward characteristics by adjusting the amount of impurities added to polycrystalline silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のSBD構造を示す断面概略図。 第2図は従来のバリヤメタルを有する8BD構造を示す
断面概略図。 第3図(−〜(1りは本発明の8BDの製造工程を示す
断面概略図。 第4図は多結晶シリコンと8A基板の界面近傍の不純物
分布とPi引−引昇画の相対位置関係を示す図である。 図において、 41・・・亭導体基板。 42・・・絶縁膜。 43・・・多結晶シリコン層。 44・・・不純物イオン。 45・・・不純物拡散層。 46・・・金属層。 47・・・金属シリサイド層。 48・・・バリヤメタル。 49・・・配線金属。
FIG. 1 is a schematic cross-sectional view showing a conventional SBD structure. FIG. 2 is a schematic cross-sectional view showing an 8BD structure having a conventional barrier metal. Figure 3 (--1) is a cross-sectional schematic diagram showing the manufacturing process of 8BD of the present invention. Figure 4 is the relative positional relationship between the impurity distribution near the interface between polycrystalline silicon and the 8A substrate and the Pi pull-up image. In the figure, 41... Insulating film. 43... Polycrystalline silicon layer. 44... Impurity ions. 45... Impurity diffusion layer. 46. ... Metal layer. 47 ... Metal silicide layer. 48 ... Barrier metal. 49 ... Wiring metal.

Claims (3)

【特許請求の範囲】[Claims] (1)−導電形半導体基板上に選択的に開孔部を有する
絶縁属を形成する工程と、この絶縁膜と前記開口部に、
−導電形不純物を含む多結晶シリコン層を形成する工程
と、前記多結晶シリコン層より一導電形不純物を拡散し
、前記半導体基板に所望の不純物分布を有する拡散層を
形成する工程と、前記開孔部以外の多結晶シリコンを選
択的に除去する工程と、少なくとも前記多結晶シリコン
層に金属膜を堆積し、前記多結晶シリコン層を金属シリ
ナイド層に変換する工程と、を具備したことを特徴とす
るショットキー・バリヤ・ダイオードの製造方法。
(1)--A step of forming an insulating layer selectively having an opening on a conductive semiconductor substrate, and forming an insulating layer on the insulating film and the opening,
- a step of forming a polycrystalline silicon layer containing a conductivity type impurity; a step of diffusing one conductivity type impurity from the polycrystalline silicon layer to form a diffusion layer having a desired impurity distribution in the semiconductor substrate; It is characterized by comprising a step of selectively removing polycrystalline silicon other than the hole portion, and a step of depositing a metal film on at least the polycrystalline silicon layer and converting the polycrystalline silicon layer into a metal silinide layer. A method for manufacturing a Schottky barrier diode.
(2)前記多結晶シリコン層への一導電形不純物の導入
をイオン注入を用いて行うことを特徴とする特許 ・バリヤ・ダイオードの線速方法。
(2) A patented barrier diode linear velocity method, characterized in that impurities of one conductivity type are introduced into the polycrystalline silicon layer using ion implantation.
(3)  #記事結晶シリコン層と#起生導体基板との
界面が少くとも金属シリナイド化するに必要な量の金属
膜を堆積するζとを特徴とする―紀特許請求の範囲第1
環記載のシ冒ット←・バリヤ・ダイオードの製造方法。 t4)  m記金属シリすイド層と*起生導体基板界面
が前記一導電形不純物拡散層内に位置するように設定し
九ことを特徴とする前記4I詐請求のIi圃嬉1項紀載
のシ1ット←パリャ・ダイオードの製造方法。
(3) The interface between the #article crystalline silicon layer and the #generated conductor substrate is characterized by depositing a metal film in an amount necessary for at least metal silicidation - Claim 1 of the Patent
←・Method for manufacturing barrier diodes. t4) Paragraph 1 of the 4I fraudulent claim, characterized in that the interface between the metal silicide layer and the conductor substrate is located within the impurity diffusion layer of one conductivity type. Method of manufacturing Palya diode.
JP11765781A 1981-07-29 1981-07-29 Manufacture of schottky barrier diode Pending JPS5821382A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11765781A JPS5821382A (en) 1981-07-29 1981-07-29 Manufacture of schottky barrier diode
US06/402,541 US4476157A (en) 1981-07-29 1982-07-28 Method for manufacturing schottky barrier diode
EP82106862A EP0071266B1 (en) 1981-07-29 1982-07-29 Method for manufacturing schottky barrier diode
DE8282106862T DE3279193D1 (en) 1981-07-29 1982-07-29 Method for manufacturing schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11765781A JPS5821382A (en) 1981-07-29 1981-07-29 Manufacture of schottky barrier diode

Publications (1)

Publication Number Publication Date
JPS5821382A true JPS5821382A (en) 1983-02-08

Family

ID=14717073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11765781A Pending JPS5821382A (en) 1981-07-29 1981-07-29 Manufacture of schottky barrier diode

Country Status (1)

Country Link
JP (1) JPS5821382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201666A (en) * 1984-03-27 1985-10-12 Nec Corp semiconductor equipment
US4990988A (en) * 1989-06-09 1991-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laterally stacked Schottky diodes for infrared sensor applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121636A (en) * 1979-03-14 1980-09-18 Fujitsu Ltd Manufacture of semiconductor apparatus
JPS5619679A (en) * 1979-07-26 1981-02-24 Toshiba Corp Schottky barrier type semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121636A (en) * 1979-03-14 1980-09-18 Fujitsu Ltd Manufacture of semiconductor apparatus
JPS5619679A (en) * 1979-07-26 1981-02-24 Toshiba Corp Schottky barrier type semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201666A (en) * 1984-03-27 1985-10-12 Nec Corp semiconductor equipment
JPH051623B2 (en) * 1984-03-27 1993-01-08 Nippon Electric Co
US4990988A (en) * 1989-06-09 1991-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laterally stacked Schottky diodes for infrared sensor applications

Similar Documents

Publication Publication Date Title
KR100319021B1 (en) Semiconductor device and its manufacturing method
US4119440A (en) Method of making ion implanted zener diode
CA1048656A (en) Fabricating high performance integrated bipolar and complementary field effect transistors
US4602421A (en) Low noise polycrystalline semiconductor resistors by hydrogen passivation
JPH0523055B2 (en)
US4843033A (en) Method for outdiffusion of zinc into III-V substrates using zinc tungsten silicide as dopant source
US5187559A (en) Semiconductor device and process for producing same
US4797372A (en) Method of making a merge bipolar and complementary metal oxide semiconductor transistor device
US4057824A (en) P+ Silicon integrated circuit interconnection lines
US4498224A (en) Method of manufacturing a MOSFET using accelerated ions to form an amorphous region
US4946798A (en) Semiconductor integrated circuit fabrication method
WO1982000385A1 (en) Method and means of resistively contacting and interconnecting semiconductor devices
US5116770A (en) Method for fabricating bipolar semiconductor devices
US5382808A (en) Metal boride ohmic contact on diamond and method for making same
JPS5821382A (en) Manufacture of schottky barrier diode
US6140194A (en) Method relating to the manufacture of a semiconductor component
US5236851A (en) Method for fabricating semiconductor devices
JP3001362B2 (en) Method for manufacturing semiconductor device
US5355015A (en) High breakdown lateral PNP transistor
JPH10223650A (en) Semiconductor device and method of manufacturing the same
WO1983003032A1 (en) Semiconductor device and method of fabricating the same
US3771028A (en) High gain, low saturation transistor
JP2518372B2 (en) Semiconductor device
JPS5821866A (en) Semiconductor device
US4567644A (en) Method of making triple diffused ISL structure