[go: up one dir, main page]

JPS58207895A - Brushless motor - Google Patents

Brushless motor

Info

Publication number
JPS58207895A
JPS58207895A JP57089085A JP8908582A JPS58207895A JP S58207895 A JPS58207895 A JP S58207895A JP 57089085 A JP57089085 A JP 57089085A JP 8908582 A JP8908582 A JP 8908582A JP S58207895 A JPS58207895 A JP S58207895A
Authority
JP
Japan
Prior art keywords
signal
speed signal
rotor
magnetic
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089085A
Other languages
Japanese (ja)
Inventor
Nobuyuki Nagai
信之 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57089085A priority Critical patent/JPS58207895A/en
Publication of JPS58207895A publication Critical patent/JPS58207895A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To suppress the decrease in the accuracy of a rotary speed signal to a small value by measuring the displaced time of the detection signals from the prescribed two of two or more magnetic sensors for controlling the energization of armature coils and obtaining a rotary speed signal on the basis of the result. CONSTITUTION:Hall voltages V8, V9 of Hall elements, not shown, for detecting the positions are waveform-shaped by a waveform shaper, not shown, inputted as detection signals Sa, Sb from input terminals 11a, 11b to transistors 12, 14, thereby outputting a voltage signal Sc at an output terminal 17. A period T while the voltage signal Sc is low level corresponds to the displaced time between the signals Sa and Sb, a transistor 21 which inputs at the base the signal Sc is interrupted during the period T, and a constant voltage is applied to a condenser 20 in an integrator 18. Accordingly, a rotary speed signal Sd of the sawtooth state of the period proportional to the signal Sc with the voltage inversely proportional to the period T is outputted to the output terminal 18a of the integrator 18.

Description

【発明の詳細な説明】 〔発明の技術分野〕。[Detailed description of the invention] [Technical field of invention].

本発明は、ロータの回転位相を検知し、その検知出力に
より複数相の電機子コイμに順次通電させるようにした
無刷子モータに係り、特にはロータの回転速度信号を発
生する手段を備えた無刷子モータに関する。
The present invention relates to a brushless motor that detects the rotational phase of a rotor and sequentially energizes a plurality of phases of armature coils μ based on the detected output, and particularly includes means for generating a rotor rotational speed signal. Regarding brushless motors.

〔発明の技術的背景〕[Technical background of the invention]

無刷子モータにおいては、七の回転速度を閉ループ制御
する等のためにロータの回転速度信号を発生することが
行なわれておplこの場合、タコジェネレータ或は周波
数発電機が高精度の回転速度信号発生に適したものとし
てよく用いられている。
In brushless motors, a rotor rotational speed signal is generated for closed loop control of the rotational speed of the rotor.In this case, a tacho generator or frequency generator generates a high-precision rotational speed signal. It is often used as something suitable for outbreaks.

〔背景技術の問題点〕[Problems with background technology]

上記従来構成では、タコジェネレータ或は周数数発電機
自体の構造が複雑であり、しかもこれらを配置するため
のスペースを要して全体の構造が複雑になり、総じてコ
スト高になる欠点があった。
In the conventional configuration described above, the structure of the tachogenerator or frequency generator itself is complicated, and moreover, space is required for arranging them, making the overall structure complicated, resulting in an overall high cost. Ta.

また、ロータの低速回転時には回転速度信号のレベルが
低くなる等の不具合があってその信号処理が困難にhる
ことかある。
Furthermore, when the rotor rotates at a low speed, there may be problems such as the level of the rotational speed signal becoming low, making it difficult to process the signal.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、本来存在する磁気センサを利用した極
めて簡単な構成によって高精度の回転速度信号を得るこ
とがてきると共に、低速回転時においても回転速度信号
のレベ〜が低下してしまうことがなく、さらには磁気セ
ンサの検出対象である界磁磁極を構成する複数個の永久
磁石に寸法誤差、取付誤差等が生じた場合でも回転速度
信号の精度低下を小さく抑制できる等の効果を奏する無
刷子モータを提供するにある。
The purpose of the present invention is to obtain a highly accurate rotational speed signal with an extremely simple configuration using an originally existing magnetic sensor, and to solve the problem that the level of the rotational speed signal decreases even during low-speed rotation. Furthermore, even if dimensional errors, installation errors, etc. occur in the multiple permanent magnets that make up the field magnetic poles that are detected by the magnetic sensor, the reduction in accuracy of the rotational speed signal can be suppressed to a small level. We provide brushless motors.

〔発明の概要〕[Summary of the invention]

本発明は、1セグメン)fiv2極以上に着磁して成る
複数個の永久磁石を環状配置した界磁磁極を有するロー
タを備えた無刷子モータにおいて、電機子コイルの通電
制御用の2個以上の磁気センサのうち、所定の2個から
の検知信号のずれ時間全測定し、その測定結果に基づい
て回転速度信号を発生するように構成したことを特徴と
するものであり、また、上記回転速度信号発生の基礎と
なる検知信号が、前記永久磁石の各磁極のうち口′−タ
の回転方向側に位置したもの以外の磁極からの磁束に基
づいて発生されるように構成した点にも特徴を有する。
The present invention provides a brushless motor equipped with a rotor having a field magnetic pole in which a plurality of permanent magnets magnetized into two or more poles are arranged in an annular manner. The magnetic sensor is characterized in that it is configured to measure the entire time difference between detection signals from two predetermined magnetic sensors, and generate a rotational speed signal based on the measurement results. The detection signal, which is the basis for generating the speed signal, is also configured to be generated based on the magnetic flux from one of the magnetic poles of the permanent magnet other than the magnetic pole located on the rotation direction side of the mouthpiece. Has characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について図面を゛参照しながら説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

まず第1図及び第2図において、1はロータであり、こ
れは上端が閉鎖した円筒状をなしその中央部に軸2が貫
通されたヨーク3と、このヨーク乙の内周面に複数個た
る例えば4個の永久磁石4を環状に添設することにより
形成した界磁磁極5とよ構成る。この場合、弧状をなす
各永久磁石4は、第6図に示す如く1セグメント自ジ2
極(N極及び8極)を有するようにその径方向に着磁さ
れておジ、結果的に界m磁極5全体で8個の磁極a乃至
りが設けられている。6.7は図示しないステータの一
部全なす例えば2相の電機子コイルであり、これは前記
ロータ1の内側に配電されている。8.9は電機子コイ
)L’6.7に夫々対応して設けられた磁気センサたる
例えばホーlv累子で、これらは前記界磁磁極−5にそ
の軸方向から近接され、且つ互の開の位相角即ち開き角
が前記磁極a乃至)の最小着磁角(本冥施例では機械角
で約60 s =45度)より小さく例えば機械角22.5度とな
るように配置されている。上記ホーμ素子8゜9ば、ロ
ータ1の回転に応じて各磁極a乃至りが対向される毎に
夫々第5図(a)に示す;うなホール電圧V8.V9 
 y2出力する。このとき、示−μ素子8及び9は、前
記永久磁石4の夫々対をなす磁極a及びす、c及びd、
e及びf、g及びhのうちロータ1の回転方向(第2図
に矢印■で示す)側に位置した磁極a、c、e、gが対
向されたときに第5図(a)中負側方向のホーノン電圧
Va、Vt  f呂カレ、これ以外の@極す、d、f、
hが対向されたときに第5図(a)中正側方向のホール
電圧VB、 V?をめ力するように構成されている。
First, in Figures 1 and 2, 1 is a rotor, which has a cylindrical shape with a closed upper end, and has a yoke 3 with a shaft 2 passing through its center, and a plurality of rotors on the inner peripheral surface of the yoke 2. The barrel is constituted by a field magnetic pole 5 formed by attaching, for example, four permanent magnets 4 in an annular shape. In this case, each arc-shaped permanent magnet 4 has one segment self-alignment 2 as shown in FIG.
It is magnetized in its radial direction so as to have poles (N pole and 8 poles), and as a result, eight magnetic poles a to a are provided in the entire field m magnetic pole 5. Reference numeral 6.7 indicates a two-phase armature coil, which is a part of the stator (not shown), and is electrically distributed inside the rotor 1. 8.9 is a magnetic sensor, for example, a Hall lv resistor, which is provided corresponding to the armature coil (L'6.7), and these are close to the field magnetic pole-5 in its axial direction, and are connected to each other. The opening phase angle, that is, the opening angle is smaller than the minimum magnetization angle (approximately 60 s = 45 degrees in mechanical angle in this embodiment) of the magnetic poles a to ), for example, 22.5 degrees in mechanical angle. There is. The Hall μ element 8.9 is shown in FIG. V9
Output y2. At this time, the μ-elements 8 and 9 are connected to the magnetic poles a and c, d, and the pairs of magnetic poles a and d of the permanent magnet 4, respectively.
When the magnetic poles a, c, e, and g located on the rotational direction side of the rotor 1 (indicated by the arrow ■ in FIG. 2) among e, f, g, and h are opposed to each other, the negative in FIG. Lateral hornon voltage Va, Vt f, other @ poles, d, f,
When h is opposed, the Hall voltage VB in the positive direction in FIG. 5(a), V? It is configured to encourage

さて、第4図には速度信号発生手段たる信号処理回路1
0が示されており、以下これについてその作用と共に第
5図もl照しながら述べる。即ち、前記ホール電圧V8
. V9  は図示し々い整形回路を経て夫々第5図(
b)、 (e)に示す波形の検知信号8a。
Now, FIG. 4 shows a signal processing circuit 1 which is a speed signal generating means.
0 is shown, and its operation will be described below with reference to FIG. That is, the Hall voltage V8
.. V9 passes through various shaping circuits as shown in Figure 5 (
Detection signal 8a having the waveform shown in b) and (e).

8bに波形整形された後に入力端子11a、11bに与
えられるようになっている。12は検知信号8a f抵
抗13を介してそのベースに受ける第1のトランジスタ
、14は検知信号8by抵抗15を介してそのベースに
受ける第2のトランジスタであり、第1のトランジスタ
12はそのコレツ′り・エミッタ間がプラス電源端子+
Vccと接地端子との間に抵抗16を介して接続されて
おり、また第2のトランジスタ14はそのコレクタ・エ
ミッタ間が第1のトランジスタ12のペースと接地端子
との間に接続されている。従って、今、第5図中の時刻
t1において進み位相位置にあるホー/L’素子8に磁
極す、d、f、hのうちの何九〃・が対向されるように
なって正側方向のホール電圧■8が出力されるようにな
り、これに応じて検知信号8aがプラスレベルに立上が
ると、この時刻t1では遅れ位相にめる゛検知信号sb
がマイナスレベ7しでこしを受けた第2のトランジスタ
14がオフしているから、第1のトランジスタ12がオ
ンするようになる。すると、第1のトランジスタ12の
コレクタが接地レベルに落ちて、そのコレクタに接続さ
れた出力端子17から出力される電圧信号Sc(第5図
(d)参照)がローレベルに反転する。
8b, and then applied to input terminals 11a and 11b. 12 is a first transistor which receives the detection signal 8a at its base through a resistor 13; 14 is a second transistor which receives a detection signal 8by at its base through a resistor 15; Positive power terminal + between emitter and emitter
It is connected between Vcc and the ground terminal via a resistor 16, and the collector and emitter of the second transistor 14 are connected between the base of the first transistor 12 and the ground terminal. Therefore, now, at time t1 in FIG. 5, some nine of the magnetic poles d, f, and h are opposed to the Ho/L' element 8 which is in the advanced phase position, and in the positive direction. When the Hall voltage 8 starts to be output and the detection signal 8a rises to a positive level in response to this, at this time t1, the detection signal sb is in the delayed phase.
Since the second transistor 14 that received the negative level 7 is off, the first transistor 12 is turned on. Then, the collector of the first transistor 12 falls to the ground level, and the voltage signal Sc (see FIG. 5(d)) output from the output terminal 17 connected to the collector is inverted to the low level.

この後、時刻t2にて検知信号8bが立上がって第2の
トランジスタ14がオンすると、検知信号8aが該トラ
ンジスタ14゛ヲ介して接地されるようになってキャン
セlしされ、第1のトランジスタ12がオフするように
麦るため、前記電圧信号8cがハイレベlしに反転する
。その後、電圧信号8cは時刻t3にて検知信号8aが
立上がるまでノ飄イレベルに保持されるようにカフ、結
果的に電圧信号8cに第5図にTで示す期間のみローレ
ベルを呈するようになる。この期間Tは、検知信号8a
After that, at time t2, the detection signal 8b rises and the second transistor 14 is turned on, and the detection signal 8a is grounded through the transistor 14 and is canceled. 12 is turned off, the voltage signal 8c is inverted to a high level. Thereafter, the voltage signal 8c is maintained at a low level until the detection signal 8a rises at time t3, and as a result, the voltage signal 8c is maintained at a low level only during the period indicated by T in FIG. Become. During this period T, the detection signal 8a
.

sbのずれ時間に相当するものであってロータ1が機械
角で22.5展(ホール素子・8,9の開き角)回転す
るのに要する時間を示すものであるから、期間Tの長さ
を測足することによってロータ1の回転速度を知ること
ができる。一方、18は定電圧源たるプラス電源端子+
Vccと接地端子との間に抵抗19及びコンデンサ20
を直列接続して成る積分回路、21はそのコレクタ・エ
ミッタ間がコンデンサ20と並列に接続されたトランジ
スタで、このトランジスタ21のベースに対して前記電
圧信号8Cが抵抗22を介して与えられる。従って積分
回路18内のコンデンサ20には、電圧−信号8Cがロ
ーレベIしにある期間Tのみトランジスタ21がオフと
なって定電圧が印加されるようになり、結果的に積分回
路18の出力端子18aからは、前記期間Tic反比例
した電圧値を有し且つ電圧信号8cに比例した周期の鋸
歯状をなす回転速度信号Sd(第5図(e)参照)が出
力される。
Since it corresponds to the deviation time of sb and indicates the time required for the rotor 1 to rotate by 22.5 mechanical angles (opening angle of Hall elements 8 and 9), the length of period T The rotational speed of the rotor 1 can be determined by measuring . On the other hand, 18 is a positive power supply terminal + which is a constant voltage source.
A resistor 19 and a capacitor 20 are connected between Vcc and the ground terminal.
21 is a transistor whose collector and emitter are connected in parallel with the capacitor 20, and the voltage signal 8C is applied to the base of the transistor 21 via a resistor 22. Therefore, the transistor 21 is turned off and a constant voltage is applied to the capacitor 20 in the integrating circuit 18 only during the period T when the voltage signal 8C is at the low level I, and as a result, a constant voltage is applied to the output terminal of the integrating circuit 18. 18a outputs a sawtooth-shaped rotational speed signal Sd (see FIG. 5(e)) having a voltage value inversely proportional to the period Tic and a period proportional to the voltage signal 8c.

尚、検知信号8 a、、 8 b  は無刷子モータに
おいて周知構成の駆動回路(図示せず)にも入力される
ようになっており、この駆動回路は、検知信号8a。
The detection signals 8a, 8b are also input to a drive circuit (not shown) having a known configuration in the brushless motor, and this drive circuit receives the detection signals 8a.

sb に基づいて電機子コイル6.7に順次所定の順序
で通電することにより該電機子コイル6.7と界磁磁極
5との間にトルクを生起せしめ、以てロータ1を矢印凡
方向へ回転きせる。
By sequentially energizing the armature coils 6.7 in a predetermined order based on sb, torque is generated between the armature coils 6.7 and the field magnetic poles 5, thereby moving the rotor 1 in the direction of the arrow. I can rotate it.

上記した本冥・施例によれば、無刷子モータにおいて電
機子コイrv6,7の通電位相制御用とじて本来存在す
るホール素子8.9を利用してロータ1の回転速度信号
Sd’(i7発生することができるから、タコジェネレ
ータ、周波数発電機を用いた従来構成のように構造が複
雑化してコスト高になったり、ロータ1の低速回転時に
おいても回転速度信号Sdのレベルが低く力ってしまう
虞が々い。
According to the above-mentioned embodiment, the rotational speed signal Sd' (i7 Because of this, the structure is complicated and the cost is high compared to the conventional structure using a tachogenerator and frequency generator, and even when the rotor 1 is rotating at low speed, the level of the rotational speed signal Sd is low and the force is low. There is a strong possibility that it will happen.

しかも本実施例によれば、ホー/I/素子8,9の開き
角をロータ1の磁極a乃至りの最小着磁角より小さく設
定して、検知信号8.a、8bの位相差が電気角で18
0度:り小さくなるように構成したから、該検知信−号
8a、8bに基づいて電圧信号8Cひいては回転速度信
号8di発生するための信号処理を藺草化できる。また
、本実施例によれば、永久磁石4の夫々対會なす@極a
及びす、c及びd、e及びflg及びhのうちロータ1
の回転方向と反対側に位置した磁極す、d、f、hから
の磁束により傷られる検知信号8a、Sbのずれ時間に
応じて回転速度信号8di発生する構成としたから、以
下に述べる効果をも奏することができる。即ち、無刷子
モータにおいて界磁起磁力を上げるためには界磁磁極を
構成する水久磁石會複数個に分割するのが望ましく、こ
の場合、着磁バランスを考慮して本実施例の如く各永久
磁石4が一対の磁極を有するように着磁するのが一般的
であるdしかしながら、永久磁石4はその製作時の寸法
誤差が比較的大きく、またヨーク3に対する取付誤差も
比較的大きいため、その取付状態では第6図(&)、(
b)に示すようにヨーク6の端面3aに対してギャップ
jが生じることは避けられない。従って、今、ロータ1
の回転方向R側に位置した磁極a、c。
Moreover, according to this embodiment, the opening angle of the H/I/elements 8 and 9 is set smaller than the minimum magnetization angle of the magnetic poles a to rotor 1, and the detection signal 8. The phase difference between a and 8b is 18 in electrical angle.
Since the angle is configured such that the angle is smaller than 0 degrees, the signal processing for generating the voltage signal 8C and eventually the rotational speed signal 8di based on the detection signals 8a and 8b can be simplified. Further, according to the present embodiment, each of the permanent magnets 4 has opposing @poles a.
and, c and d, e, flg and h, rotor 1
Since the rotational speed signal 8di is generated in accordance with the time difference between the detection signals 8a and Sb, which are damaged by the magnetic flux from the magnetic poles S, d, f, and h located on the opposite side to the rotational direction of the magnetic poles, the following effects can be achieved. can also be played. That is, in order to increase the field magnetomotive force in a brushless motor, it is desirable to divide the water magnet assembly that constitutes the field magnetic pole into multiple parts, and in this case, considering the magnetization balance, each Generally, the permanent magnet 4 is magnetized so that it has a pair of magnetic poles.However, the permanent magnet 4 has a relatively large dimensional error during manufacture, and also has a relatively large mounting error with respect to the yoke 3. In its installed state, Figure 6 (&), (
As shown in b), it is inevitable that a gap j will occur with respect to the end surface 3a of the yoke 6. Therefore, now rotor 1
Magnetic poles a and c located on the rotation direction R side.

elgからの磁束に基づいて回転速度信号8dを得る構
成としていたのでは、その回転速度信号8clの発生に
関連したホール素子8,9の鎖交磁束が、第6図(a)
の場合と(b)の場合とでは、ギャップ!に相当した分
だけ比較的大幅に〆罰するように々ジ、このため回転速
度信号8dの精度低下を来たしてし一!、う。これに対
して本実施例では、前述した如くロータ1の回転方向孔
と反対側に位置した磁極b、d、f、hからの磁束に基
づいて回転速度信、  号Sdy得る構成であるから、
その回転速度信号8dの発生に関連したホール素子8.
9の鎖交磁束の変動幅は、第6図(a)の場合と(b)
の場合とでギャップlの1/2に相当した分だけになる
から、回転速度信号Sdの精度低下を小さく抑制できる
With the configuration in which the rotational speed signal 8d is obtained based on the magnetic flux from elg, the interlinkage magnetic flux of the Hall elements 8 and 9 related to the generation of the rotational speed signal 8cl is as shown in FIG. 6(a).
There is a gap between case (b) and case (b). Therefore, the accuracy of the rotational speed signal 8d decreases! ,cormorant. On the other hand, in this embodiment, as described above, the rotational speed signal Sdy is obtained based on the magnetic flux from the magnetic poles b, d, f, and h located on the opposite side of the rotation direction hole of the rotor 1.
Hall element 8 associated with the generation of the rotational speed signal 8d.
The variation width of the magnetic flux linkage in Fig. 6 is shown in Fig. 6(a) and Fig. 6(b).
Since the amount corresponding to 1/2 of the gap l is reduced between the case of 1 and the case of , it is possible to suppress a decrease in accuracy of the rotational speed signal Sd to a small level.

尚、上記実施例では2相の無刷子モータを例にしたが、
本発明は2個以上の磁気センサを備えた無刷子モータ全
般に適用することができる。また、磁気センサ(はホー
ル素子に限らないことは勿論である。
In the above embodiment, a two-phase brushless motor was used as an example, but
The present invention can be applied to all brushless motors equipped with two or more magnetic sensors. Moreover, it goes without saying that the magnetic sensor (magnetic sensor) is not limited to a Hall element.

〔発明の効果〕〔Effect of the invention〕

本発明によれば以上説明したように、本来存在するセン
サを利用した極めて簡単でしかも省スペース化を図り得
る構成によって高精度の回転速度信号を得ることができ
ると共に、低速回転時においても回転速度信号のレベμ
が低下してしまうことがなく、さらKは磁気センサの検
出対象である界磁磁極を構成する複数個の永久磁石に寸
法誤差取付誤差等が生じた場合でも回転速度信号の精度
低下を小さく抑制できる等の効果を奏することができる
According to the present invention, as explained above, it is possible to obtain a highly accurate rotational speed signal with an extremely simple and space-saving configuration that utilizes an originally existing sensor, and the rotational speed even during low-speed rotation. Signal level μ
In addition, K suppresses the decrease in accuracy of the rotational speed signal to a small extent even when dimensional and installation errors occur in the multiple permanent magnets that make up the field magnetic poles that are detected by the magnetic sensor. It is possible to achieve effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例に関するもので、第1図は要部
の縦断面図、第2図は同要部の下面図、第5図は永久磁
石の斜視図、第4図は速度信号発生手段の結線図、第5
図は信号波形を示すタイムチャート、第6図に要部を直
線方向に展開して示す図である。 図中、1はロータ、4は永久磁石、5は界磁磁極、a乃
至りは磁極、6.7は電機子コイμ、89はホール素子
<m気センサ)、10は信号処理回路(速度信号発生子
9段)である。 出願人 東累芝浦電気株式会社 代理人 弁理士 佐 藤   強 鴬 1 図 112  図 第31!21 114  図 s 5 図 tl    t2       t3 第6 − (b) m−「−
The drawings relate to one embodiment of the present invention, in which Fig. 1 is a longitudinal sectional view of the main part, Fig. 2 is a bottom view of the main part, Fig. 5 is a perspective view of the permanent magnet, and Fig. 4 is a speed signal. Connection diagram of generation means, 5th
The figure is a time chart showing the signal waveform, and FIG. 6 is a diagram showing the main part expanded in a linear direction. In the figure, 1 is the rotor, 4 is the permanent magnet, 5 is the field magnetic pole, a to magnetic pole, 6.7 is the armature coil μ, 89 is the Hall element < m air sensor), and 10 is the signal processing circuit (speed (9 stages of signal generators). Applicant: Tosei Shibaura Electric Co., Ltd. Agent Patent Attorney: Gosho Sato 1 Figure 112 Figure 31!21 114 Figure s 5 Figure tl t2 t3 6th - (b) m- "-

Claims (1)

【特許請求の範囲】[Claims] 1.1セグメント西り2極以上に着磁して成る複数個の
永久磁石を環状配置した界磁磁極を有するロータと、こ
のロータの回転時に前記界磁磁極からの磁束に基づいて
検知信号を出力する2個以上の磁気センサとを備え、前
記磁気センサがらの検知信号により複数相の電機子コイ
ルに順次通電せしめて前記ロータを回転させるものにお
いて、前記磁気センサのうち所定の2個から出力される
検知信号のずれ時間上測定して前記ロータの回転速度信
号を出力する速度信号発生手段を設け、この速度信号発
生手段は、前記永久磁石の各磁極のうち前記ロータの回
転方向側に位置したもの以外の磁極からの磁束による検
知信号のずれ時間上測定するように構成しであることを
特徴とする無刷子モータ。
1. A rotor having a field magnetic pole in which a plurality of permanent magnets magnetized in two or more westward poles are arranged in a ring, and a detection signal is generated based on the magnetic flux from the field magnetic pole when the rotor rotates. output from two or more magnetic sensors, and rotates the rotor by sequentially energizing the armature coils of multiple phases based on the detection signals from the magnetic sensors, wherein the output is output from two or more of the magnetic sensors. A speed signal generating means is provided for measuring the deviation time of the detection signal and outputting a rotational speed signal of the rotor, and the speed signal generating means is located on the rotational direction side of the rotor among the magnetic poles of the permanent magnet. What is claimed is: 1. A brushless motor, characterized in that the brushless motor is configured to measure a time difference in a detection signal due to magnetic flux from magnetic poles other than the brushless motor.
JP57089085A 1982-05-26 1982-05-26 Brushless motor Pending JPS58207895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089085A JPS58207895A (en) 1982-05-26 1982-05-26 Brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089085A JPS58207895A (en) 1982-05-26 1982-05-26 Brushless motor

Publications (1)

Publication Number Publication Date
JPS58207895A true JPS58207895A (en) 1983-12-03

Family

ID=13961024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089085A Pending JPS58207895A (en) 1982-05-26 1982-05-26 Brushless motor

Country Status (1)

Country Link
JP (1) JPS58207895A (en)

Similar Documents

Publication Publication Date Title
US3891905A (en) Brushless d-c motor
JPS5953503B2 (en) rotation detection device
JP4478537B2 (en) Brushless motor
JP4375638B2 (en) Absolute position detection method for motor rotation shaft
JPS58207895A (en) Brushless motor
JPS5855747B2 (en) Brushless rotary motor
JPS6227621B2 (en)
JPS5886882A (en) Brushless motor
JP4166329B2 (en) Stepping motor apparatus having a position sensor
JP2975692B2 (en) Motor pulse signal generator
JP3861894B2 (en) Electric motor
TWM597009U (en) Rotor positioning motor
JPS58218652A (en) Rotation detecting device
JP2914208B2 (en) Motor with rotational position detector
CN115280664A (en) Sensor magnet, rotor, motor
TW202137678A (en) Rotor positioning motor and detection method per se thereof
JPS6111982Y2 (en)
JPS6367141B2 (en)
JPS60141155A (en) Brushless motor
JPH0271459A (en) Magnetic disk device
JPH0574319B2 (en)
JPS6235357B2 (en)
JPS60216788A (en) 3-phase brushless motor
JPS60152298A (en) Rotation detector of step motor
JPS6349469B2 (en)