[go: up one dir, main page]

JPS58206812A - Device for adjusting discharged gas of steam turbine with vacuum - Google Patents

Device for adjusting discharged gas of steam turbine with vacuum

Info

Publication number
JPS58206812A
JPS58206812A JP8978282A JP8978282A JPS58206812A JP S58206812 A JPS58206812 A JP S58206812A JP 8978282 A JP8978282 A JP 8978282A JP 8978282 A JP8978282 A JP 8978282A JP S58206812 A JPS58206812 A JP S58206812A
Authority
JP
Japan
Prior art keywords
pressure
turbine
vacuum
discharged
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8978282A
Other languages
Japanese (ja)
Inventor
Fumitada Mizuno
水野 文忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8978282A priority Critical patent/JPS58206812A/en
Publication of JPS58206812A publication Critical patent/JPS58206812A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To improve a thermal efficiency by a method wherein a maximum vacuum (limit pressure) allowable in a performance of condenser type steam turbine is calculated by its operating time in response to its actual operating condition and the pressure in a condenser is automatically adjusted when the turbine is operated under a pressure less than the limit pressure. CONSTITUTION:A turbine is provided with a pressure sensor 1 for use in sensing a differential pressure in the midway of the turbine, the discharged volume of turbine is calculated in a calculater 2 in response to its output and then a limit discharging pressure Pc is calculated. A discharged valcuum sensor 3 is connected to the discharged pressure of the turbine, the actual discharged pressure P2 calculated at the sensor is sent to a comparator 4 along with said limit pressure Pc and then both of them are compared. In case of P2<Pc, a signal for adjusting a volume of cooling water in the condenser is produced in such a way as a relation of P2=Pc is applied and then an angle of pump vane of circulation pump is controlled through the control device 5 in response to the signal. With this arrangement, it is made possible to get the most appropriate discharged vacuum in correspondense with the turbine load or a variation of temperature of cooling water.

Description

【発明の詳細な説明】 本発明は、復水式蒸気タービンの性能上許容しうる最高
真空(限界圧力)を実際の運転状態に応じて実時間で算
出し、限界圧力以下で運転されている場合は限界圧力と
なるよう復水器真空を自動的に調整するための装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention calculates in real time the maximum vacuum (limit pressure) allowable for the performance of a condensing steam turbine according to the actual operating conditions, and calculates the maximum vacuum (limit pressure) that is allowable for the performance of a condensing steam turbine, and calculates the maximum vacuum (limit pressure) that is allowable for the performance of a condensing steam turbine, The invention relates to a device for automatically adjusting condenser vacuum to a critical pressure.

蒸気タービンの排気真空調整装置として従来使用されて
いるものは、運転中に復水設備等における何かの異状に
よって排気真空が低下したときに、タービン負荷を下げ
て真空を回復させる目的のものがあった力t1復水器真
空を自動的に調整するための適当な装置はなかった。
Conventionally used exhaust vacuum adjustment devices for steam turbines are designed to reduce the turbine load and restore vacuum when the exhaust vacuum drops due to some abnormality in the condensing equipment during operation. There was no suitable device for automatically regulating the condenser vacuum.

なお従来は運転員の判断によって適当に調整していたた
め必ずしも最適にはならず、エネルギの損失を生じるな
どの欠点があった。
Note that in the past, the adjustment was made appropriately based on the operator's judgment, so it was not always optimal, and there were drawbacks such as energy loss.

本発明は、冷却水温の変化やタービン負荷の変化に応じ
て最適な排気真空を得るための調整装置を提供して、最
適な真空で運転することにより熱効率の向上、省エネル
ギを図ることを目的とする。
The purpose of the present invention is to provide an adjustment device for obtaining an optimal exhaust vacuum according to changes in cooling water temperature and turbine load, and to improve thermal efficiency and save energy by operating at the optimal vacuum. shall be.

本発明によれば、タービン途中段落圧力側に直列に結合
された圧力検出器及び演算器と、タービン排気圧力側に
結合された排気真空検出器と、上記演′棒器の出力側及
び排気真空検出器の出力側に結合された比較器と、同比
較器の出力側に結合された循環水ポンプ羽根角度等の制
御装置とによって構成され、タービン負荷に応じた最適
真空を、従来ではあらかじめ計算しておいた性能曲線よ
り推定していたものを実運転状態より直接算出して、る
ようにした蒸気タービン排気真空調整装置が提供される
According to the present invention, a pressure detector and a computing unit are connected in series to the turbine intermediate stage pressure side, an exhaust vacuum detector is connected to the turbine exhaust pressure side, and the output side and exhaust vacuum of the operator are connected in series. It consists of a comparator connected to the output side of the detector and a control device for controlling the circulating water pump blade angle, etc. connected to the output side of the comparator. Conventionally, the optimum vacuum according to the turbine load is calculated in advance. There is provided a steam turbine exhaust vacuum adjustment device in which what was estimated from a previously prepared performance curve is directly calculated from the actual operating state.

以下添付図面に例示した本発明の好適な実施例について
詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below as illustrated in the accompanying drawings.

図面は本発明装置の結合状態を回路図で示したもので参
照符号1はタービン排気量を算定するための圧力検出器
、2は検出した圧力から排気量を算定し、限界排気圧力
を計算する演算器でタービン途中段落圧力側に直列に結
合されている。
The drawing shows a circuit diagram of the combined state of the device of the present invention, where reference numeral 1 is a pressure detector for calculating the turbine displacement, and 2 is a device that calculates the displacement from the detected pressure and calculates the limit exhaust pressure. A computing unit is connected in series to the turbine mid-stage pressure side.

符号3は排気真空検出器でタービン排気圧力側に結合さ
れている。符号4は演算器2で求められた限界圧力Pc
と排気真空検出器3で求められた合は冷却空気量)を調
整するため漬信号を発する比較器、符号5は上記比較器
4の出力側に結合された制御装置で、上記比較器4の出
力により操作されてP2〈Pcの場合にP2= pcと
なるよう循環水ポンプ羽根角度等を制御する。
Reference numeral 3 denotes an exhaust vacuum detector connected to the turbine exhaust pressure side. Symbol 4 is the limit pressure Pc determined by the calculator 2
5 is a control device connected to the output side of the comparator 4; It is operated by the output and controls the circulating water pump blade angle etc. so that P2=pc when P2<Pc.

タービン排気圧力(タービン最終段出口圧力)を下げて
いくと、投出口蒸気流速は次第に増加するが、音速に達
するとその流速はそれ以上には増大せずタービン排気圧
力(投出口圧力)はある一定の値(限界圧力)となり、
復水器圧力が下っても排気室内で損失となるだけでター
ビンの出力は増大しない。
As the turbine exhaust pressure (turbine final stage outlet pressure) is lowered, the outlet steam flow rate gradually increases, but once it reaches the speed of sound, the flow rate does not increase any further and the turbine exhaust pressure (outlet pressure) remains constant. It becomes a constant value (limit pressure),
Even if the condenser pressure decreases, there is only a loss in the exhaust chamber and the turbine output does not increase.

従って限界圧力以下に復水器真空を良くすることは熱効
率の低下を招くだけであり、むしろ限界圧力以下に真空
が良(ならないように制御することが好ましいのである
Therefore, increasing the condenser vacuum below the critical pressure will only lead to a decrease in thermal efficiency, and it is rather preferable to control the vacuum so that it does not fall below the critical pressure.

更に詳述すれば、投出口蒸気流速(軸流速度)C2は次
式で表わされる。
More specifically, the outlet steam flow rate (axial flow rate) C2 is expressed by the following equation.

C2= GV2/A          (1)ただし
、Gは排気流量、Aは排気面積(翼環面積)、v2は排
気比容積である。
C2=GV2/A (1) where G is the exhaust flow rate, A is the exhaust area (blade ring area), and v2 is the exhaust specific volume.

一方、出口における音速a2は次式で表わされる。On the other hand, the sound velocity a2 at the exit is expressed by the following equation.

a2=f匹Tも−(2) ただし、T2は排気絶対温度、Rは蒸気ガス定数、kは
蒸気比熱比、gは重力加速度である。
a2=f T also -(2) However, T2 is the absolute exhaust temperature, R is the steam gas constant, k is the steam specific heat ratio, and g is the gravitational acceleration.

ここで投出口蒸気流速C2が段山口の音速a2と等しく
なる限界圧力をPCとすると、まず(1) iび(2)
式より Gvo/A = W     (3) となり、一方、理想気体の方程式からはP(vc=RT
c           (4)となる。(3)及び(
4)式から限界圧力P。はとなる。ここで、排気真空が
多少変化しても排気定値と見なすことができる。従って
、これを定数Kl で表わすと、 となる。一方、タービン段落内の流量はその段落の入口
圧力P1 に略比例するので、排気流量GはG = K
、・P□          (7)で表わされる。こ
こで、K2は定数である。
Here, if PC is the critical pressure at which the steam flow velocity C2 at the outlet is equal to the sound velocity a2 at the stage mouth, then (1) i and (2)
From the equation, Gvo/A = W (3), and on the other hand, from the ideal gas equation, P(vc=RT
c (4). (3) and (
4) Limit pressure P from equation. Hato becomes. Here, even if the exhaust vacuum changes somewhat, it can be regarded as the constant exhaust value. Therefore, when this is expressed by a constant Kl, it becomes as follows. On the other hand, the flow rate in a turbine stage is approximately proportional to the inlet pressure P1 of that stage, so the exhaust flow rate G is G = K
,・P□ (7) Here, K2 is a constant.

(6)文び(7)式より限界圧力P。はで表わされる。(6) From equation (7), limit pressure P. It is represented by .

ここでKは定数である。即ち、限界圧力P。は最終段落
(あるいはそれより上の適当な段落でも可)入口−圧力
P0の関数として(8)式より求められる。従って、検
出困難な排気量に代って適当な(通常最終抽気段)段落
人口圧力P1を測定することにより、そのタービンの限
界圧力PCが(8)式で求められるので、実際の排気圧
力(復水器真空) P2と比較してP2iN P、の場
合にはP2がPCとなるように復水器真空を低下させる
のである。
Here K is a constant. That is, the critical pressure P. is obtained from equation (8) as a function of the inlet pressure P0 of the final stage (or any suitable stage above it). Therefore, by measuring the appropriate (usually final extraction stage) stage population pressure P1 in place of the difficult-to-detect displacement, the critical pressure PC of the turbine can be determined using equation (8), and the actual exhaust pressure ( When P2iN P is compared to P2, the condenser vacuum is lowered so that P2 becomes PC.

最近の大容量火力発電所では復水器冷却水を供給する循
環水ポンプは可動羽根斜流ポンプが採用される事が多い
ので、この羽根取付角度を変えて冷却水量を調整できる
。従って、P2とP。を比較し、P2<P。の場合P2
=Poとなるよう信号を発する比較器4を設け、その信
号を受けた制御装置5が循環水ポンプの羽根取付角度を
変える(適当なサーボ機構により)ことにより復水器圧
力をタービン負荷に見合った最適な圧力に自動的に制御
することができるのである。
In recent large-capacity thermal power plants, movable blade mixed-flow pumps are often used as circulating water pumps to supply condenser cooling water, so the amount of cooling water can be adjusted by changing the installation angle of the blades. Therefore, P2 and P. Compare P2<P. If P2
A comparator 4 is provided that emits a signal so that = Po, and the control device 5 that receives the signal changes the blade mounting angle of the circulating water pump (using an appropriate servo mechanism) to adjust the condenser pressure to match the turbine load. The pressure can be automatically controlled to the optimum pressure.

本発明によれば、冷却水量に見合った適切な羽根角度に
制御できるので、ポンプ効率も良く、ポンプ消費動力も
低減できるという効果も奏する。
According to the present invention, since the blade angle can be controlled to an appropriate angle commensurate with the amount of cooling water, the pump efficiency can be improved and the power consumption of the pump can also be reduced.

’)ff*iX□、ゎゆ制ヮす矧、ユ能、あ9、同様に
ファン消費動力も低減できるのである。
') ff * i

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による蒸気タービン排気真空調整装置を示
すブロック図である。 l・・圧力検出器、2・・演算器、3・・排気真空検出
器、4・・比較器、5・・制御装置。
The drawing is a block diagram showing a steam turbine exhaust vacuum regulating device according to the present invention. 1. Pressure detector, 2. Arithmetic unit, 3. Exhaust vacuum detector, 4. Comparator, 5. Control device.

Claims (1)

【特許請求の範囲】[Claims] タービン途中段落圧力を検出する圧力検出器(11及び
この検出された圧力より限界圧力を求める演算器(2)
と、タービン排気圧力を検出する排気真空検出器(3)
と、上記演算器(2)の出力及び排気真空検出器(3)
の出力を受けて実際の排気圧力が演算された限界圧力以
下のとき信号を出力する比較器(4)と、同比較器(4
)の出力信号に応じて復水器圧力を調整する制御装置(
5)とによって構成されることを特徴とする蒸気タービ
ン排気真空調整装置。
A pressure detector (11) that detects the turbine midway stage pressure and a calculator (2) that calculates the limit pressure from the detected pressure.
and an exhaust vacuum detector (3) that detects the turbine exhaust pressure.
and the output of the arithmetic unit (2) and the exhaust vacuum detector (3).
a comparator (4) that outputs a signal when the actual exhaust pressure is below the calculated limit pressure based on the output of the comparator (4);
control device ( ) that adjusts the condenser pressure according to the output signal of
5) A steam turbine exhaust vacuum adjustment device comprising:
JP8978282A 1982-05-28 1982-05-28 Device for adjusting discharged gas of steam turbine with vacuum Pending JPS58206812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8978282A JPS58206812A (en) 1982-05-28 1982-05-28 Device for adjusting discharged gas of steam turbine with vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8978282A JPS58206812A (en) 1982-05-28 1982-05-28 Device for adjusting discharged gas of steam turbine with vacuum

Publications (1)

Publication Number Publication Date
JPS58206812A true JPS58206812A (en) 1983-12-02

Family

ID=13980247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8978282A Pending JPS58206812A (en) 1982-05-28 1982-05-28 Device for adjusting discharged gas of steam turbine with vacuum

Country Status (1)

Country Link
JP (1) JPS58206812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321606A (en) * 1992-05-19 1993-12-07 Toshiba Corp Corrosion control device for preventing corrosion of low pressure stage part of steam turbine
JP2008069702A (en) * 2006-09-13 2008-03-27 Kawasaki Heavy Ind Ltd Steam turbine operation control method and waste treatment facility power generation device
JP6123968B1 (en) * 2016-03-04 2017-05-10 中国電力株式会社 Power generation equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109505A (en) * 1978-01-19 1979-08-28 Westinghouse Electric Corp Turbine power generator having flow out speed controlling apparatus
JPS57116109A (en) * 1981-01-09 1982-07-20 Toshiba Corp Monitoring and controlling device for condensing turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109505A (en) * 1978-01-19 1979-08-28 Westinghouse Electric Corp Turbine power generator having flow out speed controlling apparatus
JPS57116109A (en) * 1981-01-09 1982-07-20 Toshiba Corp Monitoring and controlling device for condensing turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321606A (en) * 1992-05-19 1993-12-07 Toshiba Corp Corrosion control device for preventing corrosion of low pressure stage part of steam turbine
JP2008069702A (en) * 2006-09-13 2008-03-27 Kawasaki Heavy Ind Ltd Steam turbine operation control method and waste treatment facility power generation device
JP6123968B1 (en) * 2016-03-04 2017-05-10 中国電力株式会社 Power generation equipment
WO2017149757A1 (en) * 2016-03-04 2017-09-08 中国電力株式会社 Power generation equipment

Similar Documents

Publication Publication Date Title
US4767259A (en) Cooling air flow controlling apparatus for gas turbine
US4550565A (en) Gas turbine control systems
JPS6158644B2 (en)
US4165616A (en) Apparatus and method for restricting turbine exhaust velocity within a predetermined range
JP2000179360A (en) Control system for gas turbine engine in transient state
JP3730275B2 (en) Variable guide vane control device for gas turbine
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
JPH08261665A (en) Operating method for cooling water pump of condenser
JPS6154927B2 (en)
US5699267A (en) Hot gas expander power recovery and control
JPS58124010A (en) Controller for gas turbine
JPS59693B2 (en) gas turbine engine
GB2176248A (en) Turbine control
JPH03185222A (en) Compressed air power-generation device
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JP6516209B2 (en) Bleeding control method of steam turbine generator
JPS62197601A (en) Steam turbine controller
JPS59138891A (en) Control of vacuum degree of condenser
JPS623284B2 (en)
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH07301128A (en) Gas turbine exhaust gas temperature control device
JPS6269090A (en) Method of controlling operation of movable vane pump
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
SU979673A1 (en) Method of controlling ship combination gas steam turbine plant
JPS6153527B2 (en)