[go: up one dir, main page]

JPS58206640A - Composite material of metal with thermosetting resin - Google Patents

Composite material of metal with thermosetting resin

Info

Publication number
JPS58206640A
JPS58206640A JP8807582A JP8807582A JPS58206640A JP S58206640 A JPS58206640 A JP S58206640A JP 8807582 A JP8807582 A JP 8807582A JP 8807582 A JP8807582 A JP 8807582A JP S58206640 A JPS58206640 A JP S58206640A
Authority
JP
Japan
Prior art keywords
thermosetting resin
metal
parts
molding
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8807582A
Other languages
Japanese (ja)
Inventor
Keiichiro Ishii
石井 敬一郎
Kenichi Suzuki
憲一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP8807582A priority Critical patent/JPS58206640A/en
Publication of JPS58206640A publication Critical patent/JPS58206640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled novel composite material, prepared by pressure hot molding a mixture containing a thermosetting resin, metallic fibers and a low-melting metallic powder or an ultrafine metallic powder in a specific proportion, etc., and having easy handleability, improved heat resistance, high rigidity and toughness, etc. CONSTITUTION:A composite material of a metal with a thermosetting resin, prepared by mixing 100pts. thermosetting resin, e.g. novolak type phenolic resin, with 5-400pts. metallic fibers having 20-15mm. length and about 20-200mum thickness, e.g. copper or iron, and 0.1-10pts., based on 100pts. low-melting metallic powder, e.g. tin, or ultrafine metallic powder, e.g. copper or iron, and if necessary a filler, mold releasing agent, colorant, etc., and pressure hot molding the resultant molding mixture or molding the molding mixture and heat- treating the resultant molded article at 180-250 deg.C for 10min-24hr. EFFECT:Improved moldability and heat conductivity and electric conductivity.

Description

【発明の詳細な説明】 を有する新規な金属・熱硬化性樹脂の複合材料(:関す
る一 その目的とするところは、熱硬化性樹脂の脆さを改賀し
取扱い作業が容易で、成形性、耐熱性、高呻性および強
靭性に優れ、かつ伝熱性を有する成形用複合材料を提供
する(:ある。
[Detailed Description of the Invention] A novel metal/thermosetting resin composite material having To provide a molding composite material that has excellent heat resistance, high elasticity, and toughness, and has heat conductivity.

近年、軽1化、製造工程の合理化、コストダウン等のた
め、金属のプラスチノク材料への代替が活発(=進めら
れている、、これを背景として、特(′−耐熱性が要求
される分野では、熱硬化性樹脂をペース(ニした複合材
料か各種提案されている。
In recent years, the substitution of metal for plastic materials has been actively promoted in order to reduce weight, rationalize manufacturing processes, and reduce costs. Against this background, especially in fields where heat resistance is required, Various types of composite materials based on thermosetting resin have been proposed.

従来、熱硬化性樹脂成形材料に耐熱性でかつ強靭性をイ
・1゛与する方U一として、一般(ニガラス繊維、アス
ベスト等の無機質繊維を、また特殊な場合(:は、芳香
族ポリアミドのような、非常に高価な耐熱性の有機質繊
維を配合することが知られている。
Conventionally, inorganic fibers such as glass fiber and asbestos have been used as a material to impart heat resistance and toughness to thermosetting resin molding materials, and in special cases (: is aromatic polyamide). It is known that very expensive heat-resistant organic fibers such as

ガラス繊維を使用する場合は、成形品中)二長い繊維が
残存する工程を経れば良好な強靭ヤ[は得られるが、製
造法、成形法に大きな制約を受け、しかも単純な形状の
成形品しかつくれない。しかも、繊維の方向によって強
度が不均一(二なり、伝熱性が悪いので発熱体の近辺C
=使用すると、蓄熱によって成形品の熱劣化が促進され
る。
When using glass fiber, good toughness can be obtained by going through a process in which long fibers remain in the molded product, but there are major restrictions on manufacturing and molding methods, and it is difficult to mold simple shapes. I can only make products. Moreover, the strength is uneven depending on the direction of the fibers (2), and because of poor heat conductivity, C
= When used, thermal deterioration of molded products is accelerated due to heat accumulation.

一方成形品中に、長い繊維が残らt「い工程を経れば、
作業性、成形性は向コーシ4、複雑な形状の成形品もつ
くれる。しかし、剛性、靭性ともに不十分である。
On the other hand, if the molded product undergoes a process that does not leave long fibers,
Workability and moldability are rated at 4, and molded products with complex shapes can also be produced. However, both rigidity and toughness are insufficient.

他の補強材についてもガラス繊維の場合と同様ないくつ
かの欠点を有し、耐熱性、高剛性で、かつ強−靭性を有
する経済性のある成形用複合材料はまだ得られていない
Other reinforcing materials also have some of the same drawbacks as glass fibers, and an economical composite material for molding that has heat resistance, high rigidity, and strength and toughness has not yet been obtained.

4電性を付hTるため、銅粉、銅粉等の金属粉末をプラ
スチックに混入させることは、導電塗料等の分野で実用
されている。しかしこれらの単なる金層粉入りプラスチ
ックは、そのま\成形品(二しても、靭性、その他の機
械強度が弱く、耐熱性、高剛性でかつ、強靭性を有する
成形用複合材料として不適である。
In order to impart 4-electroconductivity, mixing metal powder such as copper powder or copper powder into plastics is practically used in the field of conductive paints and the like. However, these plastics containing gold layer powder are not suitable as molded products as they are, but their toughness and other mechanical strengths are low, making them unsuitable as composite materials for molding that have heat resistance, high rigidity, and toughness. be.

本発明益らは、熱硬化性樹1Iiiの脆さを改質し、取
扱い作業が容易で、成形性、耐熱性、高剛性および強靭
性(二優れ、かつ1云熱t)を有する成形用複合材料を
得るために鋭意検討し、た結果、金属・熱硬化性樹脂の
新規な複合材料な時用した。
The present inventors have modified the brittleness of the thermosetting resin 1Iiii to create a molding material that is easy to handle, has moldability, heat resistance, high rigidity, and toughness (2 excellent and 1 heat t). We conducted extensive research to obtain a composite material, and as a result, we developed a new composite material of metal and thermosetting resin.

本発明は、熱硬化性樹脂100部、金属繊維5〜400
部、および、該金属繊維100部(二対して、低融点金
属粉末又は、金属超微粉末0.1〜10部とを食台する
成形用混合物を加熱加圧成形、又は加熱加圧成形後、更
(二加熱処理してなることを特徴とするものである、 熱硬化性樹脂は、耐熱性に優れているものが望ましく、
フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹
脂、ジアリルフタレー′F樹脂、シリコン樹脂、ポリイ
ミド樹脂又は、これらの変性樹脂等が使用できる。
In the present invention, 100 parts of thermosetting resin, 5 to 400 parts of metal fiber
and 100 parts of the metal fibers (for 2 parts, 0.1 to 10 parts of low melting point metal powder or ultrafine metal powder) are heated and pressure molded or after heat and pressure molded. The thermosetting resin is preferably one with excellent heat resistance;
Phenol resins, epoxy resins, unsaturated polyester resins, diallylphthalate'F resins, silicone resins, polyimide resins, or modified resins thereof can be used.

Fに好ましくは、熱処理による寸法変化率、および重量
変化率の小さいもの、例えば、ノボラック型フェノール
樹脂(これはキシレン拘脂、キシリレングリコールジメ
チルエーテル等(=よる芳香族炭化水素類、メラミン、
ベンゾグアナミン等のトリアジン類、若しくはアルキル
フェノール類による変性ノボラック型フェノール樹脂で
あってもかまわない)、耐熱性エポキシ樹脂(これはフ
ェノール類ノボラック型、テトラフェニルエタンポリグ
リシジルエーテル型、芳香族アミン型、若しくは脂環・
式のエポキシ樹脂等である)、ジアリルフタレート系樹
脂、又はビスマレイミド系ポリイミド樹脂を主構成成分
とするものが良い。
Preferably, F has a small dimensional change rate and weight change rate due to heat treatment, such as a novolak type phenol resin (this includes xylene resin, xylylene glycol dimethyl ether, etc.) (= aromatic hydrocarbons, melamine,
Triazines such as benzoguanamine, or modified novolac type phenolic resins with alkylphenols may be used), heat-resistant epoxy resins (this may be phenolic novolak type, tetraphenylethane polyglycidyl ether type, aromatic amine type, or resin). ring·
It is preferable to use a resin whose main constituent component is an epoxy resin of the formula), a diallyl phthalate resin, or a bismaleimide polyimide resin.

勿論これらには通常の硬化剤および必要(二しコ°じて
硬化促進剤が用いらハる。
Of course, these include conventional curing agents and, if necessary, curing accelerators.

これらの中でも、特に芳香族多カルボン酸無水物、例え
ば、無水トリメリット酸、無水ピロメリット酸、ベンゾ
フェノン−テトラカルボン酸伴水物(BTDA ) 、
若しくは、エチレングリコールビストリメリテート(T
MEG )等を硬化剤とするフェノール類ノボラック型
エポキシ樹脂又は、ビスマレイミド系ポリイミド樹脂は
、寸法変化率および重量変化率が非常(二小さく、金属
との接着性(二も優れているので、最も好ましいものの
例である。
Among these, aromatic polycarboxylic acid anhydrides, such as trimellitic anhydride, pyromellitic anhydride, benzophenone-tetracarboxylic acid hydrate (BTDA),
Alternatively, ethylene glycol bistrimelitate (T
Phenolic novolac-type epoxy resins or bismaleimide-based polyimide resins using MEG) etc. as curing agents have very small dimensional change rates and weight change rates, and have excellent adhesion to metals (2), so they are the most This is a preferable example.

金−″繊維は、加熱処理、即ち焼結時に低融点金属液相
又は金属超微粉木粒子粒子の活性原子が該金属繊維の間
隙に浸透し易いものが、好ましく、銅、鉄、アルミニウ
ム又はその合金等が使用できる。
The gold fibers are preferably those in which the active atoms of the low-melting metal liquid phase or ultrafine metal wood particles easily permeate into the gaps of the metal fibers during heat treatment, that is, sintering, and are made of copper, iron, aluminum, or the like. Alloys etc. can be used.

金属繊維の大きさは、長さ2.(1−151M、太さ2
0〜200μm程度のものが作業し易い。
The size of the metal fiber is 2. (1-151M, thickness 2
A material with a diameter of about 0 to 200 μm is easy to work with.

金属繊維の配合量は、硬化剤を含む熱硬化性樹脂100
部に対して5〜400部、好ましくは、10〜300部
が良い、少な過ぎると剛性、強靭性、伝熱性が向−ヒせ
ず、また多過ぎても成形時の流動性が悪く、成形不良や
強度の不均一が多くなり、しかも高比重(二なる。
The blending amount of metal fiber is 100% of thermosetting resin containing curing agent.
5 to 400 parts, preferably 10 to 300 parts per part. If it is too small, the rigidity, toughness, and heat conductivity will not be improved, and if it is too large, the fluidity during molding will be poor and the molding will be difficult. There are many defects and non-uniform strength, and high specific gravity (secondary).

低融点金属粉末は、熱硬化性樹脂の耐熱性の点から、融
点180〜250℃の金属を使うのが良い。
From the viewpoint of heat resistance of the thermosetting resin, it is preferable to use a metal having a melting point of 180 to 250° C. as the low melting point metal powder.

スズ、スズ−鉛合金(ハンダ)等が使用できる。Tin, tin-lead alloy (solder), etc. can be used.

この粉末の杓子径は、90%以上が300μm以下で、
なるべく細かいものの方が分散性の点から好ましい。
More than 90% of this powder has a ladle diameter of 300 μm or less,
It is preferable that the particles be as fine as possible from the viewpoint of dispersibility.

金属超微粉末は、その粒子径が90%以上、05μm以
下のもので、細かい程金属繊維に凝着、拡散し易く、低
温焼結が可能になるので好ましい。例えば銅、鉄、ニッ
ケル、亜鉛、アルミニウム、娠又はその合金などが使用
できる2 低融点金属粉末又は金属超微粉末の配合量は、金属繊維
100部に対して01〜10部、好ましくシ10.5〜
5部が良い。少なすぎると焼結が不完全で、成形品は脆
く、剛性が向上せず、機械強度、耐熱性が逆鳳二低下す
る。また多過ぎても低融点金属粉末の場合は、成形品中
に空隙を生じ、腑<、機械強変、耐熱性も低下する。金
属超微粉末の場合は非常に高価になる。
The ultrafine metal powder has a particle size of 90% or more and 05 μm or less, and the finer the particle size, the more easily it adheres to and diffuses into the metal fibers, making it possible to perform low-temperature sintering. For example, copper, iron, nickel, zinc, aluminum, copper, or an alloy thereof can be used.2 The amount of the low melting point metal powder or ultrafine metal powder is 0.1 to 10 parts per 100 parts of metal fiber, preferably 10. 5~
Part 5 is good. If it is too small, sintering will be incomplete, the molded product will be brittle, the rigidity will not improve, and the mechanical strength and heat resistance will deteriorate. In addition, if the amount is too low and the metal powder has a low melting point, voids will be formed in the molded product, and the mechanical strength and heat resistance will also be reduced. Ultrafine metal powder is extremely expensive.

低融点金属粉末又は金属超微粉末は前もって、金−繊維
とよく混合しておくこ、とが好ましい。
It is preferable that the low melting point metal powder or ultrafine metal powder be thoroughly mixed with the gold fibers in advance.

上記の熱硬化性樹脂−金属の配合には、史に充てん材、
例えばガラス繊維、石こう繊維、炭素繊維、炭化けい素
繊維、アルミナ繊維等の無機質繊維、芳査族ポリアミド
等の耐熱性有機質繊維、シリカ、アルミナ、マイカ、炭
カル、クレー等の無機質粉末、シラスバルーン、パーラ
イト等の無機質中空粉末など、その細路型剤、表面処珪
剤、着色剤等を添加してもよい。
The above thermosetting resin-metal formulation includes fillers,
For example, inorganic fibers such as glass fibers, gypsum fibers, carbon fibers, silicon carbide fibers, alumina fibers, heat-resistant organic fibers such as aromatic polyamide, inorganic powders such as silica, alumina, mica, charcoal, and clay, and shirasu balloons. , inorganic hollow powder such as perlite, etc., a narrow channel forming agent thereof, a surface treatment silicone agent, a coloring agent, etc. may be added.

不発Bハの配合物は、通常の熱硬化性樹脂成形材料と1
司様の方法で、混合又は混練し、成形用混合物となし、
通常の加熱加圧成形によって、所埜の成形品(二I]ψ
形される。成形後、更に加熱処理、即ち焼結すると一1
1性、強靭性、およびその仙の機械強度が大巾(二面上
する。伝熱性、導電性も向上する、 この加熱処理は、180〜250℃の温度で、10分〜
24時間、好ましくは30分〜8時間実施すると良い。
B
Mix or knead according to Tsukasa's method to form a molding mixture,
Molded products (2 I) ψ are produced by ordinary heating and pressure molding.
Shaped. After molding, further heat treatment, that is, sintering, results in a
This heat treatment is performed at a temperature of 180 to 250°C for 10 minutes to 250°C.
It is good to carry out for 24 hours, preferably for 30 minutes to 8 hours.

なお成形後の加熱処理を省く場合は、加熱加圧の成形時
間を通常より長く、少なくとも10分以lかけることが
望ましい。
In addition, when the heat treatment after molding is omitted, it is desirable that the molding time for heating and pressing is longer than usual, and is at least 10 minutes.

本発明の複合材料は、取扱い作業が容易で、成形性、耐
熱性、高呻1性および強靭性(=優れ、かつ伝熱性、4
m性を有する。
The composite material of the present invention is easy to handle, has excellent formability, heat resistance, high tensile strength, and toughness (= excellent heat conductivity,
It has m-character.

これらの優れた緒特性を同時に兼備できたのは、熱硬化
性樹脂の三次元網目構造::分散してI/)た金属粉末
粒子が各々結合し、新規な金属・熱硬化性樹脂の相互貫
通網目(IPN)の生成(二よるものである。
The reason why we were able to have these excellent properties at the same time is that the three-dimensional network structure of the thermosetting resin: Dispersed metal powder particles are bonded to each other, creating a new metal-thermosetting resin interaction. Generation of a penetrating network (IPN)

本発明の複合材料は、耐熱性、高強闇、高剛性を要する
金属代替用の成形材料分野の他(馳#電性な要する電子
機器、接I’l1等1:も非常口有用である。
The composite material of the present invention is useful in the field of molding materials for replacing metals, which require heat resistance, high strength, and high rigidity (e.g., electronic equipment, electrical connections, etc.).

次(=、実施例をあげて具体的(二説明する。Next (=, concrete (2) will be explained by giving examples.

実施例1゜ ノボラック型エポキシ樹脂78部、無水トリメリット1
1422部、)リスジメチルアミノフェノール0.4部
およびステアリン酸亜鉛2部(=、前もって予備混合し
た黄銅繊維(長さ5mm、太さ60μrn ) / ノ
・ンダ粉(平均粒子径+507m)=100/1のもの
を200部添加してよく混合し、ロール混練して成形材
料を得た。
Example 1゜78 parts of novolac type epoxy resin, anhydrous trimelite 1
1422 parts, ) 0.4 parts of lithodimethylaminophenol and 2 parts of zinc stearate (=, premixed brass fibers (length 5 mm, thickness 60 μrn) / No. Nda powder (average particle size + 507 m) = 100 / 200 parts of 1 were added, mixed well, and kneaded with rolls to obtain a molding material.

1を較倒 ノボラック型エポキシ樹脂78部、無水トリメリット@
22部、トリスジメチルアミノフェノール0.4部およ
びステアリン酸亜鉛2部(=、アミノシラン処理したガ
ラス繊維200部を添加してよく混合し、ロール混練し
て成形材料を1等だ。
1 compared to 78 parts of novolac type epoxy resin, anhydrous trimelite@
22 parts of trisdimethylaminophenol and 2 parts of zinc stearate (=, 200 parts of aminosilane-treated glass fiber) were added, mixed well, and kneaded with rolls to obtain a molding material of 1 grade.

実施例2 ノボラック型エポキシ樹脂69部、エチレングリコール
ビストリメリテート(TME() ) 31部、トリス
ジメチルアミノフェノール04部、ガラス繊維50部、
シラスバルーン50部、r−メタアクリロキシプロピル
トリメトキシシラン1部およびステアリン酸亜鉛3部に
、前もって予備混合した、鉄、繊維(長さ3朋、太さ6
0μm)/スズ粉(平均粒子゛ 径:30μm ) −
10072のものを50部添加してよく混合し、ロール
混練し7て成形材料を得た。
Example 2 69 parts of novolac type epoxy resin, 31 parts of ethylene glycol bistrimelitate (TME()), 04 parts of trisdimethylaminophenol, 50 parts of glass fiber,
50 parts of Shirasu balloons, 1 part of r-methacryloxypropyltrimethoxysilane and 3 parts of zinc stearate were premixed with iron, fibers (length: 3 mm, thickness: 6 mm).
0μm)/tin powder (average particle diameter: 30μm) -
10072 was added, mixed well, and kneaded with rolls to obtain a molding material.

実施例3 ノボラック型フェノール椿脂90部、ヘキサメチレンテ
トラミン10部、アミノシラン処理したガラス繊維50
部およびステアリン酸3部に、前もって予備混合した銅
繊維(長さ311III、太さ80 tim ) /ス
ズ粉(平均粒子径:30μm)=100/2のものを1
00部添加してよく混合し、ロール混練して成形材料を
得た。
Example 3 90 parts of novolac type phenol camellia butter, 10 parts of hexamethylenetetramine, 50 parts of aminosilane-treated glass fiber
1 part of copper fiber (length 311III, thickness 80 tim) / tin powder (average particle size: 30 μm) = 100/2, which was premixed in advance with 1 part and 3 parts of stearic acid.
00 parts were added, mixed well, and kneaded with rolls to obtain a molding material.

実施例4゜ ビスマレイミド系ポリイミド樹脂(ロース・ブーラン社
製、ケルイミド)100部、2−メチルイミダゾール2
部およびステアリン酸2部(二、藺もっ′〔予備混合し
たアルミニウム繊維(長さ3龍:太さ60μin)/ア
ルミニウム超微粉(平均粒子径:0.1戸) −1oo
 71のものを200部添加してよく混合し、ロール混
練して成形材料を得た。
Example 4 100 parts of bismaleimide polyimide resin (manufactured by Loos-Boulin, Kelimide), 2-methylimidazole 2
1 part and 2 parts of stearic acid (premixed aluminum fiber (length: 3 mm: thickness: 60 μin) / ultrafine aluminum powder (average particle size: 0.1 mm) -1oo
200 parts of No. 71 were added, mixed well, and kneaded with rolls to obtain a molding material.

なお、実施例1〜4および比較例の材料を加熱加圧成形
し、その性能を第1表に示した。
The materials of Examples 1 to 4 and Comparative Example were molded under heat and pressure, and their performances are shown in Table 1.

第1表 (※l)曲げ試験での応カー企み曲線から破壊)二要す
るエネルギーを・算出した。
Table 1 (*l) The energy required for failure was calculated from the stress curve in the bending test.

(・炙2)  230℃で1時間熱処理した。(・Roasted 2) Heat treated at 230°C for 1 hour.

実施例1と比較例を比較すると、前者は熱処理f二よっ
て曲げ強度、剛性(弾性*)、破壊エネルギーおよび衝
撃値の大巾な向上カー認められる。
Comparing Example 1 and Comparative Example, the former was found to have significantly improved bending strength, rigidity (elasticity*), fracture energy, and impact value due to heat treatment f2.

他の実施例2〜4(=おいても、同様(二強度、141
I性、強靭性の向上効果が顕著である。
Other Examples 2 to 4 (= also similar (double strength, 141
The effect of improving I property and toughness is remarkable.

なお、実施例1〜4の材料は導電性、伝熱性(二も優れ
ている。
In addition, the materials of Examples 1 to 4 have excellent electrical conductivity and heat conductivity (both of which are excellent).

Claims (3)

【特許請求の範囲】[Claims] (1)  熱硬化性樹脂100部、金−繊維5〜400
部、および該金属繊維100部(二対し低融点金属粉末
又は金属超微粉末0.1〜10部を含冶する成形用混合
物を、加熱加圧成形又は加熱加圧成形後、更に加熱処理
してなることを特徴と−する金属・熱硬化性樹脂複合材
料。
(1) 100 parts of thermosetting resin, 5 to 400 parts of gold-fiber
A molding mixture containing 100 parts of the metal fibers and 0.1 to 10 parts of low-melting point metal powder or ultrafine metal powder is heated and pressed, or after hot and pressed, the mixture is further heat-treated. A metal/thermosetting resin composite material that is characterized by its properties.
(2)  熱硬化性樹脂の主構成成分が、ノボラック坐
フェノール樹脂、耐熱性エポキシ樹脂、ジアリルフタレ
ート系樹脂、若しくはビスマレイミド系ポリイミド樹脂
であ番)、金属繊維が、銅、鉄、アルミニウム、若しく
は、その合金であり、低融点金属粉末が、スズ、若しく
はスズ−鉛合金であるか、又は金属超微粉末が銅、鉄、
ニッケル、亜鉛、アルミニウム、釦、又はその合金であ
る特許請求の範囲、第(11項記載の金属・熱硬化性樹
脂複合材料。
(2) The main component of the thermosetting resin is novolak phenolic resin, heat-resistant epoxy resin, diallyl phthalate resin, or bismaleimide polyimide resin), and the metal fiber is copper, iron, aluminum, or , an alloy thereof, and the low melting point metal powder is tin or a tin-lead alloy, or the ultrafine metal powder is copper, iron,
The metal/thermosetting resin composite material according to claim 11, which is nickel, zinc, aluminum, button, or an alloy thereof.
(3)加熱処理が、180〜250℃の温度で10分〜
24時間である特許請求の範囲、′9tIJ<1j項又
は第(2)項記戦の金属・熱硬化性樹脂複合材料。
(3) Heat treatment at a temperature of 180 to 250°C for 10 minutes or more
A metal/thermosetting resin composite material according to claim 9tIJ<1j or paragraph (2), which is 24 hours.
JP8807582A 1982-05-26 1982-05-26 Composite material of metal with thermosetting resin Pending JPS58206640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8807582A JPS58206640A (en) 1982-05-26 1982-05-26 Composite material of metal with thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8807582A JPS58206640A (en) 1982-05-26 1982-05-26 Composite material of metal with thermosetting resin

Publications (1)

Publication Number Publication Date
JPS58206640A true JPS58206640A (en) 1983-12-01

Family

ID=13932736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8807582A Pending JPS58206640A (en) 1982-05-26 1982-05-26 Composite material of metal with thermosetting resin

Country Status (1)

Country Link
JP (1) JPS58206640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617330A (en) * 1984-03-30 1986-10-14 Kabushiki Kaisha Toshiba Epoxy resin composition for cast molding
JPS63305168A (en) * 1987-06-05 1988-12-13 Matsushita Electric Works Ltd Resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617330A (en) * 1984-03-30 1986-10-14 Kabushiki Kaisha Toshiba Epoxy resin composition for cast molding
JPS63305168A (en) * 1987-06-05 1988-12-13 Matsushita Electric Works Ltd Resin composition

Similar Documents

Publication Publication Date Title
CN102702743A (en) High-toughness high-heat-conduction epoxy-imine resin system and preparation method and application thereof
TW201010531A (en) High thermal conductivity, high glass transition temperature (Tg) resin composition and its pre-impregnated and coating materials for printed circuit boards
CN107614619A (en) Thermosetting materials and cured products
JPWO2014051149A1 (en) Conductive adhesive
JP2740990B2 (en) Low thermal expansion resin composition for pressure molding
JP6968018B2 (en) Epoxy resin powder paint
CN108264763A (en) Cyanate ester resin feedstock composition and cyanate ester resin and cyanate ester resin metallic composite and preparation method
JPS58206638A (en) Composite material of metal with thermosetting resin
JPS58206640A (en) Composite material of metal with thermosetting resin
JP2013040062A (en) Hexagonal boron nitride powder, thermally conductive resin composition containing the same, and molded product obtained by the resin composition
JPS58206641A (en) Composite material of metal with thermosetting resin
KR20190047398A (en) Composite material
JPS58206639A (en) Composite material of metal with thermosetting resin
CN107186631A (en) A kind of super-hard abrasive tool of tri compound bonding agent and preparation method thereof
CN103881304B (en) There is the volatile composition epoxy resin of low organism
Chen et al. Flexural properties and electrical conductivity of epoxy resin/carbon fiber cloth/metallic powder composites
JPH02263858A (en) Epoxy resin composition
JPH03167248A (en) Phenol resin molding material
JP2004182775A (en) Resin composition and method for producing the same
JPS6257420A (en) Curable powder composition
JPH0528726B2 (en)
JP7572898B2 (en) Fiber-reinforced resin molding and method for producing same
CN118667320B (en) A method for preparing a wear-resistant modified polyaryletherketone composite material
JPS6315846A (en) Thermosetting resin composition
JP2024179114A (en) Powder coatings