JPS58206121A - Manufacture of thin-film semiconductor device - Google Patents
Manufacture of thin-film semiconductor deviceInfo
- Publication number
- JPS58206121A JPS58206121A JP9006782A JP9006782A JPS58206121A JP S58206121 A JPS58206121 A JP S58206121A JP 9006782 A JP9006782 A JP 9006782A JP 9006782 A JP9006782 A JP 9006782A JP S58206121 A JPS58206121 A JP S58206121A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- island
- film
- substrate
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野」
本発明は、基板上に堆積したシリコンミl膜を能動領域
として用いる4膜半導体装置の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a four-film semiconductor device using a silicon mil film deposited on a substrate as an active region.
非晶質基板上の薄膜シリコン半導体装置の実用化への最
大の難点は、電気的特性が単結晶シリコン半導体装置に
比べて者しく劣っていることである。その理由は、シリ
コン薄膜の結晶性にある。非晶質基板、特にプラスを基
板としたシリコン薄膜は、非l#&質、微結晶あるいは
粒径敬白゛Xの多結晶状態である。このようなシリコン
薄膜の電気的特性は単結晶シリコンのそれに比べて著し
く悪く、キャリア移動度は1 crr?lデlee以下
であり単結晶シリコンに比べて数百分の1の値にすぎな
い。The biggest difficulty in putting thin-film silicon semiconductor devices on an amorphous substrate into practical use is that their electrical characteristics are significantly inferior to those of single-crystal silicon semiconductor devices. The reason for this is the crystallinity of the silicon thin film. A silicon thin film using an amorphous substrate, especially a positive substrate, is in a non-I# crystalline, microcrystalline, or polycrystalline state with a grain size of X. The electrical properties of such a silicon thin film are significantly worse than those of single crystal silicon, and the carrier mobility is 1 crr? It is less than 1 de lee, which is only several hundred times lower than that of single crystal silicon.
シリコン薄膜の電気的特性を向上させる方法は、結晶粒
径の大きい多結晶状態にすることであり、理想的には更
に結晶粒径の大きい単結晶にすることである。そのため
には、シリコン薄膜の堆積fli!I#:金高くするこ
と、あるいは、堆積中のシリコンに何らかの方法でエネ
ルギーを供給することが考えられる。A method of improving the electrical properties of a silicon thin film is to make it into a polycrystalline state with a large crystal grain size, and ideally, to make it into a single crystal state with an even larger crystal grain size. For this purpose, a thin silicon film must be deposited! I#: It is possible to make the gold more expensive or to somehow supply energy to the silicon being deposited.
しかし、非晶質基板とじてガラスを用いた場合、堆積温
度には上限があり、例えばコーニングア059では約5
50℃が最高堆積温度である。この温度を越えてシリコ
ンの堆積を行なうとガラス板が変形してし埜いそれ以降
の製造工程でのフォトリングラフィが不ロ■H目になる
。However, when glass is used as the amorphous substrate, there is an upper limit to the deposition temperature; for example, for Corning A059, the deposition temperature is approximately 5
50°C is the maximum deposition temperature. If silicon is deposited above this temperature, the glass plate will be deformed and the photolithography in the subsequent manufacturing process will be poor.
薄膜シリコン十傳体に要求されるキャリア移動度は少な
くとも10ri/マ・10以上であり、その条件を満す
Q′こは、ンリコン堆積温度は通常のCVD法、あるい
はス′=′と装有法を用いても700℃以下にすること
はj+16かしい。便って低温でプラス吸上に堆積され
た/リコン薄lI#を何らかの方法で結晶粒径の大きい
シリコン博映に変えなければならない。The carrier mobility required for a thin-film silicon matrix is at least 10 ri/ma. Even if you use the method, it is difficult to lower the temperature to below 700°C. Therefore, the thin lI# deposited on a positive wick at low temperatures must be converted into silicon with a large grain size by some method.
本発明は、上記の点に轟み、4漠シリコン半導体装置の
′It気的詩的特性しく同上させることの出来る製造方
法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention addresses the above-mentioned points and aims to provide a manufacturing method capable of achieving all the characteristic characteristics of a silicon semiconductor device.
〔発明の概要〕 1・
本発明は、基板上に欄、嘴形成した島状シリコン唄硫に
イオン注入マスクを経た僕、エネルギービームを照射す
ることにより、シリコンの、MA粒径の増大を促進させ
ると同時に、シリコン中VC注入された不純物原子の電
気的な活性化を促進することを特徴とする。[Summary of the Invention] 1. The present invention promotes the increase in the MA grain size of silicon by irradiating an energy beam through an ion implantation mask to island-shaped silicon sulfur formed on a substrate. At the same time, it promotes electrical activation of impurity atoms implanted into silicon.
本発明により、非晶質基板上に形成された薄膜シリコン
半導体素子の電気的特性の大幅な改善が可能になった。The present invention has made it possible to significantly improve the electrical characteristics of thin film silicon semiconductor devices formed on amorphous substrates.
例えばチャンネル長(L)が20tun、チャンネルI
II!(W)が20 am、r−ト酸化膜厚1500X
のnチャンネルエンハンスメント型MO8FETの特性
は、レーザー光照射によシしきい値電圧(7丁)が18
Vから2,5Vに減少し、実効移動度(μeff)が、
0.1 ctn2/Y’l@eから16 CIIL”/
v・s*eと160倍の増加を示した。またシリコン膜
の平均結晶粒径も300〜500Xであったものが、レ
ーデ光照射後は0、5〜1.0μmと増大していた。ソ
ースドレーン領域は燐イオンを2×1015/cIIL
2注入した場合、レーデ光照射後のシート抵抗値は15
0〜250 Q10、活性化率80〜90%の低抵抗n
+多結晶シリコンになっていた。For example, channel length (L) is 20tun, channel I
II! (W) is 20 am, r-to oxide film thickness 1500X
The characteristics of the n-channel enhancement type MO8FET are that the threshold voltage (7 pins) is 18 when irradiated with laser light.
V to 2.5 V, the effective mobility (μeff) is
0.1 ctn2/Y'l@e to 16 CIIL"/
It showed a 160-fold increase in v·s*e. Furthermore, the average crystal grain size of the silicon film was 300 to 500X, but after irradiation with Raded light, it increased to 0.5 to 1.0 μm. The source/drain region contains phosphorus ions at 2×1015/cIIL.
2, the sheet resistance value after irradiation with Rede light is 15
0-250 Q10, low resistance n with activation rate 80-90%
+ It was made of polycrystalline silicon.
以下に図面を参照して本発明の実施例を述べる。本実施
例では、非晶簀基板としてコーニンSiH4の熱分解に
よる常圧←#→法で堆積した。Embodiments of the present invention will be described below with reference to the drawings. In this example, the amorphous substrate was deposited by the normal pressure←#→ method using thermal decomposition of Konin SiH4.
その時の基板温度は530℃であり、膜厚0,6〜0.
7 tm、平均結晶粒径300〜500X、キャリア移
動度は0.15 c3n2/v・leeであった。The substrate temperature at that time was 530°C, and the film thickness was 0.6~0.
7 tm, an average crystal grain size of 300 to 500X, and a carrier mobility of 0.15 c3n2/v·lee.
第1図は、ガラス基板1上に堆積したシリコン薄膜2を
FETとして必要な形状にエツチングした後、二酸化ケ
イ$(SiO2)膜3を絶縁膜と3は、常圧セ弁呼法で
堆積し、その時の基板温度430℃、膜厚は1500X
であった。ま九この二酸化ケイ素膜3は、FETのy−
ト絶縁膜として、matで残しておくものである。FIG. 1 shows that after a silicon thin film 2 deposited on a glass substrate 1 is etched into the shape required for an FET, a silicon dioxide (SiO2) film 3 is deposited as an insulating film by the atmospheric pressure separation method. , the substrate temperature at that time was 430℃, and the film thickness was 1500X.
Met. This silicon dioxide film 3 is the y-
The mat is left as an insulating film.
第2図は、二酸化ケイ素3膜を通して、ソース、ドレー
ン領域6,7に選択的にイオン注入5を付なっている状
!I14を示す。FgTのチャンネル領域へのイオン注
入マスクには、淳さ1μm程褪0レノストマスク4を1
史用している。ソース、ドレーン領域の抵抗は、充分低
くする必要があり、この場合は、燐(P)を150 k
sVの加速エネルギーで、シリコン中の注入菫がおよそ
2 X 10 /crn”になるようイオン注入した
。In Figure 2, ion implantation 5 is selectively applied to the source and drain regions 6 and 7 through the silicon dioxide 3 film! I14 is shown. For the ion implantation mask into the FgT channel region, a Rennost mask 4 with a thickness of about 1 μm was used.
Historically used. The resistance of the source and drain regions must be sufficiently low. In this case, phosphorus (P) is
Ions were implanted at an acceleration energy of sV so that the implantation density in silicon was approximately 2 x 10 /crn''.
第3図は、先のレジストマスク4を剥離した後に、イオ
ン注入工程が終了した島状シリコン領域にレーザー光8
を照射している状態を示している。レーザー照射条件は
、出力6WのCWArレーデ−から放出される波長51
45Xの光線をおよそ200μmφ(レーザー管端では
、およそ2■φ)に集光し、走査速度60 cmAn
i n、走査光の重なりは10μ%/5topとした。FIG. 3 shows that after the resist mask 4 has been peeled off, a laser beam 8 is applied to the island-like silicon region where the ion implantation process has been completed.
This shows the state in which the light is being irradiated. The laser irradiation conditions are a wavelength of 51 emitted from a CWAr radar with an output of 6W.
A 45X light beam was focused on approximately 200 μmφ (approximately 2 mmφ at the end of the laser tube), and the scanning speed was 60 cmAn.
In, the overlap of the scanning lights was set to 10 μ%/5top.
この結果、シリコン薄膜中では、結晶成長が促進され、
膜の平均結晶粒径は300〜500Xの微結晶から、0
.5〜1μmの大きさに増大し、シリコン膜は着しい(
220)配向を持った多結晶シリコン薄膜に変化する。As a result, crystal growth is promoted in the silicon thin film,
The average crystal grain size of the film ranges from 300 to 500X microcrystals to 0.
.. The size increases to 5 to 1 μm, and the silicon film becomes thick (
220) Transforms into an oriented polycrystalline silicon thin film.
また、燐(P)イオンが注入されたソース、ドレーン領
域6,7では、結晶成長と同時に燐原子のシリコン格子
位置への1a侯が進行し、1気的な活性化率80〜90
チ、シート抵抗150〜250 rVOの低抵抗口形多
結晶シリコンが形成されていた。In addition, in the source and drain regions 6 and 7 into which phosphorus (P) ions are implanted, phosphorus atoms move to silicon lattice positions at the same time as crystal growth, and the activation rate is 80 to 90.
A low-resistance polycrystalline silicon having a sheet resistance of 150 to 250 rVO was formed.
第4図は、レーザー光照射終った後、先に堆積しておい
て、二酸化ケイ素膜3上に、ソース、ドレーンおよびy
−トの各電極9,10および11’z形成した様子を示
す、各電甑9〜1ノは、ソース、ドレーン領域を覆う二
酸化ケイ*WXJにコンタクトホールを開孔後、およそ
0.8μmの厚さのアルミニウムft真空蒸着シ、コれ
を・苧ター二/グ形成したものである。FIG. 4 shows that after the laser beam irradiation, the source, drain and y
- Each of the electrodes 9 to 1 has a diameter of approximately 0.8 μm after opening a contact hole in the silicon dioxide*WXJ covering the source and drain regions. It is made by vacuum evaporation of aluminum to a thickness of ft.
本実施例のMOSFETの特性は、しきい値電圧(Vt
)は$’!−t2.5V、実効移動度(part )
Fiおよそ16crF?/v・■cで6った。The characteristics of the MOSFET of this example are as follows: threshold voltage (Vt
) is $'! -t2.5V, effective mobility (part)
Fi approximately 16crF? /v・■c got 6.
上記実施例では、非晶質基板として、プラス板を例にし
たが、種々のセラミ、クス板、そして個々の絶縁膜、が
堆積された単結晶シリコン板を基板として用いても同等
の結果が得られる。In the above example, a plastic plate was used as an example of the amorphous substrate, but the same results can be obtained by using a single crystal silicon plate on which various ceramics, ceramic plates, and individual insulating films are deposited as the substrate. can get.
レーデ−光照射時に、非晶質基板の温度を400℃程度
まで上げることは、シリコン薄膜の結晶成長をよシ促進
する上で好ましい。It is preferable to raise the temperature of the amorphous substrate to about 400° C. during radar light irradiation in order to promote crystal growth of the silicon thin film.
また、レーデ−光の代りに、1子線、Xsフラッシスラ
ングなど、他のエネルギービーム照射等によっても上記
実施例と同等の効果が得られる。Further, instead of the radar beam, the same effect as in the above embodiment can be obtained by using other energy beam irradiation such as a single beam or an Xs flash slung beam.
本発明は、FETのみならず、・ンイバーラトランノス
タの製造にも勿論適用出来る。The present invention can of course be applied not only to the production of FETs but also to the production of universal transistors.
第1図〜第4図は本発明の一実施例のMDSFET製造
工程を示す図である。
1・・・非晶質基板(プラス)、2・・・シリコン4領
域、7・・・ドレイン領域、8・・・レーデ−光、9゜
10.11・・・電極。
出願人代理人 弁理士 鈴 江 武 彦第1
第2
第3
=べ
/71 to 4 are diagrams showing the manufacturing process of an MDSFET according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Amorphous substrate (plus), 2... Silicon 4 region, 7... Drain region, 8... Radar light, 9°10.11... Electrode. Applicant's agent Patent attorney Takehiko Suzue 1st 2nd 3rd = B/7
Claims (1)
て薄膜半導体装置を製造するに際して、島状シリコン領
域を形成した後、この島状シリコン領域を含む基板全面
を絶縁膜で被覆し、次いでこの絶縁膜を通して前記島状
シリコン領域に選択的に不純物をイオン注入した鏝、前
記島状シリコン領域にエネルギービームを照射してシリ
コンの結晶粒径の増大化とイオン注入不純物の電気的活
性化を同時に行うようにしたことを特徴とする薄膜半導
体装置の製造方法。When manufacturing a thin film semiconductor device using a silicon thin film deposited on a substrate as an active region, after forming an island-like silicon region, the entire surface of the substrate including the island-like silicon region is covered with an insulating film. A trowel is used to selectively implant impurity ions into the island-like silicon region through a film, and an energy beam is irradiated onto the island-like silicon region to simultaneously increase the silicon crystal grain size and electrically activate the ion-implanted impurity. A method for manufacturing a thin film semiconductor device, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9006782A JPS58206121A (en) | 1982-05-27 | 1982-05-27 | Manufacture of thin-film semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9006782A JPS58206121A (en) | 1982-05-27 | 1982-05-27 | Manufacture of thin-film semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58206121A true JPS58206121A (en) | 1983-12-01 |
Family
ID=13988192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9006782A Pending JPS58206121A (en) | 1982-05-27 | 1982-05-27 | Manufacture of thin-film semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58206121A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6242436A (en) * | 1985-08-19 | 1987-02-24 | Sony Corp | Manufacture of semiconductor device |
JPS6295874A (en) * | 1985-10-23 | 1987-05-02 | Sony Corp | Manufacture of semiconductor device |
JPS62299011A (en) * | 1986-06-18 | 1987-12-26 | Matsushita Electric Ind Co Ltd | Annealing of polycrystalline thin-film substrate |
JPS6347980A (en) * | 1986-08-18 | 1988-02-29 | Fujitsu Ltd | Manufacture of thin film transistor |
JPH02224255A (en) * | 1989-02-27 | 1990-09-06 | Hitachi Ltd | liquid crystal display device |
JPH0442969A (en) * | 1990-06-06 | 1992-02-13 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacture thereof |
WO1994000882A1 (en) * | 1992-06-24 | 1994-01-06 | Seiko Epson Corporation | Thin film transistor, solid-state device, display device, and method for manufacturing thin film transistor |
JPH0697443A (en) * | 1991-07-12 | 1994-04-08 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
JPH06291316A (en) * | 1992-02-25 | 1994-10-18 | Semiconductor Energy Lab Co Ltd | Thin film insulated gate semiconductor device and manufacture thereof |
JPH0758342A (en) * | 1994-07-11 | 1995-03-03 | Sony Corp | Production of thin-film transistor |
US5397718A (en) * | 1992-02-21 | 1995-03-14 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing thin film transistor |
US5894151A (en) * | 1992-02-25 | 1999-04-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having reduced leakage current |
US5942768A (en) * | 1994-10-07 | 1999-08-24 | Semionductor Energy Laboratory Co., Ltd. | Semiconductor device having improved crystal orientation |
JP2000004026A (en) * | 1999-06-02 | 2000-01-07 | Semiconductor Energy Lab Co Ltd | Manufacture of mis-type semiconductor device |
US6028333A (en) * | 1991-02-16 | 2000-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors |
US6221701B1 (en) * | 1984-05-18 | 2001-04-24 | Semiconductor Energy Laboratory Co., Ltd. | Insulated gate field effect transistor and its manufacturing method |
US6417543B1 (en) | 1993-01-18 | 2002-07-09 | Semiconductor Energy Laboratory Co., Ltd. | MIS semiconductor device with sloped gate, source, and drain regions |
US6709907B1 (en) | 1992-02-25 | 2004-03-23 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating a thin film transistor |
US6943764B1 (en) | 1994-04-22 | 2005-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Driver circuit for an active matrix display device |
US6953713B2 (en) | 1992-05-29 | 2005-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Electric device, matrix device, electro-optical display device and semiconductor memory having thin-film transistors |
JP2006019527A (en) * | 2004-07-01 | 2006-01-19 | Dainippon Printing Co Ltd | Manufacturing method for polycrystalline silicon thin film, manufacturing method for thin film transistor, and substrate with silicon thin film |
US7145173B2 (en) | 1994-04-22 | 2006-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor integrated circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5688317A (en) * | 1979-12-20 | 1981-07-17 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1982
- 1982-05-27 JP JP9006782A patent/JPS58206121A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5688317A (en) * | 1979-12-20 | 1981-07-17 | Fujitsu Ltd | Manufacture of semiconductor device |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660574B1 (en) | 1984-05-18 | 2003-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a semiconductor device including recombination center neutralizer |
US6221701B1 (en) * | 1984-05-18 | 2001-04-24 | Semiconductor Energy Laboratory Co., Ltd. | Insulated gate field effect transistor and its manufacturing method |
JPS6242436A (en) * | 1985-08-19 | 1987-02-24 | Sony Corp | Manufacture of semiconductor device |
JPS6295874A (en) * | 1985-10-23 | 1987-05-02 | Sony Corp | Manufacture of semiconductor device |
JPS62299011A (en) * | 1986-06-18 | 1987-12-26 | Matsushita Electric Ind Co Ltd | Annealing of polycrystalline thin-film substrate |
JPS6347980A (en) * | 1986-08-18 | 1988-02-29 | Fujitsu Ltd | Manufacture of thin film transistor |
JPH02224255A (en) * | 1989-02-27 | 1990-09-06 | Hitachi Ltd | liquid crystal display device |
JPH0442969A (en) * | 1990-06-06 | 1992-02-13 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacture thereof |
US6028333A (en) * | 1991-02-16 | 2000-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors |
JPH0697443A (en) * | 1991-07-12 | 1994-04-08 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
US5397718A (en) * | 1992-02-21 | 1995-03-14 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing thin film transistor |
US7649227B2 (en) | 1992-02-25 | 2010-01-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of forming the same |
US5894151A (en) * | 1992-02-25 | 1999-04-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having reduced leakage current |
US7148542B2 (en) | 1992-02-25 | 2006-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of forming the same |
US6709907B1 (en) | 1992-02-25 | 2004-03-23 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating a thin film transistor |
JPH06291316A (en) * | 1992-02-25 | 1994-10-18 | Semiconductor Energy Lab Co Ltd | Thin film insulated gate semiconductor device and manufacture thereof |
US6953713B2 (en) | 1992-05-29 | 2005-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Electric device, matrix device, electro-optical display device and semiconductor memory having thin-film transistors |
US7223996B2 (en) | 1992-05-29 | 2007-05-29 | Semiconductor Energy Laboratory Co., Ltd. | Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors |
WO1994000882A1 (en) * | 1992-06-24 | 1994-01-06 | Seiko Epson Corporation | Thin film transistor, solid-state device, display device, and method for manufacturing thin film transistor |
US5508216A (en) * | 1992-06-24 | 1996-04-16 | Seiko Epson Corporation | Thin film transistor, solid device, display device and manufacturing method of a thin film transistor |
KR100309934B1 (en) * | 1992-06-24 | 2002-06-20 | 구사마 사부로 | Method of manufacturing thin film transistor, solid state device, display device, and thin film transistor |
US5757048A (en) * | 1992-06-24 | 1998-05-26 | Seiko Epson Corporation | Thin film transistor, solid state device, display device and manufacturing method of a thin film transistor |
US6417543B1 (en) | 1993-01-18 | 2002-07-09 | Semiconductor Energy Laboratory Co., Ltd. | MIS semiconductor device with sloped gate, source, and drain regions |
US7351624B2 (en) | 1993-01-18 | 2008-04-01 | Semiconductor Energy Laboratory Co., Ltd. | MIS semiconductor device and method of fabricating the same |
US6984551B2 (en) | 1993-01-18 | 2006-01-10 | Semiconductor Energy Laboratory Co., Ltd. | MIS semiconductor device and method of fabricating the same |
CN1314080C (en) * | 1993-01-18 | 2007-05-02 | 株式会社半导体能源研究所 | MIS semiconductor device manufacture method |
US6943764B1 (en) | 1994-04-22 | 2005-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Driver circuit for an active matrix display device |
US7477222B2 (en) | 1994-04-22 | 2009-01-13 | Semiconductor Energy Laboratory Co., Ltd. | Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device |
US7145173B2 (en) | 1994-04-22 | 2006-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor integrated circuit |
US7166862B2 (en) | 1994-04-22 | 2007-01-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor integrated circuit |
JPH0758342A (en) * | 1994-07-11 | 1995-03-03 | Sony Corp | Production of thin-film transistor |
US6627487B2 (en) | 1994-10-07 | 2003-09-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6211536B1 (en) | 1994-10-07 | 2001-04-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having improved crystal orientation |
US5942768A (en) * | 1994-10-07 | 1999-08-24 | Semionductor Energy Laboratory Co., Ltd. | Semiconductor device having improved crystal orientation |
JP2000004026A (en) * | 1999-06-02 | 2000-01-07 | Semiconductor Energy Lab Co Ltd | Manufacture of mis-type semiconductor device |
JP2006019527A (en) * | 2004-07-01 | 2006-01-19 | Dainippon Printing Co Ltd | Manufacturing method for polycrystalline silicon thin film, manufacturing method for thin film transistor, and substrate with silicon thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58206121A (en) | Manufacture of thin-film semiconductor device | |
US4876582A (en) | Crystallized silicon-on-insulator nonvolatile memory device | |
TW595003B (en) | Thin-film transistor and method for manufacturing same | |
JPS5696854A (en) | Semiconductor memory device | |
JPH02148831A (en) | Laser annealing method and thin film semiconductor device | |
JPH02277244A (en) | Manufacturing method of semiconductor device | |
JPS58186949A (en) | Method for manufacturing thin film semiconductor devices | |
NL194524C (en) | Method for manufacturing a thin film transistor. | |
JPS62104021A (en) | Formation of silicon semiconductor layer | |
JPS6276772A (en) | Manufacturing method of field effect transistor | |
JPS5687361A (en) | Semiconductor device and its manufacture | |
JP4316149B2 (en) | Thin film transistor manufacturing method | |
JPH0797565B2 (en) | Method for manufacturing semiconductor device | |
JP2771812B2 (en) | Method for manufacturing semiconductor device | |
JP3143967B2 (en) | Method for manufacturing thin film transistor | |
JPH0412629B2 (en) | ||
JPS58182816A (en) | Recrystallizing method of silicon family semiconductor material | |
JP3032542B2 (en) | Method for manufacturing thin film transistor | |
KR100274886B1 (en) | Thin film transistor and method for manufacturing the same | |
JP3182226B2 (en) | Method for manufacturing conductive polycrystalline silicon film | |
JPS5856460A (en) | Manufacturing method of semiconductor device | |
JP2565192B2 (en) | Method for manufacturing semiconductor device | |
JPH04370937A (en) | Manufacturing method of semiconductor device | |
JPS58143581A (en) | Manufacturing method of semiconductor device | |
JPS5825222A (en) | Manufacture of semiconductor device |