[go: up one dir, main page]

JPS58205801A - Measuring head - Google Patents

Measuring head

Info

Publication number
JPS58205801A
JPS58205801A JP9040282A JP9040282A JPS58205801A JP S58205801 A JPS58205801 A JP S58205801A JP 9040282 A JP9040282 A JP 9040282A JP 9040282 A JP9040282 A JP 9040282A JP S58205801 A JPS58205801 A JP S58205801A
Authority
JP
Japan
Prior art keywords
probe shaft
main body
contact
displacement
measuring head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9040282A
Other languages
Japanese (ja)
Other versions
JPH0421802B2 (en
Inventor
Hironori Noguchi
宏徳 野口
Yuuji Yunaka
柚中 裕士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP9040282A priority Critical patent/JPS58205801A/en
Publication of JPS58205801A publication Critical patent/JPS58205801A/en
Publication of JPH0421802B2 publication Critical patent/JPH0421802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve the efficiency of measurement by a constitution wherein a probe shaft can move to be displaced freely while a contact is made to touch a free curved surface constantly even when said surface, an object of the measurement, changes the direction. CONSTITUTION:In the automatic measurement, a probe shaft 4 moves along the free curved surface 81A of a work piece 81, which is an object of the measurement, and on the occaision, a motor 26 is driven by a control unit 77 to shift the direction of the actuation of a spring, whereby a contact 5 is made to touch the free curved surface 81A constantly. Accordingly, the probe shaft 4 rotates when it moves along a part wherein a reference track is not in accord with said surface 81A. This rotation of the probe shaft 4 is detected as components in the directions of rectangular X and Y axes by displacement detectors 41 and 42, while the displacement with the movement thereof in the direction of a Z axis is detected by a displacement detector 16. That is, the deviation of the track of the moved and displaced contact 5 from the reference track is detected in sequence, and detection signals thus obtained are input to a signal processing unit 76.

Description

【発明の詳細な説明】 本発明は測定ヘッドに係り、更に詳しくは形状測定用の
測定ヘッドの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring head, and more particularly to an improvement in a measuring head for shape measurement.

2次元または3次元自由曲面を形状測定機によシ測定す
る方法としては、自由曲面上の複数点の座標をいわゆる
タッチ信号ゾローブで検知してこれらを演算処理する方
法が織られている。しかしながらこのような方法を採用
する場合にあっては、複雑な形状の曲面を測定するには
極めて多数の点についての座標を求めなければならず、
迅速作業が不可能となり、しかも、高価な演算装置を用
いなければならないという短所がある。
As a method for measuring a two-dimensional or three-dimensional free-form surface using a shape measuring machine, a method has been proposed in which the coordinates of a plurality of points on the free-form surface are detected using a so-called touch signal zorobe and these are subjected to arithmetic processing. However, when using such a method, it is necessary to determine the coordinates of an extremely large number of points in order to measure a curved surface with a complex shape.
This method has disadvantages in that it is impossible to work quickly and requires the use of expensive arithmetic equipment.

そこで1曲面に沿ってプローブ軸を移動させて連続信号
として曲面形状を検知する方法が既に織られているが、
従来は曲面の向きが変化するとプローブ軸を対応させる
ことができなくなる場合がある等、1個のプローブ軸で
は十分な測定が出来ず、測定能率の劣るものであった。
Therefore, a method has already been developed in which the probe axis is moved along one curved surface and the curved surface shape is detected as a continuous signal.
Conventionally, if the orientation of a curved surface changes, the probe axis may not be able to match, and therefore sufficient measurement cannot be performed with one probe axis, resulting in poor measurement efficiency.

本発明の目的は、測定能率の優れた測定ヘラrを提供す
るにある。
An object of the present invention is to provide a measuring spatula r with excellent measurement efficiency.

本発明は、先端に接触子を有するプローブ軸と。The present invention relates to a probe shaft having a contact at its tip.

プローブ軸を本体ケースに支持し且つ前記接触子の本体
ケースに対する移動変位を許容する支持手段と、支持手
段によシ支持されたプローブ軸を所定の姿勢に保持する
付勢手段と、前記接触子の本体ケースに対する移動変位
を検出する変位検出器と、を設け、前記付勢手段にょ如
プローブ軸を常に測定対象である自由曲面側に付勢する
などして接触子が常に前記自由曲面に当接することがで
きるようにするとともに、前記自由曲面に当接している
接触子の本体ケースに対する移動変位を前記変位検出器
によシ検出できるようにして前記目的を達成しようとす
るものである。
a support means for supporting the probe shaft on the main body case and allowing movement of the contact with respect to the main body case; a biasing means for holding the probe shaft supported by the support means in a predetermined posture; and the contact. a displacement detector for detecting movement displacement with respect to the main body case, and the biasing means always biases the probe shaft toward the free-form surface to be measured so that the contact always comes into contact with the free-form surface. The object is to be achieved by making it possible to make contact with the free-form surface and detecting the displacement of the contact with respect to the main body case in contact with the free-form surface by the displacement detector.

以下1本発明の実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

第1.2図には本発明による測定ヘッドの一実施例が示
されておシ、これらの図において、シャンク1の上端側
には図示しない測定機本体の可動部が連結されるように
なっている。なお、ここにいう測定機本体とは数値制御
工作機械等の加工機械を含むものである。
1.2 shows an embodiment of the measuring head according to the present invention. In these figures, a movable part of the measuring machine body (not shown) is connected to the upper end side of the shank 1. ing. Note that the measuring machine body referred to herein includes a processing machine such as a numerically controlled machine tool.

シャンク1の下端側には、厚肉円盤状の上蓋部2を介し
て円筒状のケース本体3が固定され、ケース本体3内に
はプローブ軸4がケース本体3の中心線に沿って収納さ
れている。プローブ軸4の先端には接触子5が設けられ
、接触子5はケース本体3の下端側よシ所定長だけ突出
している。また、プローブ軸4の中心軸線は前記シャン
クlの中心軸線と重なり合って一致できるようになって
おシ、ここにおいて1重なシ合って一致した状態におけ
るプローブ軸4の中心軸線方向を中立軸線方向というこ
ととする。
A cylindrical case body 3 is fixed to the lower end side of the shank 1 via a thick-walled disc-shaped upper lid part 2, and a probe shaft 4 is housed inside the case body 3 along the center line of the case body 3. ing. A contact 5 is provided at the tip of the probe shaft 4, and the contact 5 protrudes beyond the lower end of the case body 3 by a predetermined length. In addition, the central axis of the probe shaft 4 is designed to overlap and coincide with the central axis of the shank l, and here, the direction of the central axis of the probe shaft 4 in a state where they overlap and coincide is the neutral axis direction. That is to say.

プローブ軸4の長手方向中間部には球体6が設けられて
いる。球体6の中心点はプローブ軸4の軸線上に位置さ
れるとともに1球体6の周面にょシ球状周面部6Aが構
成されている。また、プローブ軸4は前記球体6の下方
側近傍において厚肉円盤状の軸受部材7の中心部に挿通
されている。
A sphere 6 is provided at the longitudinally intermediate portion of the probe shaft 4 . The center point of the sphere 6 is located on the axis of the probe shaft 4, and the circumferential surface of one sphere 6 forms a spherical circumferential surface portion 6A. Further, the probe shaft 4 is inserted through the center of a thick disk-shaped bearing member 7 near the lower side of the sphere 6.

軸受部材7の上端面側には半球状の球状受面7人が形成
され1球状受面7人は前記球状局面6Aと同芯状に位置
されている。
Seven hemispherical spherical bearing surfaces are formed on the upper end surface side of the bearing member 7, and each of the seven spherical bearing surfaces is positioned concentrically with the spherical curved surface 6A.

球状受面7Aと球状周面6Aとの間にはころがシ装置8
が介装され、このころがシ装置8は、第3.4図にも示
されるように、入角錐台状のリテーナ9と、リテーナ9
の台形板状の各局面の各々に3個づつ保持されたベアリ
ング?−ル状の転動球10とを有している。このころが
り装置8を介して軸受部材7に支軸されるプローブ軸4
はプa−ゾ軸4の軸線上の一点、即ち球体6の中心点を
回動中心としてあらゆる方向に回動自在とされており、
ここにおいて、プローブ軸4を本体ケース3に支持し且
つ接触子5の本体ケース3に対する移動変位を許容する
支持手段が、前記球状局面部6A、球状受面7Aを有す
る軸受部材7.およびころがシ装置8により構成されて
いる。
A roller device 8 is provided between the spherical receiving surface 7A and the spherical circumferential surface 6A.
As shown in FIG.
Three bearings are held on each side of the trapezoidal plate? - a ball-shaped rolling ball 10. Probe shaft 4 supported by bearing member 7 via this rolling device 8
is rotatable in all directions about a point on the axis of the a-zo shaft 4, that is, the center point of the sphere 6.
Here, the support means for supporting the probe shaft 4 on the main body case 3 and allowing movement of the contact 5 with respect to the main body case 3 is a bearing member 7. having the spherical curved surface portion 6A and the spherical receiving surface 7A. and a roller device 8.

前記球体6は下半分側が球状受面7A内に嵌入される一
方、プローブ軸4の軸受部材7の下方側の所定位置には
ばね受け11が被嵌固定されるとともに、ばね受け11
と軸受部材7との間はプローブ軸4を下方に付勢する比
較的微弱な圧縮コイルばね12がプローブ軸4を囲繞す
る状態で介装されておシ、球状局面部6人およびころが
シ装置8、ころがシ装置8および球状受面7人の各々は
互いに離隔不能とされている。また、軸受部材7の上端
面上には、比較的短寸の円管体13が球体6の上半分側
を囲繞するよう圧して固定され、この円管体13によシ
前記ころが9装置8が適正位置に維持されるようになっ
ている。
The lower half of the sphere 6 is fitted into the spherical receiving surface 7A, while a spring receiver 11 is fitted and fixed at a predetermined position below the bearing member 7 of the probe shaft 4.
A relatively weak compression coil spring 12 that urges the probe shaft 4 downward is interposed between the shaft and the bearing member 7 so as to surround the probe shaft 4. The device 8, the roller device 8, and the seven spherical receiving surfaces cannot be separated from each other. Further, a relatively short cylindrical body 13 is fixed on the upper end surface of the bearing member 7 so as to surround the upper half of the sphere 6, and the 9 rollers are supported by this cylindrical body 13. 8 is maintained in the proper position.

軸受部材7にはボールブツシュ14を介シテ厚肉リング
状の固定リング15が被嵌され、軸受部材7は固定リン
グ15に対してプローブ軸4の中立軸線方向に沿って移
動変位可能となっておシ。
A thick ring-shaped fixing ring 15 is fitted onto the bearing member 7 via a ball bush 14, and the bearing member 7 is movable relative to the fixing ring 15 along the neutral axis direction of the probe shaft 4. Sh.

さらに、前記移動変位は変位検出器16によシ検出され
るようになっている。変位検出器16は。
Furthermore, the movement displacement is detected by a displacement detector 16. The displacement detector 16 is.

軸受部材7に垂設されたスピンドル17とスピンドル1
7の上端側に固定されたコア18と、コア18を囲繞す
るよう支持杆19を介して本体ケース3に支持されたコ
イル2oとを有し、コイル20内を直線状に変位するコ
ア18の変位量が電気信号として検出される差動トラン
ス型検出器として構成されている。
Spindle 17 and spindle 1 vertically installed on bearing member 7
7, and a coil 2o supported by the main body case 3 via a support rod 19 so as to surround the core 18, and the core 18 is linearly displaced within the coil 20. It is configured as a differential transformer type detector in which the amount of displacement is detected as an electrical signal.

また、軸受部材7および固定・リング15は下部支持体
21を介して本体ケース3に支持されている。下部支持
体21は、下端側の略半分が上端側の略半分に比して小
径な略段付き円筒状に形成され、下部支持体21め内周
側の水平面21A上に前記軸受部材7および固定リング
15が載置されている。固定リング15は下部支持体2
1に固定され、一方、軸受部材7は支持部材21内に埋
設された緩衝部材としてのコイルばね22にょシ上方側
に付勢されておシ、軸受部材7の上方への移動変位が容
易になるとと本に下方への移動変位の勢いが緩けられる
ようになっている。
Further, the bearing member 7 and the fixing ring 15 are supported by the main body case 3 via a lower support member 21. The lower support body 21 is formed into a substantially stepped cylindrical shape in which approximately half of the lower end side is smaller in diameter than approximately half of the upper end side, and the bearing member 7 and A fixing ring 15 is placed. The fixing ring 15 is attached to the lower support 2
On the other hand, the bearing member 7 is biased upward by a coil spring 22 as a buffer member embedded in the support member 21, so that the upward movement of the bearing member 7 is facilitated. As a result, the momentum of the book's downward movement is relaxed.

下部支持体21は、本体ケース3の下端開口部に嵌合さ
れて?ルトにより固定されるとともに。
The lower support body 21 is fitted into the lower end opening of the main body case 3? At the same time, it is fixed by the root.

下部支持体21の下端側の小径部21Bには略リング状
の回転体24が回転自在に被嵌されている。
A substantially ring-shaped rotating body 24 is rotatably fitted into the small diameter portion 21B on the lower end side of the lower support body 21.

回転体24は、前記小径部21Bの下端に固定された鍔
部材23により摺動自在に保持されるとともに1回転体
24の外周部には平歯状の歯車部24Aが刻設され、こ
の歯車部24Aにはピニオン25が噛合されている。ピ
ニオン25は、下部支持体21の外周部に取付けられた
モータ26の出力軸に固定され、モータ26によシ回転
体24は反転可能に回転されるようになっている。
The rotating body 24 is slidably held by a flange member 23 fixed to the lower end of the small diameter portion 21B, and a spur toothed gear portion 24A is carved on the outer circumference of the rotating body 24. A pinion 25 is meshed with the portion 24A. The pinion 25 is fixed to the output shaft of a motor 26 attached to the outer periphery of the lower support 21, and the motor 26 rotates the rotating body 24 reversibly.

回転体24の下端開口部には、円盤状の回転盤27が前
記開口部を閉塞するように?ルトを介して固定されてい
る。回転盤27の中心部には挿通孔27Aが穿設され、
この挿通孔27Aにはプローブ軸4が所定の間隙を有し
ながら挿通されている。
A disk-shaped rotary disk 27 is provided at the lower end opening of the rotating body 24 so as to close the opening. Fixed via root. An insertion hole 27A is bored in the center of the rotary disk 27,
The probe shaft 4 is inserted through the insertion hole 27A with a predetermined gap.

また、回転盤27の上端面には取付板28を介して付勢
手段としての板ばね状の1個のばね29の基端が固定さ
れている。
Further, the base end of one spring 29 in the shape of a leaf spring is fixed to the upper end surface of the rotary disk 27 via a mounting plate 28 as a biasing means.

ばね29の先端は、プローブ軸4に被嵌固定されたベア
リング30を介して、プローブ軸4にころがり係合され
ておシ゛、プローブ軸4は前記ばね29によυ付勢され
前記中立軸線位置に対して傾いた所定の姿勢に保持され
るよう構成されている。
The tip of the spring 29 is rolled and engaged with the probe shaft 4 via a bearing 30 fitted and fixed to the probe shaft 4, and the probe shaft 4 is biased by the spring 29 to the neutral axis position. It is configured to be held in a predetermined posture tilted to the ground.

また、プローブ軸4を中心としてばね29の反対側には
、板ばね状の位置規制部材61が回転盤27上に固定さ
れておシ、プローブ軸4が前記ばね29によシ傾けられ
た状態においてプローブ軸き 4の傾状態を規制するようになっている。
Further, on the opposite side of the spring 29 with respect to the probe shaft 4, a plate spring-shaped position regulating member 61 is fixed on the rotary disk 27, and the probe shaft 4 is tilted by the spring 29. The tilting state of the probe shaft 4 is regulated at this point.

また、軸受部材7上には、本体ケース3に対する接触子
5の移動変位を互いに直交する2成分の移動変位量とし
て検出する2個の変位検出器41および42が設けられ
ている(第2図参照)。これら変位検出器41.42を
併せて説明すれば、変位検出器41.42は差動トラン
ス型検出器よシなり、軸受部材7に台ブロック43を介
して垂設された支持杆44によシ所定の高さに固定され
たコイル45と、コイル45内をプローブ軸4の径方向
に沿って移動変位するコア46と、コア46の移動変位
方向即ちプローブ軸4の径方向に油ってコア46の中心
部を貫通するスピンドル47と、によす構成されている
Further, two displacement detectors 41 and 42 are provided on the bearing member 7 to detect the movement displacement of the contactor 5 with respect to the main body case 3 as the movement displacement amount of two components orthogonal to each other (see Fig. 2). reference). If these displacement detectors 41 and 42 are explained together, the displacement detectors 41 and 42 are similar to differential transformer type detectors, and are connected to a support rod 44 that is vertically installed on the bearing member 7 via a stand block 43. The coil 45 is fixed at a predetermined height, the core 46 is moved and displaced within the coil 45 along the radial direction of the probe shaft 4, and the core 46 is moved and displaced in the direction of movement of the core 46, that is, the radial direction of the probe shaft 4. The spindle 47 extends through the center of the core 46.

スピンドル47の一端はプローブ軸4側に突出し、この
端部には略り字型の可動片48の一端側が固定されてい
る。可動片48は、互いに平行に配された2枚の板ばね
よシなる平行ばね49によυ前記台ブロック43を介し
て軸受部材7に支持されている。平行はね49の各々の
板ばねにはスピンドル47が挿通する小孔が穿設される
とともに、前記各板ばねには両側よシ保形部材50が取
付けられている。保形部材50は中央部に丸穴51を有
する所定の厚さの角型板状に形成され、また、保形部材
50により両側から挾持された前記板ばねの撓み具合が
調節されておシ、前記平行はね49によ多連結されるス
ピンドル47と可動片48とは水平方向に沿って互いに
平行且つ同じ向きに移動変位するよう構成されている。
One end of the spindle 47 protrudes toward the probe shaft 4 side, and one end of an abbreviated movable piece 48 is fixed to this end. The movable piece 48 is supported by the bearing member 7 via the base block 43 by parallel springs 49, which are two leaf springs arranged parallel to each other. Each leaf spring of the parallel spring 49 has a small hole through which the spindle 47 is inserted, and shape retaining members 50 are attached to both sides of each leaf spring. The shape-retaining member 50 is formed into a rectangular plate shape of a predetermined thickness with a round hole 51 in the center, and the degree of deflection of the leaf springs held from both sides by the shape-retaining member 50 is adjusted. The spindle 47 and the movable piece 48, which are connected to the parallel spring 49, are configured to move parallel to each other and in the same direction along the horizontal direction.

可動片48の一側縁にはプローブ軸4の径方向に沿って
当接ピン52が係合片53に向って突設されている。保
合片53はプローブ軸4の上端に設けられた小球体より
なり、一方、可動片48の上端に突設された取付ピン5
4と、前記保合片53の上端側にプローブ軸4の軸方向
に沿って設けられた固定ピン55との間には比較的微弱
な引張りコイルばね56が介装され、前記スピンドル4
7は可動片48および当接ピン52を介して常時保合片
53に当接するようになっている。
An abutment pin 52 is provided on one side edge of the movable piece 48 to protrude toward the engagement piece 53 along the radial direction of the probe shaft 4 . The retaining piece 53 is made of a small sphere provided on the upper end of the probe shaft 4, while the mounting pin 5 is provided protrudingly on the upper end of the movable piece 48.
4 and a fixing pin 55 provided along the axial direction of the probe shaft 4 on the upper end side of the retaining piece 53, a relatively weak tension coil spring 56 is interposed between the spindle 4
7 is in constant contact with the retaining piece 53 via the movable piece 48 and the abutting pin 52.

次に本実施例の作用につき、第5図を参照して説明する
Next, the operation of this embodiment will be explained with reference to FIG.

第5図において、前記本体ケース3は測定機本体71の
スライダ72に取付けられ、スライダ72には駆動部7
3が連結されている。スライダ72の移動変位は検出部
74によシ互いに直交する3軸方向の成分として検出さ
れる。検出部74によシ検出された検出信号は、計測制
御部75の信号処理部76へ入力され、また、この信号
処理部76には本体ケース3内の変位検出器41.42
 。
In FIG. 5, the main body case 3 is attached to a slider 72 of a measuring instrument main body 71, and the slider 72 has a drive section 7.
3 are connected. The displacement of the slider 72 is detected by the detection unit 74 as components in three axial directions orthogonal to each other. The detection signal detected by the detection unit 74 is input to the signal processing unit 76 of the measurement control unit 75.
.

16からの検出信号も入力される。A detection signal from 16 is also input.

信号処理部76は制御部77に接続され、制御部77か
らは前記駆動部73およびモータ26へと制御信号が送
られる。また、制御部77は出力部78を介してX−Y
プロッタ79.プリンタ80゜おるいはCB、T (図
示せず)等の測定結果表示装置に接続されている。
The signal processing section 76 is connected to a control section 77, and the control section 77 sends control signals to the drive section 73 and the motor 26. Further, the control section 77 outputs the
Plotter 79. It is connected to a measurement result display device such as a printer 80° or CB, T (not shown).

プローブ軸4を基準体(図示せず)に沿って手動によシ
移動させて軌跡プログラムを制御部77に記憶させ、自
動測定に際しては前記軌跡プログラムに倣ってプローブ
軸4を自動送シさせる。
The probe shaft 4 is manually moved along a reference body (not shown) and a trajectory program is stored in the control unit 77, and during automatic measurement, the probe shaft 4 is automatically moved following the trajectory program.

自動測定時にあっては、プローブ軸4がワーク81の測
定対象である自由曲面31AKaつて移動するが、この
際、モータ26は制御部77によって適宜駆動され、ば
ね29の付勢力向を適宜変換させ、接触子5は常に自由
曲面81Aに当接する。したがって、基準軌跡と前記自
由曲面81Aとが一致しない部分をプローブ軸4が移動
する際には、プローブ軸4は球体6の中心点を回動中心
として適宜回動する。プローブ軸4のこのような回動は
変位検出路41.42によシ互い直交するXIY軸方向
の成分として検出され、また、X、Y軸に垂直なZ軸方
向の移動変位は変位検出器16によシ検出され、すなわ
ち、基準軌跡に対する接触子5の移動変位軌跡の偏差が
遂次検出され、この検出信号は信号処理部76へと入力
される。
During automatic measurement, the probe shaft 4 moves along with the free-form surface 31AKa to be measured on the workpiece 81. At this time, the motor 26 is appropriately driven by the control section 77 to appropriately change the biasing force direction of the spring 29. , the contact 5 always comes into contact with the free-form surface 81A. Therefore, when the probe shaft 4 moves through a portion where the reference locus and the free-form surface 81A do not match, the probe shaft 4 rotates appropriately about the center point of the sphere 6. Such rotation of the probe shaft 4 is detected by the displacement detection paths 41 and 42 as components in the mutually orthogonal XIY axis directions, and movement in the Z axis direction perpendicular to the X and Y axes is detected by the displacement detector. 16, that is, the deviation of the movement displacement trajectory of the contactor 5 from the reference trajectory is sequentially detected, and this detection signal is input to the signal processing section 76.

このようにして得られた検出信号は、スライダ72の移
動変位を検出する検出部74からの検出信号と併せて処
理し、X−Yプロッタ79によ多自由曲面81Aの形状
を描かせてもよいし、プリンタ80によシ基準軌跡に対
する自由曲面81Aの偏差を記録してもよいし、あるい
はOR,Tによシ表示させてもよい。
The detection signal thus obtained is processed together with the detection signal from the detection unit 74 that detects the movement displacement of the slider 72, and the shape of the polygonal free-form surface 81A is drawn by the X-Y plotter 79. Alternatively, the printer 80 may record the deviation of the free-form surface 81A from the reference trajectory, or the deviation of the free-form surface 81A from the reference trajectory may be displayed.

このような本実施例によれば次のような効果がある。This embodiment has the following effects.

測定対象である自由曲面81Aの向きが種々変化しても
、常に接触子5を当接させながらプローブ軸4を移動変
位させることができるため、自由曲面81Aの向きの変
化に伴って測定ヘッドを交換する等の必要性が無く、し
たがって、測定能率を向上させることができる。特に、
プローブ軸4は球体6の中心点を回動中心としてあらゆ
る方向に回動することができ、しかも、ころがシ装置8
が設けられているため、自由曲面81Aの形状が複雑な
ものであっても容易且つ迅速に接触子5を連続的に当接
させることができ、高速測定を行っても測定精度に支障
をきたす虞れが全くない。
Even if the orientation of the free-form surface 81A to be measured varies, the probe shaft 4 can be moved and displaced while the contact 5 is always in contact with the probe shaft 4, so that the measurement head can be moved as the orientation of the free-form surface 81A changes. There is no need to replace, etc., and therefore measurement efficiency can be improved. especially,
The probe shaft 4 can rotate in any direction around the center point of the sphere 6, and moreover, the probe shaft 4 can rotate in any direction around the center point of the sphere 6.
, even if the shape of the free-form surface 81A is complex, the contact 5 can be brought into continuous contact easily and quickly, and even if high-speed measurement is performed, measurement accuracy will not be affected. There is no risk at all.

また、全体とし7て構造が簡単で製造も容易である。Moreover, the structure as a whole is simple and manufacturing is easy.

なお、上述の実施例においては、軸受部材7はプローブ
軸4の中立軸線方向、即ちシャンク1の軸線方向に沿っ
て本体ケース3に対して移動変位するものであったが、
軸受部材7は本体ケース3に対して固定され且つ検出器
16も設けられず、接触子50本体ケース3に対する移
動変位は第5図中X、Y方向の2成分についてのみ検出
されるものであってもよい。
In the above-described embodiment, the bearing member 7 was movable and displaced relative to the main body case 3 along the neutral axis direction of the probe shaft 4, that is, along the axial direction of the shank 1.
The bearing member 7 is fixed to the main body case 3 and no detector 16 is provided, and the displacement of the contactor 50 relative to the main body case 3 is detected only in two components in the X and Y directions in FIG. It's okay.

まだ、変位検出器41.42 、および16は差動トラ
ンス型検出器であったが、光電エンコーダや磁気エンコ
ーダ等の他の形式の変位検出器であってもよい。さらに
、変位検出器41.42は互いに直交する直線変位検出
器であったが、互いに直交するものでなくともよいし、
直線変位検出器でなくともよい。ただし、変位検出器4
1.42が互いに直交する直線変位検出器であシ且つ検
出する直線の方向がスライダ72の検出部74の各検出
器の検出方向と一致するものであるときは信号処理部7
6における信号処理が容易になる。
Although the displacement detectors 41, 42, and 16 are still differential transformer type detectors, they may be other types of displacement detectors such as photoelectric encoders or magnetic encoders. Furthermore, although the displacement detectors 41 and 42 are linear displacement detectors that are orthogonal to each other, they may not be orthogonal to each other,
It does not have to be a linear displacement detector. However, displacement detector 4
1. When 42 are linear displacement detectors that are orthogonal to each other, and the direction of the detected straight line matches the detection direction of each detector of the detection unit 74 of the slider 72, the signal processing unit 7
The signal processing in 6 is facilitated.

また、接触子50本体ケース3に対する移動変位を許容
する支持手段は1球状周面部6人と軸受部材7ところが
シ装置8とにより構成されるものとしたが、これに限ら
ず、例えばプローブ軸4は、プローブ軸4の中心軸線を
含む仮想平面上を回動自在とされ且つ前記仮想平面ごと
ケース本体30周方向に沿って回転自在とされるように
ケース本体3に支持されるものであってもよい。ただし
、上述の実施例のように構成されていれば、接触子5は
あらゆる方向に迅速且つ容易に移動でき、しかも構造が
簡単であるという効果がある。
Further, the support means for allowing the movement of the contactor 50 relative to the main body case 3 is composed of six spherical circumferential parts, a bearing member 7, and a shaft device 8, but is not limited to this, for example, the probe shaft 4 is supported by the case body 3 so as to be rotatable on a virtual plane including the central axis of the probe shaft 4, and rotatable along the circumferential direction of the case body 30 together with the virtual plane. Good too. However, if configured as in the above-described embodiment, the contactor 5 can be moved quickly and easily in all directions, and the structure is simple.

また、ころがシ装置8は、第3.4図に示される構成の
ものに限らず、例えば、リテーナ9は入角錐台以外の多
角錐台や、略半球状のものであってもよいし、転動球1
0の数についても上述の場合に限らない。ただし前記こ
ろがシ装置8によればリテーナ90台形状の各局面を各
々別個に製造することができるために極めて正確精巧に
製造でき、また、前記各周面に転動球10を各々組み込
んだ後に多角錐台とすることもできるため組み立ても容
易で、この点からも正確、精巧に製造すること−71で
き、プローブ軸4を極めて円滑に姿勢変更させることが
できるという効果がある。
Further, the roller mechanism 8 is not limited to the configuration shown in FIG. 3.4; for example, the retainer 9 may be a polygonal truncated pyramid other than a rectangular truncated pyramid, or a substantially hemispherical one. , rolling ball 1
The number of 0s is also not limited to the above case. However, according to the roller shearing device 8, each of the trapezoidal surfaces of the retainer 90 can be manufactured separately, so that it can be manufactured with great accuracy and precision. Since it can later be made into a truncated polygonal pyramid, it is easy to assemble, and from this point of view, it can be manufactured accurately and precisely, and the probe shaft 4 can be changed in attitude extremely smoothly.

さらに、プローブ軸4を所定の姿勢、上述の場合では接
触子5が常に自由曲面81Aに当接するような姿勢、に
保持する付勢手段はばね29であったが、これに限らず
、プローブ軸4の周囲に複数個のばねを設けてこれらの
複数個のばねの各々でプローブ軸4を径方向に沿って同
時に引張り。
Further, the biasing means for holding the probe shaft 4 in a predetermined posture, such as in the above case, a posture in which the contactor 5 is always in contact with the free-form surface 81A, is the spring 29, but the biasing means is not limited to this. A plurality of springs are provided around the probe shaft 4, and each of the plurality of springs simultaneously pulls the probe shaft 4 along the radial direction.

あるいは押圧する等してプローブ軸4が中立軸線方向に
泊って保持されるよう構成されていてもよい。また、前
記ばね29の付勢力向はモータ26により適宜変換され
るものとしたが、モータ26は設けられず、回転体24
は手動によ多回転されるものでもよい。さらに、ばね2
9の先端はベアリング30を介してプローブ軸4にころ
がり係合するものであったが、ベアリング30が設けら
れずにばね29の先端が直接プローブ軸4の局面に摩擦
係合するものでもよい。ただし、ころがシ保合するよう
構成されていれば、ばね29の付勢方向の変換が極めて
円滑になされ、かつ、測定精度に対する悪影響が無い。
Alternatively, the probe shaft 4 may be held in the neutral axis direction by pressing or the like. In addition, although the biasing force direction of the spring 29 was assumed to be appropriately changed by the motor 26, the motor 26 was not provided, and the rotating body 24
may be manually rotated many times. Furthermore, spring 2
Although the tip of the spring 9 is rollingly engaged with the probe shaft 4 via the bearing 30, the tip of the spring 29 may be directly frictionally engaged with the curved surface of the probe shaft 4 without providing the bearing 30. However, if the rollers are configured to lock together, the biasing direction of the spring 29 can be changed extremely smoothly, and there is no adverse effect on measurement accuracy.

また1位置規制部材61は設けられなくとも、ばね2′
9によシ付勢されるプローブ軸4の姿勢は圧縮コイルば
ね28の作用によシ必らずしも不安定なものではないが
、位置規制部材61があればよシ安定化するという効果
がある。
Furthermore, even if the 1-position regulating member 61 is not provided, the spring 2'
Although the posture of the probe shaft 4 biased by the coil spring 28 is not necessarily unstable due to the action of the compression coil spring 28, the presence of the position regulating member 61 has the effect of making it more stable. There is.

さらに、上述においては第5図をも参照して本実施例に
よυ自動測定を行う場合につき説明したが、ここでいう
測定機本体71は数値制御工作機械等の加工機械を含む
ものであυ、スライダ72には切削具と本実施例の測定
ヘッドとが適宜自動交換されながら用いられるものでも
よい。この際加ニブログラムをそのまま用いて加工精度
を逐次測定するようにしてもよい。さらに、自動測定に
限らず1手動により測定する場合に用いることもできる
Further, in the above description, the case where υ automatic measurement is performed according to the present embodiment has been explained with reference to FIG. υ, the slider 72 may be used in which the cutting tool and the measuring head of this embodiment are automatically exchanged as appropriate. At this time, the machining accuracy may be successively measured using the Canadian Niprogram as it is. Furthermore, it can be used not only for automatic measurement but also for one-manual measurement.

上述のように本発明によれば、測定能率の優れた測定ヘ
ッドを提供することができる。
As described above, according to the present invention, a measurement head with excellent measurement efficiency can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測定ヘッドの一実施例の全体構成
を示す断面図、第2図は前記実施例の上蓋部を取外した
状態での平面図、第3図は前記実施例に用いられるころ
が9装置の構成を拡大して示す正面図、第4図は前記こ
ろがシ装置の平面図、第5図は前記実施例の一使用態様
を示す説明図である。 1・・・シャンク、2・・・上蓋部、3・・・本体ケー
ス、4・・・プローブ軸、5・・・接触子、6・・・球
体、6人・・・球状周面部、7・・・軸受部材、7A・
・・球状受面、8・・・ころがシ装置、9・・・リテー
ナ、10・・・転動球、14・・・ゴールブツシュ、1
5・・・固定+Jyグ、ta・・・変位検出器、24・
・・回転体、26・・・モータ、27・・・回転盤%2
9・・・付勢手段としてのばね、30・・・ベアリング
、41および42・・・変位検出器、45・・・コイル
、46・・・コア、47・・・スピンドル。 48・・・可動片、49・・・平行ばね、50・・・保
形部材。 52・・・当接ピン、53・・・係合片、56・・・引
張りコイルばね、61・・・位置規制部材。 代理人 弁理士 木 下 實 三
FIG. 1 is a sectional view showing the overall configuration of an embodiment of a measuring head according to the present invention, FIG. 2 is a plan view of the embodiment with the top cover removed, and FIG. 3 is a head used in the embodiment. FIG. 4 is a plan view of the roller roller device, and FIG. 5 is an explanatory diagram showing one mode of use of the embodiment. DESCRIPTION OF SYMBOLS 1...Shank, 2...Upper lid part, 3...Main case, 4...Probe shaft, 5...Contactor, 6...Spherical body, 6 people...Spherical peripheral surface part, 7 ...Bearing member, 7A・
... Spherical bearing surface, 8 ... Roller seat device, 9 ... Retainer, 10 ... Rolling ball, 14 ... Goal bush, 1
5... Fixed + Jy gear, ta... Displacement detector, 24.
...Rotating body, 26...Motor, 27...Rotating plate%2
9... Spring as biasing means, 30... Bearing, 41 and 42... Displacement detector, 45... Coil, 46... Core, 47... Spindle. 48... Movable piece, 49... Parallel spring, 50... Shape retaining member. 52... Contact pin, 53... Engaging piece, 56... Tension coil spring, 61... Position regulating member. Agent Patent Attorney Minoru Kinoshita

Claims (1)

【特許請求の範囲】 (1)先端に接触子を有するプローブ軸と、プローブ軸
を本体ケースに支持し、且つ前記接触子の本体ケースに
対する移動変位を許容する支持手段と、支持手段によシ
支持されたプローブ軸を所定の姿勢に保持する付勢手段
と、前記接触子の本体ケースに対する移動変位を検出す
る変位検出器と、が備見られていることを特徴とする測
定ヘッド。 (2、特許請求の範囲第1項において、前記変位検出器
は、各々がプローブ軸に径方向よシ当接するとともに互
いに直交する2個の直線変位検出器であることを特徴と
する測定ヘッド。 (3)特許請求の範囲第2項において、前記直線変位検
出器は、コアのスピンドルの−mがプローブ軸に常時当
接するよう付勢されて本体ケースに取付けられる差動ト
ランス型検出器であることを特徴とする測定ヘッド。 1− (4)特許請求の範囲第1項乃至第3項のいずれかにお
いて、前記支持手段は、プローブ軸の長手方向中間部に
設けられた球状局面部と、前記球状局面部と同芯状の球
状受面を有する軸受部材と。 前記球状周面部と前記球状受面との間に介装されるころ
がシ装置と、によシ構成されることを特徴とする測定ヘ
ッド。 (5)特許請求の範囲第4項において、前記軸受部材は
プローブ軸の中立軸線方向に沿って移動変位可能に本体
ケースに支持されるとともに、軸受部材の移動変位を検
出する検出器が設けられることを特徴とする測定ヘッド
。 (6)特許請求の範囲第4項又は第5項において。 前記ころが9装置は、略多角錐台状に形成されたリテー
ナと、前記リテーナの各周面に各々3個づつ保持された
転動球と、により構成されることを特徴とする測定ヘッ
ド。 (力 特許請求の範囲第1項乃至第6項のいずれかにお
いて、前記付勢手段は、先端がプローブ軸に係合され且
基端が本体ケース側に取付けられ、2− プローブ軸を径方向に?f=3って付勢する1個のばね
よシなることを%徴とする測定ヘッド。 (8)特許請求の範囲第7項において、前記ばねの先端
はプローブ軸にころがシ保合されるとともに、前記ばね
の基端はプローブ軸の周囲を回動可能に本体ケース側に
取付けられることを特徴とする測定ヘッド。 (9)特許請求の範囲第1項乃至第6項のいずれかにお
いて、前記付勢手段は、プローブ軸を中立軸線に保持す
るようプローブ軸を径方向に治って付勢する複数個のば
ねよりなることを特徴とする測定ヘッド。
[Scope of Claims] (1) A probe shaft having a contact at its tip, supporting means for supporting the probe shaft in a main body case and allowing movement of the contact with respect to the main body case, and a support means for supporting the probe shaft with respect to the main case. A measuring head characterized in that it is equipped with a biasing means for holding a supported probe shaft in a predetermined posture, and a displacement detector for detecting displacement of the contact with respect to the main body case. (2. The measurement head according to claim 1, wherein the displacement detectors are two linear displacement detectors each in radial contact with the probe shaft and orthogonal to each other. (3) In claim 2, the linear displacement detector is a differential transformer type detector that is attached to the main body case and is biased so that -m of the spindle of the core is always in contact with the probe axis. A measuring head characterized in that: 1-(4) In any one of claims 1 to 3, the supporting means includes a spherical curved portion provided at a longitudinally intermediate portion of the probe shaft; a bearing member having a spherical bearing surface concentric with the spherical curved surface part; characterized in that a roller interposed between the spherical circumferential surface part and the spherical bearing surface is configured with a roller device; (5) In claim 4, the bearing member is supported by the main body case so as to be movable along the neutral axis direction of the probe shaft, and detects the displacement of the bearing member. A measuring head characterized in that a detector is provided. (6) In claim 4 or 5. The roller 9 device includes a retainer formed in a substantially polygonal truncated pyramid shape, and a A measuring head comprising three rolling balls held on each peripheral surface of the measuring head. The means consists of a single spring whose distal end is engaged with the probe shaft and whose proximal end is attached to the main body case side and which biases the probe shaft in the radial direction by ?f=3. (8) In claim 7, the tip of the spring has a roller secured to the probe shaft, and the base end of the spring has a main body rotatable around the probe shaft. A measuring head characterized in that it is attached to a case side. (9) In any one of claims 1 to 6, the biasing means biases the probe shaft so as to hold the probe shaft on a neutral axis. A measuring head characterized by comprising a plurality of springs that are biased in a radial direction.
JP9040282A 1982-05-26 1982-05-26 Measuring head Granted JPS58205801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9040282A JPS58205801A (en) 1982-05-26 1982-05-26 Measuring head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9040282A JPS58205801A (en) 1982-05-26 1982-05-26 Measuring head

Publications (2)

Publication Number Publication Date
JPS58205801A true JPS58205801A (en) 1983-11-30
JPH0421802B2 JPH0421802B2 (en) 1992-04-14

Family

ID=13997586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9040282A Granted JPS58205801A (en) 1982-05-26 1982-05-26 Measuring head

Country Status (1)

Country Link
JP (1) JPS58205801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503236A (en) * 1988-02-18 1990-10-04 レニショウ パブリック リミテッド カンパニー surface detection device
US5088046A (en) * 1987-12-19 1992-02-11 Renishaw Plc Mounting for surface-sensing stylus and a method of using said mounting
US5152072A (en) * 1988-02-18 1992-10-06 Renishaw Plc Surface-sensing device
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
US5212646A (en) * 1987-12-19 1993-05-18 Renishaw Plc Method of using a mounting for surface-sensing stylus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48111162U (en) * 1972-03-28 1973-12-20
JPS5524295U (en) * 1978-08-08 1980-02-16
JPS5526803U (en) * 1978-07-17 1980-02-21
JPS572405U (en) * 1980-06-06 1982-01-07

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48111162U (en) * 1972-03-28 1973-12-20
JPS5526803U (en) * 1978-07-17 1980-02-21
JPS5524295U (en) * 1978-08-08 1980-02-16
JPS572405U (en) * 1980-06-06 1982-01-07

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088046A (en) * 1987-12-19 1992-02-11 Renishaw Plc Mounting for surface-sensing stylus and a method of using said mounting
US5212646A (en) * 1987-12-19 1993-05-18 Renishaw Plc Method of using a mounting for surface-sensing stylus
JPH02503236A (en) * 1988-02-18 1990-10-04 レニショウ パブリック リミテッド カンパニー surface detection device
US5040306A (en) * 1988-02-18 1991-08-20 Renishaw Plc Surface-sensing device
US5152072A (en) * 1988-02-18 1992-10-06 Renishaw Plc Surface-sensing device
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece

Also Published As

Publication number Publication date
JPH0421802B2 (en) 1992-04-14

Similar Documents

Publication Publication Date Title
US4805314A (en) Method and apparatus for spatial coordinate measurement
JPH0224441B2 (en)
US4800652A (en) Machine for measuring generally circular objects in cylindrical coordinates
US3520063A (en) Multiaxis inspection probe
CN106471334A (en) The calibration of measuring probe
JPS58205801A (en) Measuring head
GB1582073A (en) Position measuring instrument
JP2006153884A (en) Measurement head for probe
JP2023184750A (en) Holding jig and surface shape measuring device
JP6788207B2 (en) Displacement detector, surface texture measuring machine, and roundness measuring machine
JPH02281102A (en) Sphericity measuring method of ball end mill
JP2504561B2 (en) Shape measuring device
JP2021051096A (en) Inner diameter measuring device and inner diameter measuring method using it
US4364179A (en) Statically balanced inspection probe assembly
JPH0463665A (en) Inclination angle measuring method for slant hole machining device
US5088206A (en) Apparatus and method for checking mechanical parts
JPS6254102A (en) Measurer supporting mechanism for screw shaft effective diameter measuring instrument
JPS6282309A (en) Three-dimensional measuring machine
JPH0632562Y2 (en) Concentricity measuring device
JPH0534601B2 (en)
JPS6282310A (en) Three-dimensional measuring machine
JP2708364B2 (en) Inspection device for body sway meter
JP2559397Y2 (en) Cutter measuring device
JPH0774722B2 (en) Automatic inner diameter measuring device and zero setting method thereof
JPS637253A (en) Positioning indicator