JPS58201081A - Automatic phase balancing system of radar receiver - Google Patents
Automatic phase balancing system of radar receiverInfo
- Publication number
- JPS58201081A JPS58201081A JP57087088A JP8708882A JPS58201081A JP S58201081 A JPS58201081 A JP S58201081A JP 57087088 A JP57087088 A JP 57087088A JP 8708882 A JP8708882 A JP 8708882A JP S58201081 A JPS58201081 A JP S58201081A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- phase difference
- output
- signal
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 21
- 239000013598 vector Substances 0.000 claims abstract description 9
- 230000001360 synchronised effect Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 2
- 230000004075 alteration Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 101150052610 Yars1 gene Proteins 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は2チャンネル以上の受信機を持つレーダー受信
機の自動位相平衡方式の応答速度の高速化に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to increasing the response speed of an automatic phase balance system of a radar receiver having two or more channels.
目標の距離、方位、高度を検出する3次元レーダー装置
においては複数個の受信チャンネルを必要とすることは
周知の事柄であり、又、高度を検出するために、受信チ
ャンネル間の位相平衡を必要とすることも周知の事柄で
ある。この様なレーダー装置における自動位相平衡方式
としては従来第1図に示すものがあった。It is well known that three-dimensional radar equipment that detects the range, direction, and altitude of a target requires multiple reception channels, and phase balance between the reception channels is also required to detect the altitude. It is also well known that A conventional automatic phase balancing system for such a radar device is shown in FIG.
図において(1)と(2)はアンテナ、(3)と(4)
は方向性結合器、(5) Fi送信切換器、(6)と(
7)けRF増幅器、(8)と(9)は受信用混合器、(
10)はCoHO発生器、(11)は局部発振器、(1
2)は送信用混合器、(13)はパルス変調器、(14
)はパルサー、(15)は電力増幅器、(16)けトリ
ガ発生器、(20)は自動位相平衡回路で、工F移相器
(21)、位相差検出器(22)、サンプル ホールダ
(23)、ループフィルタ(24)により構成される。In the figure, (1) and (2) are antennas, (3) and (4)
is a directional coupler, (5) Fi transmission switch, (6) and (
7) RF amplifier, (8) and (9) are receiving mixers, (
10) is a CoHO generator, (11) is a local oscillator, (1
2) is a transmission mixer, (13) is a pulse modulator, (14)
) is a pulser, (15) is a power amplifier, (16) is a trigger generator, (20) is an automatic phase balancing circuit, a phase shifter (21), a phase difference detector (22), a sample holder (23) ) and a loop filter (24).
第2図は第1図の動作説明図である。FIG. 2 is an explanatory diagram of the operation of FIG. 1.
第1図において説明の便宜上、受信チャンネル数を2チ
ヤンネルとして以下説明する。ここで自動位相平衡回路
(2o)を除く回路の動作については一般的に良く知ら
れていることがら説明を省略しパイロット・パルス信号
の注入と、自動位相平衡回路(20)の動作について説
明する。For convenience of explanation, the number of reception channels in FIG. 1 is assumed to be two channels in the following description. Since the operations of the circuits other than the automatic phase balance circuit (2o) are generally well known, the explanation will be omitted, and only the injection of the pilot pulse signal and the operation of the automatic phase balance circuit (20) will be explained. .
先ず、パイロット・パルス信号の注入ニついては、レー
ダー装置で定められたレーダー休止時間帯にRFパルス
をパルス変調器(13)で送信パルス繰返周期毎に発生
し、方向性結合器(3)、(4)へ同レベル・同位相で
注入しアンテナ(1)、(2)より受信した受信信号と
結合される(第2図−aに示す)。First, regarding the injection of a pilot pulse signal, an RF pulse is generated every transmission pulse repetition period by a pulse modulator (13) during a radar idle time period determined by the radar device, and is then transmitted to a directional coupler (3). (4) at the same level and phase and is combined with the received signals received from antennas (1) and (2) (as shown in FIG. 2-a).
パイロット・パルス信号を含む受信信′8は混合器(8
)、(9)から工F信号として出力され自動位相平衡回
路(20)に供給される。The received signal '8 including the pilot pulse signal is passed through a mixer (8
) and (9) as output F signals and supplied to the automatic phase balancing circuit (20).
自動位相平衡回路(2o)ではアンテナ(1)の系列を
基準チャンネルとしく以下、A系とばう)、アンテナ(
2)の系列を被位相平衡チャンネルとしく以下B系と言
う)、A系とB系の位相差を位相差検出器(23)で検
出する(第2図−bに示す)。検出された位相差は、サ
ンプル・ホールダ(24)テパイロソート ・パルス信
号の時間帯のみサンプリングし、その時の位相差を次の
パイロット・パルス信号到来時間まで保持する(第2図
−Cに示す)。サンプル・ホールドされた出力は、ルー
プ・フィルタ(24)で所定の時定数で高周波変動成分
を除去し、位相補償信号を工F移相器(21)へ出力す
る。工F移柑器(21)は、電圧制御により移相量が変
化するものであり、ループ・フィルタ(24)からの位
相補償信号により移相し、A系との位相平衡を実現する
ものである。In the automatic phase balance circuit (2o), the antenna (1) series is used as the reference channel, and the antenna (hereinafter referred to as A series), antenna (
The series 2) is defined as a phase-balanced channel (hereinafter referred to as the B system), and the phase difference between the A system and the B system is detected by a phase difference detector (23) (as shown in FIG. 2-b). The detected phase difference is sampled by the sample holder (24) only during the time period of the Tepirosort pulse signal, and the phase difference at that time is held until the arrival time of the next pilot pulse signal (as shown in FIG. 2-C). A loop filter (24) removes high frequency fluctuation components from the sampled and held output at a predetermined time constant, and outputs a phase compensation signal to the F phase shifter (21). The F system shifter (21) changes the amount of phase shift by voltage control, and shifts the phase according to the phase compensation signal from the loop filter (24) to achieve phase balance with the A system. be.
ここで、この自動平衡回路(20)は第1図に示す通り
の負帰還による自動制御回路であり、構成する回路の電
源変動等の外乱の影響を受は苦しくする為に閉ループ時
定数は通常数サイクル程度に設定するのが一般的である
。Here, this automatic balancing circuit (20) is an automatic control circuit using negative feedback as shown in Fig. 1, and the closed loop time constant is normally set to make the constituent circuit less susceptible to disturbances such as power fluctuations. It is common to set it to several cycles.
従来の自動位相平衡方式では以上のように構成されてい
ることから送信パルス繰返周期毎に送信周波数を変化さ
せるいわゆる周波数アジリティを行う場合において自動
位相平衡回路の応答速度が間に合わず、位相平衡が保た
れないという欠点があった。Because the conventional automatic phase balance system is configured as described above, when performing so-called frequency agility, which changes the transmission frequency every transmission pulse repetition period, the response speed of the automatic phase balance circuit is not fast enough, and the phase balance cannot be achieved. The drawback was that it could not be maintained.
本発明け、このような欠点を除去するためになされたも
ので、送信パルス繰返周期毎にパイロット・パルス信号
内で、位相差を検出し、位相補償値を決定し規定の制御
誤差となるように開ルーズ制呻回路を構成することによ
り、送信パルス繰返周期毎の位相差変化にも十分応答す
る高速の自動位相平衡方式の提供を目的としている。The present invention has been made to eliminate such drawbacks, and detects the phase difference within the pilot pulse signal at each transmission pulse repetition period, determines the phase compensation value, and achieves a specified control error. By configuring an open-loose suppression circuit as described above, the present invention aims to provide a high-speed automatic phase balancing system that sufficiently responds to changes in phase difference for each transmission pulse repetition period.
以下、本発明の一実施例を図について説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
第3図において第1図との共醤部分を省略しである。(
30)は本発明による自動位相平衡回路であり(31)
と(32)の同期位相検波器、(33)と(34)のA
/Dコンバータ、(35)と(36)の位相検出器、(
37)の位相差検出器、(38)の複素変換器、(39
)の移相器により構成されている。In FIG. 3, the common sauce part with FIG. 1 is omitted. (
30) is an automatic phase balancing circuit according to the present invention (31)
and (32) synchronous phase detector, (33) and (34) A
/D converter, (35) and (36) phase detector, (
Phase difference detector (37), complex converter (38), (39)
) phase shifter.
第4図、第5図は第3図の動作説明図である。4 and 5 are explanatory diagrams of the operation of FIG. 3.
第3図は従来のものとの対比から第1図と同様2チヤン
ネルの受信チャンネル聞の自動位相平衡回路について示
しである。A系はアンテナ(1)より受信された系列、
B系はアンテナ(2)より受信された系列であることは
第1図と同じである。又、同期位相検波器(31)と(
32)に印加されているC0HO信8けCoHO発生器
(10)より供給されるものであり、その他A / D
コンバータ(33)と(34)等に必要なタイミングは
トリガ発生器(16)より供給されるものである。FIG. 3 shows an automatic phase balancing circuit between two receiving channels, similar to FIG. 1, in comparison with the conventional one. A system is the sequence received from antenna (1),
As in FIG. 1, system B is a system received by antenna (2). In addition, a synchronous phase detector (31) and (
32) is supplied from the eight CoHO generators (10), and other A/D
The timing required for converters (33), (34) etc. is provided by a trigger generator (16).
受信機前 からのA系の工F信′8(端子Aより供給)
とB系の工F信号(@子Bより供給)は自動位相平衡回
路(30)に入力され、同期位相検波器(31)と(3
2)でそれぞれC0HO信号(端子Cより供給)により
第4図に示す様に直交ベクトルエ、Qに分離したエビデ
オとQビデオを出力する。A/Dコンバータ(33)と
(34)ではこれらの工、Qビデオをサンプル・ホール
ドし、アナログ信号からディジタル信号に変換し、デイ
ジタルエ、Qビデオとして出力する。位相検出器(35
)と(36)では、このディジタルエ、Qビデオよりt
a’n−1(% )演算を行い、位相θA、θBをそれ
ぞれ検□出する。位相差検出器(37)ではθA−θB
=ψ演算を行い位相差ψをパイロット・パルス信号につ
いて出力する。複素変換器(38)では位相差ψをCO
SψとEI工Nψの複素故に変換し、パイロット・パル
ス信号の時間でオールドして次のパイロット・パルス信
号が到来するので、COSψとS工Nψを保持した状態
で位相補償値として出力する。移相器(39)でけA/
Dコンバータ(34)のディジクルエ、Qビデオと、乗
位相補償値COSψ、S工Nψとを複素麿算することに
より位相差ψ分だけ移相し、A系とB系の位相平衡が達
成できる。更に移相器(39)について詳しく説明する
と、第5図に示す等何回路で表わされる複素乗算回路網
により移相機能が発揮できる。A-system engineering F signal '8 from in front of the receiver (supplied from terminal A)
The engineering F signal of system B (supplied from child B) is input to the automatic phase balancing circuit (30), and the synchronous phase detector (31) and (3
2) outputs E-video and Q-video separated into orthogonal vectors E and Q, respectively, as shown in FIG. 4, using the C0HO signal (supplied from terminal C). The A/D converters (33) and (34) sample and hold these processed and Q-videos, convert the analog signals to digital signals, and output them as digital and Q-videos. Phase detector (35
) and (36), from this digital video, t
A'n-1 (%) calculation is performed to detect phases θA and θB, respectively. In the phase difference detector (37), θA-θB
= ψ calculation is performed and the phase difference ψ is output for the pilot pulse signal. In the complex converter (38), the phase difference ψ is CO
Since S ψ and EI N ψ are complex, they are converted, and the next pilot pulse signal arrives after the time of the pilot pulse signal, so COS ψ and S N ψ are held and output as a phase compensation value. Phase shifter (39) Deke A/
By performing complex multiplication of the digital code and Q video of the D converter (34) and the multiplicative phase compensation values COS ψ and S process Nψ, the phase is shifted by the phase difference ψ, and phase balance between the A system and the B system can be achieved. Further, to explain the phase shifter (39) in detail, the phase shift function can be achieved by a complex multiplication circuit network represented by a circuit such as the one shown in FIG.
今、A系の位相をθA、B系の位相をθBとし、θA=
θB+ψであるとした場合、B系のベクトルエ、Qはニ
ーCOSθB、Q、==S工NθBで衣わされる。又、
位相差ψの補償をB系に対して行う時、式(1) (2
)に示す演算をやればよいことになる。Now, let the phase of system A be θA, the phase of system B be θB, and θA=
If θB + ψ, then the B-system vector E, Q is given by the knee COS θB, Q, ==S, NθB. or,
When compensating the phase difference ψ for the B system, Equation (1) (2
).
ベクトルエについて
cos (θB+ψ)=cosθB、CO8ψ−8工N
θB、B工Nψ 11.・・・、(1)ベクトルQにつ
いて
S工N(θB+ψ)=SINθB−CO8ψ+cosθ
B、S工Nψ ・1.・−(2)第5図はこの式(1)
、(2)を演算するものであり、4つの乗算器と、加量
器と減算器により演算される。この様にしてチャンネル
間の位相差をパイロット・パルス信号内で検出し、その
位相差を位相補償値として次の周期のパイロット・パル
ス信号が到来するまで保持して補償することから送信パ
ルス繰返周期毎に変化する位相差に追随できる。Regarding vector e, cos (θB + ψ) = cos θB, CO8ψ−8 kN
θB, B engineering Nψ 11. ..., (1) Regarding vector Q, S engineering N (θB + ψ) = SINθB - CO8ψ + cosθ
B, S engineering Nψ ・1.・-(2) Figure 5 shows this formula (1)
, (2) using four multipliers, an adder, and a subtracter. In this way, the phase difference between channels is detected within the pilot pulse signal, and the phase difference is held as a phase compensation value until the arrival of the next cycle's pilot pulse signal to compensate, so the transmission pulse is repeated. It can follow the phase difference that changes every cycle.
なお、上記実施例では開ループによる自動位相平衡方式
について説明したが、パイロット・/ヤルス信号のパル
ス幅が広くても良いならば、フィード・パック方式によ
る自動位相平衡方式にも応用できることは言うまでもな
い。In the above embodiment, an automatic phase balancing method using an open loop was explained, but it goes without saying that it can also be applied to an automatic phase balancing method using a feed pack method if the pulse width of the pilot/Yars signal can be wide. .
以上のように本発明によればパイロット・パルス信号内
で位相差を検出し、その位相差を位相補償値として次の
周期のパイロット・パルス信号が到来するまで保持して
位相補償するように構成していることから送信パルス繰
返し周期毎に位相差が変化する周波数アジリティの場合
にもチャンネル間の位相平衡を維持できるという効果が
ある。As described above, according to the present invention, a phase difference is detected within a pilot pulse signal, and the phase difference is held as a phase compensation value until the next period of the pilot pulse signal arrives for phase compensation. Therefore, even in the case of frequency agility in which the phase difference changes with each transmission pulse repetition period, there is an effect that phase balance between channels can be maintained.
(9)(9)
第1図は従来の自動位相平衡方式を示す図であり第2図
は従来の方式の動作説明図である。第3図は本発明によ
る自動位相平衡方式を示す一実施ノ鞭贋へ、第4図と第
5図は本発明の方式の動作説明図である。
図において(1)、(2)はアンテナ、(3)と(4)
は方向性結合器、(5)は送受切換器、(6)と(7)
はRF増幅器、(8)と(9)は受信用混合器、(10
)はCoHO発生器、(11)は局部発振器、(12)
は送信用混合器、(13)はパルス変調器、(14)は
パルサー、(15)は電力増幅器、(16)ld トリ
ガ発生器、(20)は自動位相平衡回路で、工F移相器
(21)、位相差検出器(22)、サンプル・ホルダ(
23) 、ループ・フィルタ(24)により構成される
。
また、(30)は自動位相平衡回路で、同期位相検波器
(31) 、 (32)、A / Dコンバータ(33
) 、(34)、位相検なお図中向−符号姦付したもの
は同−又は相当(io)
品を示す。
(11)
第1図
第2図
第3図
第4図 第す図
手続補正書(自発)
特許庁長官殿
1、事件の表示 特願昭57−87088号2、
発明の名称 レーダ受信機の自動位相平衡方式3
、補正をする者
代表者片山仁八部
(3)第6図を別紙の通り訂正する。
7.添付部類の目録
(1)訂正した特許請求の範囲を記載した書面1通
(2)訂正した第5図を示す図面 1通以
上
特許請求の範囲
2チャンネル以上の受信機を持つレーダー装置のレーダ
ー休止時間帯に送信パルス繰返周期毎に各受信機の入力
端より同レベル・同位相のパイロット・パルス信号を注
入し、各受信機出力端におけるチャンネル間位相平衡を
行うレーダー受信機の自動位相平衡方式において、n個
の受信チャンネルのそれぞれの受信IF信号をレーダー
装置に備わっているC0HO信号で同期位相検波し、直
交ベクトルI、Qに分離するn個の同期位相検波器と同
期位相検波器出力をそれぞれサンプル・ホールビ5アナ
ログ信号からディジタル信号に変換するn mのA/D
コンバータと、それぞれのA/Dコンバータ出力のディ
ジタル・ビデオLQ よりと、n個の受信チャンネル
の白基準となる受信チャンネルの位相検出器出力の位相
値を基準として。
他の受信チャンネルの位相検出器出力の位相値との差を
送信パルス繰返周期毎に前記パイロット・パルス信号に
ついて検出する(n−1)個の位相差検出器と、それぞ
れの位相差検出器の位相差を補素数に変換し送信パルス
周期毎に位相補償値を更新して出力する(n−1)個の
複素変換器と、それぞれの複素変換器出力の位相補償値
と該当する受信チャンネルのA/Dコンバータ出力の■
、Qベクトル信号との複素乗算を行うことにより、基準
となる受信チャンネルとの位相差分を補償し位相平衡を
行う移相器とにより構成され、同レベル・同位相でn個
の受信機入力端に注入された前記パイロット・パルス信
号を用いて送信パルス繰返周期毎に基準となる受信チャ
ンネルとの位相差を検出し、その位相差を位相補償値と
して用いて移相することから、送信パルス繰返周期毎に
自動位相平衡できることを特徴とするレーダー受信機の
自動位相平衡方式。FIG. 1 is a diagram showing a conventional automatic phase balancing system, and FIG. 2 is an explanatory diagram of the operation of the conventional system. FIG. 3 is an example of an embodiment of the automatic phase balance system according to the present invention, and FIGS. 4 and 5 are diagrams illustrating the operation of the system of the present invention. In the figure, (1) and (2) are antennas, (3) and (4)
is a directional coupler, (5) is a transmitter/receiver switch, (6) and (7)
is an RF amplifier, (8) and (9) are receive mixers, (10
) is the CoHO generator, (11) is the local oscillator, (12)
is a transmission mixer, (13) is a pulse modulator, (14) is a pulser, (15) is a power amplifier, (16) is an LD trigger generator, (20) is an automatic phase balance circuit, and is a mechanical F phase shifter. (21), phase difference detector (22), sample holder (
23) and a loop filter (24). In addition, (30) is an automatic phase balancing circuit, which includes synchronous phase detectors (31), (32), and an A/D converter (33).
), (34), phase detection.Things with a reference numeral in the figure indicate the same or equivalent (io) product. (11) Figure 1 Figure 2 Figure 3 Figure 4 Figure 2 Procedural amendment (voluntary) Mr. Commissioner of the Japan Patent Office 1, Indication of the case, Japanese Patent Application No. 57-87088 2,
Title of invention Automatic phase balancing method for radar receiver 3
, Representative Hitoshi Katayama (3) Revise Figure 6 as shown in the attached sheet. 7. List of attached categories (1) One document stating the corrected claims (2) At least one drawing showing the corrected Figure 5
As claimed in the above patent, pilot pulse signals of the same level and phase are injected from the input terminal of each receiver at each transmission pulse repetition period during the radar idle period of a radar device having a receiver with two or more channels. In the automatic phase balancing method of a radar receiver that performs inter-channel phase balancing at the receiver output end, the received IF signals of each of the n receiving channels are synchronously phase detected using the C0HO signal provided in the radar device, and the orthogonal vector I , Q, and an A/D of n m that converts the output of the synchronous phase detector from an analog signal to a digital signal.
From the digital video LQ of the converter and the output of each A/D converter, the phase value of the phase detector output of the receiving channel serves as the white reference for the n receiving channels. (n-1) phase difference detectors for detecting the difference between the phase value of the phase detector output of another receiving channel and the pilot pulse signal for each transmission pulse repetition period; and each phase difference detector. (n-1) complex converters that convert the phase difference into complementary numbers and update and output the phase compensation value every transmission pulse period, and the phase compensation value of each complex converter output and the corresponding reception channel. ■ A/D converter output of
, and a phase shifter that performs complex multiplication with the Q vector signal to compensate for the phase difference with the reference reception channel and achieve phase balance. The pilot pulse signal injected into the transmission pulse is used to detect the phase difference with the reference reception channel every transmission pulse repetition period, and the phase difference is used as a phase compensation value to shift the phase. An automatic phase balancing system for a radar receiver, which is characterized by being able to perform automatic phase balancing for each repetition cycle.
Claims (1)
ー休止時間帯に送信パルス繰返周期毎に各受信機の入力
端より同ノベル・同位相のパイロット・パルス信号を注
入し、各受信機出力端におけるチャンネル間位相平衡を
行うレーダー受信機の自動位相平衡方式において、n個
の受信チャンネルのそれぞれの受信工F信号をレーダー
装置に備わっているC0HO信号で同期位相検波し、直
向 文ベクトルエ、Qに分離するn個の4期位相検波器と同
期位相検波器出力をそれぞれサンプル・ホールドレアナ
ログ信号からディジタル信号に変換するn個のA /
Dコンバータと、それぞれのA/Dコンバータ出力のデ
ィジタル・ビデオニ、Qよりt a−h ’ 硼)を演
算し位相検出するn個の位相検出器と、n個の受信チャ
ンネルの同基準となる受信チャンネルの位相検出器出力
の位相値を基準として、他の受信チャンネルの位相検出
器出力の位相値との差を送信パルス繰返周期毎に前記パ
イロット・パルス信号について検出する(n−1)個の
位相差検出器と、それぞれの位相差検出器の位相差を補
素数に変換し送信パルス周期毎に位相補償値を更新して
出力する(n−1)個の複素変換器と、それぞれの複素
変換器出力の位相補償値と該当する受信チャンネルのA
/ Dコンバータ出力の工、Qベクトル信号との複素
乗算を行うことにより、基準となる受信チャンネルとの
位相差分を補償し位相平衡を行う移相器とにより構成さ
れ、同レベル・同位相でn +mの受信機入力端に注入
された前記パイロット・パルス信号を用いて送信パルス
繰返周期毎に基準となる受信チャンネルとの位相差を検
出し、その位相差を位相補償値として用いて移相するこ
とから、送信パルス繰返周期毎に自動位相平衡できるこ
とを特徴とするレーダー受信機の自動位相平衡方式。[Claims] A pilot pulse signal of the same novel and same phase is injected from the input terminal of each receiver at each transmission pulse repetition period during the radar idle period of a radar device having receivers of two or more channels, In the automatic phase balancing method of a radar receiver that performs phase balancing between channels at each receiver output end, the receiver F signal of each of the n receiving channels is synchronously phase detected using the C0HO signal provided in the radar device, and then Mukaibun vector A/Q converts the outputs of n 4-phase phase detectors and synchronous phase detectors from sample-and-hold analog signals to digital signals, respectively.
A D converter, a digital video signal of each A/D converter output, n phase detectors that calculate the phase of each A/D converter output, and a reception signal that is the same standard for n reception channels. (n-1) detecting the difference between the phase value of the phase detector output of the channel and the phase value of the phase detector output of another receiving channel for each transmission pulse repetition period, based on the phase value of the phase detector output of the channel; (n-1) complex converters that convert the phase difference of each phase difference detector into a complementary number and update and output a phase compensation value every transmission pulse period; The phase compensation value of the complex converter output and the A of the corresponding receiving channel
/ A phase shifter performs complex multiplication with the output of the D converter and the Q vector signal to compensate for the phase difference with the reference reception channel and achieve phase balance. Using the pilot pulse signal injected into the receiver input terminal of Therefore, an automatic phase balancing method for a radar receiver is characterized in that automatic phase balancing can be performed for each transmission pulse repetition period.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57087088A JPS58201081A (en) | 1982-05-20 | 1982-05-20 | Automatic phase balancing system of radar receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57087088A JPS58201081A (en) | 1982-05-20 | 1982-05-20 | Automatic phase balancing system of radar receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58201081A true JPS58201081A (en) | 1983-11-22 |
Family
ID=13905189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57087088A Pending JPS58201081A (en) | 1982-05-20 | 1982-05-20 | Automatic phase balancing system of radar receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58201081A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194377A (en) * | 1985-02-22 | 1986-08-28 | Fujitsu Ltd | Phase matching circuit |
JPS63114306A (en) * | 1986-10-31 | 1988-05-19 | Koden Electronics Co Ltd | Detecting method for signal phase difference |
JPH04337488A (en) * | 1991-02-11 | 1992-11-25 | Hughes Aircraft Co | Radar guidance system for correcting hard ware in which phase error is guided between channels |
JP2015169507A (en) * | 2014-03-06 | 2015-09-28 | 三菱電機株式会社 | Radar device |
-
1982
- 1982-05-20 JP JP57087088A patent/JPS58201081A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194377A (en) * | 1985-02-22 | 1986-08-28 | Fujitsu Ltd | Phase matching circuit |
JPS63114306A (en) * | 1986-10-31 | 1988-05-19 | Koden Electronics Co Ltd | Detecting method for signal phase difference |
JPH0549122B2 (en) * | 1986-10-31 | 1993-07-23 | Koden Electronics Co Ltd | |
JPH04337488A (en) * | 1991-02-11 | 1992-11-25 | Hughes Aircraft Co | Radar guidance system for correcting hard ware in which phase error is guided between channels |
JP2015169507A (en) * | 2014-03-06 | 2015-09-28 | 三菱電機株式会社 | Radar device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4278978A (en) | Baseband signal combiner for large aperture antenna array | |
JPS58201081A (en) | Automatic phase balancing system of radar receiver | |
US3883810A (en) | Device for the use in frequency of a short duration electrical signal | |
US3117305A (en) | Frequency shift transmission system | |
JPH035120B2 (en) | ||
US3579128A (en) | Phase controller | |
US4245326A (en) | Impulse autocorrelation function code generator | |
US3568066A (en) | Frequency multiple differential phase modulation signal receiver | |
EP0221476B1 (en) | Television interference-compensation apparatus for phase and amplitude compensation | |
US2833917A (en) | Locking-oscillator phase-pulse generator | |
US3502989A (en) | Receiver employing correlation techniques | |
JPS6049276A (en) | Monopulse radar receiver | |
GB1432431A (en) | Frequency tracking filter | |
GB927365A (en) | Improvements in or relating to stereophonic transmission systems | |
GB1495492A (en) | Electronic switching arrangement for a homing and traffic radio system | |
JPH02141127A (en) | Frequency control circuit | |
US3378787A (en) | System for synchronizing an oscillator with oscillations of unknown frequency | |
SU1229972A1 (en) | Multichannel communication system | |
KR950010429A (en) | Synchronous and Asynchronous Compound Receiver | |
SU1721837A1 (en) | Device for reception of quadrille-coded sequences | |
RU2030116C1 (en) | Device for formation of signals of frequency shift keying | |
US4672428A (en) | Integrated digital gain control circuit for digital chrominance signals | |
JPS59221683A (en) | Radar equipment | |
SU1580541A1 (en) | Device for shifting time scale | |
JPS6220022Y2 (en) |