[go: up one dir, main page]

JPS58201056A - Instrument for determining ionic activity - Google Patents

Instrument for determining ionic activity

Info

Publication number
JPS58201056A
JPS58201056A JP8406282A JP8406282A JPS58201056A JP S58201056 A JPS58201056 A JP S58201056A JP 8406282 A JP8406282 A JP 8406282A JP 8406282 A JP8406282 A JP 8406282A JP S58201056 A JPS58201056 A JP S58201056A
Authority
JP
Japan
Prior art keywords
porous member
liquid
ion
electrode
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8406282A
Other languages
Japanese (ja)
Inventor
Osamu Seshimoto
修 瀬志本
Shigeki Asakawa
浅川 茂樹
Akira Yamaguchi
顕 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8406282A priority Critical patent/JPS58201056A/en
Publication of JPS58201056A publication Critical patent/JPS58201056A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain easily an instrument for determining ionic activity, making a shield case composed of a cover sheet and a frame disused, by forming a cover sheet made integral with a bridge for exerting capillary action by covering the surfaces of a twin electrode with a porous member which constitutes a bridge for exerting capillary action. CONSTITUTION:Filmy ion-selective electrodes 7 and 8 are placed at relative positions separted from each other in order to secure electric insulation, and are attached through an adhesive layer 9 to a porous part 11 which is supported by a water-impermeable layer 10, respectively. On the other hand, a capillarily active bridge 1 is allocated on the porous part 11 with the use of a shield 4, which is blocked against liquid diffusion by closing the capillarily active continuous vacancies. Further, the porous part 11 is provided with liquid-receiving holes 2 and 3, which supply a liquid to be tested and the standard liquid to the surfaces of the electrodes and penetrate the porous part 11, and with holes 5 and 6, of electric connecting terminals, where electric connecting terminals of the ionic selective electrodes and a potentiometer for measuring differential electric potential. In addition, when paper made of a blend of polyethylene and pulp is used as the porous part 11, and a polyethylene laminate is used as the water-impermeable supporting layer 10, the shield part 4 can be constructed by being attached easily and separately by heat with capillarily active continuous vacancies.

Description

【発明の詳細な説明】 本発明は、水溶液試料、特に生物起源の水性液体試料中
のイオン性被検成分のイオン活量を分析する際に有効な
器具に関し、イオン性被検成分のイオン活量をボテンシ
オメ) IJ−的に測定するのに有効な毛細管作用ブリ
ッジ(多孔性ブリッジ)一体型のカバーを有するイオン
活量測定器具に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an instrument useful for analyzing the ionic activity of an ionic analyte in an aqueous solution sample, particularly an aqueous liquid sample of biological origin. The present invention relates to an ion activity measuring device having an integrated cover with a capillary action bridge (porous bridge) effective for IJ-wise measurement of the amount of ion activity.

溶液中のイオンの活量を測定するための器具は、従来技
術において檀々のものがある。特に近年、保存、取扱い
及び測定操作が容易なドライタイプのフィルム状イオン
選択性電極を用いたイオン活着測定器具が広く知られて
いる。この測定器具は、特定イ′オンに感応しそのイオ
ン活量の対数に比例する電位を生じるイオン選択性電極
を内蔵し、一般に第1図に示す形状のものが知られてい
る。即ち第1図において、電気絶縁性を有するフレーム
16内に2個のイオン選択性電極12と14が設けられ
、毛管作用ブリッジ18は、前記電極上に点着される溶
液を受入れる2個の液受は孔20と22を有し前記液受
は孔に適用される溶液のイオン移動を許容させるために
設けられている。この毛管作用ブリッジは一般に水不透
過性の支持層と、イオン移動を生じる多孔質の中間層と
、疎水性を呈することが望ましい多孔質でない被覆層(
何れも図示せず)のトリラミネート構造よりなっている
。既知のイオン活量の標準溶液が一つの液受は孔に、被
検試料液の液滴が他方の液受は孔にそれぞれ適用される
と、毛管作用ブリッジの多孔質層中にそれぞれ溶液拡散
して遂に接触して接触界面を形成し液滴間のイオン移動
を許容する。このとき生じる電極間の電位を標準溶液と
被検試料液とのイオン活はの示差電位として電位差計2
4で読み取る。特開昭56−6148号公報では、前記
のようなイオン選択電極の組立上の問題点及び毛管作用
ブリッジに適用される液がブリッジの縁部より漏洩して
電極表面に達することによシ測定結果に悪影響を及ぼす
(以後、この様な影響を外部ブリッジングと呼ぶ。)こ
とを改良し、自動化された測定装置にも適応できる測定
器具が提案されている。即ち該発明は、前記多孔性ブリ
ッジが非多孔質材で形成されるカバーシートの一部とし
て少くとも液受は孔間にイオンの流れを生じるだけ延在
してカバー7−トに埋設されたリボン状の多孔質材料と
して形成され、このカバーシートと、そのカバーシート
と電気的に伝導性のない材料のフレームでシールドケー
スを構成し、カバーシートとフレームがそれぞれ長い帯
状に形成されて、カバーシートとフレームとの間にフィ
ルム状電極を挾持するようにして接合した複合帯材を形
成後裁断して一つのイオン活量測定器具が得られる製造
方法が開示されている。しかしこのようにして製造され
るイオン活量測定器具においてもその材料原価に比べ、
製造コストは決して安価でなく、製造工程も必ずしも容
易でない。本発明は、前述した電気絶縁性を有するフレ
ームおよび多孔性ブリッジを内包したカバーシートを不
要として、前記欠点を解決し、自動化測定装置にも適応
できる多孔質部材よりなる毛管作用ブリッジの提供にあ
る。
There are many instruments in the prior art for measuring the activity of ions in a solution. Particularly in recent years, ion adsorption measurement instruments using dry-type film-like ion-selective electrodes that are easy to store, handle, and perform measurement operations have become widely known. This measuring instrument incorporates an ion-selective electrode that is sensitive to a specific ion and generates a potential proportional to the logarithm of the ion's activity, and is generally known to have the shape shown in FIG. Thus, in FIG. 1, two ion-selective electrodes 12 and 14 are provided within an electrically insulating frame 16, and a capillary bridge 18 is provided with two ion-selective electrodes 12 and 14 for receiving the solution deposited on the electrodes. The receiver has holes 20 and 22, and the receiver is provided to allow ion migration of the solution applied to the holes. This capillary action bridge generally consists of a water-impermeable support layer, a porous intermediate layer that allows for ion migration, and a non-porous covering layer that preferably exhibits hydrophobic properties.
Both are made of a trilaminate structure (not shown). When a standard solution of known ionic activity is applied to the hole in one receiver and a droplet of the test sample solution is applied to the hole in the other receiver, the solution diffuses into the porous layer of the capillary action bridge. Finally, they come into contact to form a contact interface, allowing ion movement between the droplets. The potential between the electrodes generated at this time is taken as the differential potential of the ion activity between the standard solution and the test sample solution, and the potentiometer 2
Read with 4. Japanese Patent Application Laid-Open No. 56-6148 describes the above-mentioned problems in assembling the ion-selective electrode and the fact that the liquid applied to the capillary action bridge leaks from the edge of the bridge and reaches the electrode surface. Measuring instruments have been proposed that improve the negative effects on results (hereinafter such effects are referred to as external bridging) and are adaptable to automated measuring devices. That is, in the invention, the porous bridge is embedded in the cover sheet as a part of the cover sheet made of a non-porous material, with at least the liquid receiver extending enough to cause the flow of ions between the holes. The cover sheet is formed as a ribbon-shaped porous material, and the cover sheet and a frame made of electrically non-conductive material constitute a shield case, and the cover sheet and frame are each formed into long strips to form a cover. A manufacturing method is disclosed in which a single ion activity measuring device is obtained by forming and cutting a composite band material in which a film-like electrode is sandwiched between a sheet and a frame. However, compared to the material cost of the ion activity measurement device manufactured in this way,
The manufacturing cost is not cheap, and the manufacturing process is not necessarily easy. The present invention provides a capillary action bridge made of a porous member that eliminates the need for the above-mentioned electrically insulating frame and cover sheet containing the porous bridge, solves the above-mentioned drawbacks, and is adaptable to automated measuring devices. .

本発明は、 (1)電気的に絶縁された位置関係にある対構造よりな
るイオン選択電極と、該対構造の各電極に被検液と標準
液を適用可能とする液受は孔を水不透過性層を支持層と
した毛細管作用を有する連続空隙を有する多孔性部材を
有し、該多孔性部材が前記対構造の電極を連絡しうるよ
うに該電極上に設けられ、且つ少くも前記液受は孔の底
部を除いて前記水不透過性層を介して該電極に接着され
ており、前記液受は孔にそれぞれ液を適用後両液が前記
多孔性部材内を拡散してイオン流を生じるイオン活量測
定器具において、前記多孔性部材が前記対構造の電極の
実質的全表面を被い、且つ前記液受は孔を一つの区域に
内包するようにして取シ囲み液の拡散を閉塞するシール
ドにより区画された領域からなる多孔性ブリッジが前記
多孔性部材に設けられていることを特徴とするイオン活
量測定器具、(2)前記シールドが前記多孔性部材の毛
管作用を有する連続空隙を目づめすることにより設けら
れたものである(1)に記載のイオン活量測定器具、な
らびに、 (6)前記多孔性部材が表向が疎水性を有し、熱融着可
能な部材であり、前記シールドが前記多孔性部材の毛管
作用を有する連続空隙を加熱により融着して目づめする
ことにより設けられたものである(1)に記載のイオン
活量測定器具である。
The present invention has the following features: (1) An ion-selective electrode consisting of a pair structure in an electrically insulated positional relationship, and a liquid receiver that allows the application of a test liquid and a standard solution to each electrode of the pair structure, which has a hole in the water. It has a porous member having continuous voids having capillary action with an impermeable layer as a support layer, and the porous member is provided on the electrode so as to connect the electrodes of the paired structure, and at least The liquid receiver is bonded to the electrode through the water-impermeable layer except for the bottom of the hole, and the liquid receiver is configured to allow both liquids to diffuse within the porous member after each liquid is applied to the hole. In an ion activity measurement device that generates an ion flow, the porous member covers substantially the entire surface of the pair of electrodes, and the liquid receiver includes holes in one area to collect the liquid. An ion activity measurement device characterized in that the porous member is provided with a porous bridge consisting of a region partitioned by a shield that blocks the diffusion of The ion activity measurement device according to (1), which is provided by filling continuous voids having In the ion activity measuring instrument according to (1), the shield is provided by fusing and filling continuous voids having capillary action in the porous member by heating. be.

更に本発明の一実施態様について説明する。Further, one embodiment of the present invention will be described.

第2図において、11は対構造のイオン選択電極上に接
着された多孔性部材、2および6はその多孔性部材を貫
通して設けられた電極表面に被検液および標準液を適用
するための液受は孔、4はこの液受は孔2および3を取
り囲むように設けられた多孔性部材11の毛細管作用を
有する連続空隙を目づめして液の拡散を閉塞するシール
ド、1はシールド4によって形成された毛細管作用ブリ
ッジ(または多孔性ブリッジともいう。)、5および6
は多孔性部材11に設けられるiltl損気端子孔で、
イオン選択電極の電気接続端子部分と示差電位測定のた
めの電位差計(図示せず)が接続される。第6図は第2
図のI−1線で示す断面図で、7および8は電気的絶縁
を確保するために相互に離間した位置関係に置かれたフ
ィルム状イオン選択電極で、水不透過性層10を支持層
とした多孔性部材層11が接着層9を介して貼着されて
いる。
In FIG. 2, 11 is a porous member bonded on the ion selective electrode of the paired structure, and 2 and 6 are for applying the test solution and standard solution to the electrode surface provided through the porous member. The liquid receiver is a hole, 4 is a shield that closes the continuous gap having capillary action in the porous member 11 provided to surround the holes 2 and 3, and blocks the diffusion of the liquid.1 is a shield. Capillary action bridge (also referred to as porous bridge) formed by 4, 5 and 6
is an iltl loss terminal hole provided in the porous member 11,
A potentiometer (not shown) for measuring differential potential is connected to the electrical connection terminal portion of the ion selection electrode. Figure 6 is the second
In the cross-sectional view taken along line I-1 in the figure, 7 and 8 are film-like ion-selective electrodes placed at a distance from each other to ensure electrical insulation. A porous member layer 11 having the same structure as above is attached via an adhesive layer 9.

上記の如く構成される本発明の好ましい具体例として前
記シールドが、電極i着前の多孔性部材に第2図の4に
示すシールドに対応する型抜をしたしたコテ等の加熱部
材で加熱することにより多孔性部材の毛管作用をもつ連
続空隙を融着により閉塞して毛管作用ブリッジを構成す
ることである。
In a preferred embodiment of the present invention configured as described above, the shield is heated with a heating member such as a iron having a mold corresponding to the shield shown in 4 in FIG. 2 cut out from the porous member before the electrode i is attached. In this way, the continuous voids having capillary action in the porous member are closed by fusion to form a capillary action bridge.

この目的を達成できる多孔性部材は従来公知の濾紙(例
えばWhatman Chroma 42 )の両面に
熱可塑性ポリマー(例、ポリエチレン、ポリプロピレン
、エチレンープロピレンコホリマー、塩化ヒニリテンー
塩化ビニルコポリマー)の層(水不透過性支持層)を設
けたトリラミネート構造物を用いることができるほか、
本発明者らにより先に特願昭56−34.370に開示
した有機ポリマー(例、ポリエチレン)繊維を含み、表
面が疎水性を有する紙の片面に水不透過性支持層を設け
たジラミネート構造物が特に好ましい。有機ポリマー繊
維を含む紙の例として、ポリエチレンパルプ100%か
らなる抄造紙、ポリエチレンパルプ50%と天然パルプ
(LBKP)60%からなる混抄紙をあげることができ
る。
A porous member capable of achieving this purpose is a conventional filter paper (e.g. Whatman Chroma 42) coated with a layer (water-impermeable) of a thermoplastic polymer (e.g. polyethylene, polypropylene, ethylene-propylene copolymer, hynyritene chloride-vinyl chloride copolymer) on both sides. In addition to being able to use a trilaminate structure with a support layer),
A dilaminate comprising a paper containing organic polymer (e.g., polyethylene) fibers and having a hydrophobic surface and provided with a water-impermeable support layer on one side, which was previously disclosed by the present inventors in Japanese Patent Application No. 34/1970. Structures are particularly preferred. Examples of paper containing organic polymer fibers include paper made from 100% polyethylene pulp and mixed paper made from 50% polyethylene pulp and 60% natural pulp (LBKP).

本発明の好ましい他の具体例として、前記シールドが電
極接着前または接着後の多孔性部材に図示の型の印面を
用いて押印方式または印刷方式により、または先細のチ
ューブからの押し出し方式によるシールドの形を描く方
式等により、硬化性の疎水性インク、接着剤、シリコー
ン樹脂、ホットメルト接着剤等を、加熱したスタンバ−
によりホットメルト型接着剤を浸透させて、毛管作用を
もつ空隙を目づめして毛細管作用ブリッジを構成するこ
とである。このような目的を達できる毛細管作用ブリッ
ジの多孔性部材は本発明者等によって先に特願昭56−
112030号公報で提案した素材よりなるものを用い
ることができる。表面が疎水性である多孔性部材と水不
透過性支持層とのジラミネート一体構造より成り、その
多孔性部材として、 ■ 合成ポリマー繊維からなるパルプと植物性天然繊維
からなるパルプを混抄した紙 ■ 合成ポリマー繊維からなるパルプから抄造した紙 ◎ 合成ポリマー繊維と植物性天然繊維とからなる混紡
織物 ◎ 植物性天然繊維からなる平織物 ■ セルロースエステルまたハ再生セルロースからなる
平均孔径2μm以下のメンブランフィルタ− ■ ニトロセルロースを含む半均孔径10μm以下のメ
ンブランフィルタ− ■ 植物性天然繊維からなるパルプから抄造し圧縮した
紙 よりなり、その具体例として以下のものが挙げられる。
In another preferred embodiment of the present invention, the shield is formed by stamping or printing using a stamp surface of the type shown in the figure on the porous member before or after bonding the electrodes, or by extruding the shield from a tapered tube. Curable hydrophobic ink, adhesives, silicone resins, hot melt adhesives, etc. are applied to a heated stand bar using methods such as drawing shapes.
The method is to infiltrate a hot melt adhesive to fill the voids with capillary action to form a capillary action bridge. The porous member of the capillary action bridge that can achieve this purpose was previously proposed by the present inventors in Japanese Patent Application No.
A material made of the material proposed in Japanese Patent No. 112030 can be used. It consists of a di-laminate integrated structure of a porous member with a hydrophobic surface and a water-impermeable support layer, and the porous member is: ■ Paper made from a mixture of pulp made of synthetic polymer fibers and pulp made of vegetable natural fibers. ■ Paper made from pulp made of synthetic polymer fibers ◎ Blended fabrics made of synthetic polymer fibers and vegetable natural fibers ◎ Plain fabrics made of vegetable natural fibers ■ Membrane filters with an average pore size of 2 μm or less made of cellulose ester or regenerated cellulose - ■ Membrane filter containing nitrocellulose and having a semiuniform pore diameter of 10 μm or less - ■ Made of paper made from pulp made of vegetable natural fibers and compressed. Specific examples thereof include the following.

これらの部材のうちで表面の疎水性が弱い場合には多孔
性部材の表面をシリコーン系またはフッ素系等の公知の
撥水剤を適用したものも含む。
Among these members, in cases where the surface is weakly hydrophobic, the porous member may be coated with a known water repellent such as silicone-based or fluorine-based water repellent on the surface.

■ 合成ポリマー繊維からなるパルプと植物性天然繊維
からなるパルプを混抄した紙。
■ Paper made from a mixture of pulp made from synthetic polymer fibers and pulp made from vegetable natural fibers.

合成ポリマー繊維からなるパルプの例:ポリエチレン、
ポリエチレンテレフタレートマタはセルロースエステル
(セルロースジアセテート、セルローストリアセテート
、セルロースアセテートブチレート、セルロースアセテ
ートプロピオネート、セルロースアセテートフタレート
など)繊維からなるパルプ。
Examples of pulps made of synthetic polymer fibers: polyethylene,
Polyethylene terephthalate is a pulp made from cellulose ester (cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate phthalate, etc.) fibers.

植物性天然繊維からなるパルプの例:木綿パルプ、リン
ターパルプ、亜麻(L部n)パルプ、麻(Hemp)パ
ルプ、こうぞ(B roussOneilaKaZin
Oki 5ieb、 )パルプ、みつまた(Edgew
o−rjhiapapyrif8ra  5ieb、 
 ’et  Zucc、)/(ルプ、がんび(Wiks
troemia 5ikOk1ana Franch、
 etSav、 )パルプ、マニラ麻(Musa te
xtj−1io )、ニスパル) (ESpartO刈
ass)パルプ、竹バルブ、広葉樹さらしセミケミカル
パルプωardWOOclbleached semi
−chemical pulp )、針葉樹亜硫酸パル
プ(Conifer 5ulfite pulp )。
Examples of pulps made of vegetable natural fibers: cotton pulp, linter pulp, flax (L part n) pulp, hemp (Hemp) pulp,
Oki 5ieb, ) Pulp, Mitsumata (Edgew
orjhiapapyrif8ra5ieb,
'et Zucc,)/(Lupu, Ganbi (Wiks)
troemia 5ikOk1ana Franch,
etSav, ) Pulp, Manila Hemp
xtj-1io), Nispar) (ESpartOkari ass) pulp, bamboo valve, hardwood bleached semi-chemical pulp ωardWOOclbleached semi
-chemical pulp), coniferous sulfite pulp (Conifer 5ulfite pulp).

パルプ全重量に対する植物性天然繊維からなるパルプ(
以下天然パルプという。)の含有量比は20%以下、好
−ましくは60%以下である。
Pulp composed of vegetable natural fibers based on the total pulp weight (
Hereinafter referred to as natural pulp. ) is 20% or less, preferably 60% or less.

紙の種類として、濾紙または吸収紙と同様に賦形剤、糊
剤、サイズ剤を実質的に加えず、かつ好ましくは表面が
千i(繊維のケバ立ちかないこと)な紙。
As for the type of paper, like filter paper or absorbent paper, the paper is substantially free of excipients, pastes, and sizing agents, and preferably has a surface that is free of fluff (fibers do not stand up).

◎ 合成ポリマー繊維からなるパルプから抄造した紙。◎ Paper made from pulp made of synthetic polymer fibers.

パルプが全部合成ポリマー繊維からなるほかは上記■の
混抄紙と同様である。
This paper is the same as the mixed paper in item ① above, except that the pulp is entirely made of synthetic polymer fibers.

◎ 合成ポリマー繊維と植物性天然繊維とからなる混紡
織物。
◎ A blended fabric consisting of synthetic polymer fibers and plant-based natural fibers.

合成ポリマー繊維の例:ポリエチレンテレフタレート、
セルロースエステル(セルロースアセテート、セルロー
ストリアセテートなト)、ポリアミド(ポリカプラミド
、ポリへキサメチレンセバカミド、ポリウンデカンアミ
ドなど)、または再生セルロースの繊維。
Examples of synthetic polymer fibers: polyethylene terephthalate,
Fibers of cellulose esters (cellulose acetate, cellulose triacetate), polyamides (polycapramide, polyhexamethylene sebaamide, polyundecaneamide, etc.), or regenerated cellulose.

植物性天然繊維の例:木綿繊維、リンター繊維、亜麻繊
維、麻繊維。
Examples of vegetable natural fibers: cotton fibers, linter fibers, flax fibers, hemp fibers.

合成ポリマー繊維と植物性天然繊維(以下天然繊維とい
う。)を混紡した20番手から120番手の糸で織った
絹布、金巾、ブロード、ボブリンなどの平織物。または
他の織方の織物。
Plain woven fabrics such as silk cloth, kimono, broadcloth, and boblin are woven with threads of 20 to 120 count, which are a blend of synthetic polymer fibers and plant-based natural fibers (hereinafter referred to as natural fibers). or fabrics of other weaves.

合成ポリマー繊維、天然繊維ともに2種以上を混紡する
こともできる。
It is also possible to blend two or more types of both synthetic polymer fibers and natural fibers.

■ 植物性天然繊維からなる平織物。■ Plain woven fabric made of plant-based natural fibers.

前記◎であげた天然繊維のほかに再生セルロース繊維か
らなる20番手から120番手の糸で織った金巾、ブロ
ード、ボブリンなどの平織物。
In addition to the natural fibers listed in ◎ above, plain woven fabrics such as kimonos, broadcloths, and boblins are woven with threads of 20 to 120 counts made of regenerated cellulose fibers.

天然繊維を2柚以上混紡した糸を用いることができるほ
か、たて糸とよこ糸を別種の糸とすることもできる。
A yarn made by blending two or more natural fibers can be used, and the warp and weft can also be made of different types of yarn.

■ セルロースエステルまたは再生セルロースからなる
平均孔径2μm以下のメンブランフィルタ−0好ましく
は平均孔径1.2μm以下、最も好ましくは平均孔径0
.8μm以下のメンブランフィルタ−。
■ Membrane filter made of cellulose ester or regenerated cellulose with an average pore size of 2 μm or less, preferably an average pore size of 1.2 μm or less, most preferably an average pore size of 0
.. Membrane filter of 8μm or less.

セルロースエステルマタは再生セルロースに公知の可塑
剤を含有させた同様の平均孔径のメンブランフィルタ−
を用いることもできる。
Cellulose ester mata is a membrane filter with a similar average pore size made of regenerated cellulose containing a known plasticizer.
You can also use

■ ニトロセルロースを主成分として含む平均孔径10
μm以下のメンブランフィルタ−。
■ Average pore size 10 containing nitrocellulose as the main component
Membrane filter below μm.

ニトロセルロースの含有量は全重量の50%から100
%(100%の場合には他の成分を含捷ない。)、好ま
しくは70%から95%の範囲、平均孔径は好ましくは
8μm以下である他の従たる成分として、ジアセチルセ
ルロース、トリアセチルセルロースナトのセルロースの
有機酸エステルを含む。
Nitrocellulose content ranges from 50% to 100% of the total weight
% (in the case of 100%, other components are not included), preferably in the range of 70% to 95%, and the average pore size is preferably 8 μm or less. Other secondary components include diacetyl cellulose, triacetyl cellulose. Contains organic acid esters of cellulose.

■ 植物性天然繊維からなるパルプから抄造して圧縮し
た紙。
■ Paper made and compressed from pulp made from vegetable natural fibers.

天然パルプとしては前記■であげたパルプが用いられ、
抄造された紙として濾紙、吸収紙があり、これらの紙を
公知の手段により圧縮し、好ましくは表面を平滑にしく
繊維のケバ立ちを実質的になくした)だ紙。
As the natural pulp, the pulp mentioned in (■) above is used,
Filter paper and absorbent paper are examples of paper made from paper, and these papers are compressed by known means to preferably have a smooth surface and substantially eliminate the fluff of the fibers.

処でこれらの多孔性部材の表面が疎水性である必要は次
の理由による。多孔性部材の表面が疎水性でないかまた
は親水性の場合液受は孔に適用された液が多孔性部材内
部を毛細管現象により拡散して流れ進む速度より、その
表面を流れ進む速度が速く、部材内の拡散流速と非常に
異なシ良好な測定を行なうことができない為である。ま
たその表面を流れる液が電極面に流下して前述した外部
ブリッジングを生じる。多孔性部材の表面が疎水性を有
するには、多孔性部材そのものに疎水性を有する部材を
用いる方法、即ち、前述したように表面を流れる液の流
速よりも多孔性部材の内部を毛細管現象により拡散して
流れ進む速度の大きい素材を選択することにより達成で
きる。或いは他の方法として多孔性部材の表面をシリコ
ン系或いはフッ素系等の公知の撥水剤を適用することに
より達成することもできる。次に、水不透過性支持層と
して平担で平滑な表面を有するものとして、ポリエチレ
ンテレフタレート(PET)フィルム、ビスフェノール
Aのポリカルボネートフィルム、ポリエチレン(PE)
フィルム、塩化ビニリデン−塩化ビニルコポリマーフィ
ルムに代表される水不透過性ポリマーフィルム、ガラス
板、アルミニウム板、銅板、銅亜鉛合金板、ステンレス
板に代表される金属板で平坦で平滑な(または鏡面を有
する)板状物をあげることができる。
The reason why the surfaces of these porous members need to be hydrophobic is as follows. If the surface of the porous member is non-hydrophobic or hydrophilic, the liquid receiver will flow at a faster rate on the surface than the liquid applied to the pores will diffuse through the porous member by capillary action; This is because it is not possible to perform good measurements because the diffusion flow rate is very different from the diffusion flow rate within the member. Further, the liquid flowing on the surface flows down onto the electrode surface, causing the external bridging described above. In order for the surface of a porous member to have hydrophobicity, there is a method of using a member that has hydrophobicity in the porous member itself. In other words, as described above, the flow rate of the liquid flowing on the surface is higher than that of the inside of the porous member due to capillary action. This can be achieved by selecting a material that diffuses and flows at a high speed. Alternatively, this can also be achieved by applying a known water repellent such as silicon-based or fluorine-based water repellent to the surface of the porous member. Next, as a water-impermeable support layer, polyethylene terephthalate (PET) film, bisphenol A polycarbonate film, polyethylene (PE) film, etc.
films, water-impermeable polymer films typified by vinylidene chloride-vinyl chloride copolymer films, metal plates typified by glass plates, aluminum plates, copper plates, copper-zinc alloy plates, and stainless steel plates that are flat and smooth (or have a mirror surface). (having) a plate-like object.

このような水不透過性支持層と前述の多孔性部材は感圧
性粘着剤組成物よりなる接着剤、或いはポリエチレンテ
レフタレートフィルム、ポリ塩化ビニルフィルム、セル
ロースアセテートフィルム及びセロハンテープ等の両面
粘着テープの両面に感圧性粘着剤組成物層を有するもの
によシ一体化されている。
Such a water-impermeable support layer and the above-mentioned porous member are made of an adhesive made of a pressure-sensitive adhesive composition, or both sides of a double-sided adhesive tape such as a polyethylene terephthalate film, a polyvinyl chloride film, a cellulose acetate film, and a cellophane tape. It is integrated with a pressure-sensitive adhesive composition layer.

本発明の詳細な説明としてポリエチレンとパルプとの混
抄紙よりなる多孔性部材に水不透過性支持層としてポリ
エチレンをラミネートしたものを用いる例を詳述し友が
、このような毛細管作用ブリッジを用いるのは先にも述
べたように、これら多孔性部材が表面に疎水性を有し、
しかも熱に簡単に溶融してその毛細管作用を有する連続
空隙を容易に融着して液の拡散を封止できることにある
As a detailed explanation of the present invention, an example will be described in which a porous member made of a mixed paper of polyethylene and pulp is laminated with polyethylene as a water-impermeable support layer. As mentioned earlier, these porous members have hydrophobic surfaces,
Moreover, it is easily melted by heat, and its continuous voids having capillary action can be easily fused to seal the diffusion of liquid.

また表面が疎水性な呈するので被覆層を設けずに用いる
ことができ、従って製造も簡略化でき、更に上記のシー
ルドを設けるだけで液の外部ブリッジングも生じず、し
かも電極上の実質的に全表面に亘って多孔性部材が接層
されているため、従来のようなシールドケースを不要と
し、捷た前記の如きフレームに収納せずとも、例えば液
滴が自動的に形成され点着される自動測定装置において
の使用にも堪えられるのである。本実施態様では多孔性
部材を加熱することでシールドが達成される場合を述べ
たが、他の態様では、例えば押印方式または印刷方式に
よって硬化しうる疎水性インク、接着剤、またはシリコ
ーン樹脂等を加熱したスタンノ仁−によりホットメルト
型接着剤を浸透させて連続空隙の目づめを達成すること
も可能である。
In addition, since the surface is hydrophobic, it can be used without providing a coating layer, which simplifies manufacturing.Furthermore, by simply providing the above-mentioned shield, external bridging of the liquid does not occur, and the material on the electrode is substantially Since the porous material is layered over the entire surface, there is no need for a conventional shield case, and droplets can be automatically formed and deposited without having to be housed in a folded frame like the one described above. It can also be used in automatic measuring equipment. In this embodiment, a case has been described in which shielding is achieved by heating the porous member, but in other embodiments, for example, hydrophobic ink, adhesive, silicone resin, etc. that can be cured by a stamping method or a printing method may be used. It is also possible to achieve filling of the continuous voids by infiltrating the hot melt adhesive with a heated stan core.

さらにシールドの形として第2図に示す長方形のみでな
く、液受は孔2,6の間で測<<びれた形など必要によ
り種々の形をとりうろことはいうまでもない。
Furthermore, the shape of the shield is not limited to the rectangular shape shown in FIG. 2, but it goes without saying that the liquid receiver can take on various shapes as necessary, such as a tapered shape between the holes 2 and 6.

本発明に使用するイオン選択電極は、一般に四機能1@
積層、三機能層積層または三機能層積層のフィルム状に
構成され、第6図における絶縁性支持体20上に金稿層
21、金属層の金属と四槽の金属の水不溶性塩層(水不
溶性塩層は省略することができる。)22と、電解質を
含む層(電解質を含む層は省略することができる。)2
6およびイオン選択層24よりなるが、本発明のために
その構造および作用の詳細な説明は不要と考える。
The ion selective electrode used in the present invention generally has four functions 1@
It is constructed in the form of a laminated layer, a trifunctional layer laminated layer, or a trifunctional layer laminated film. The insoluble salt layer can be omitted) 22, and the electrolyte-containing layer (the electrolyte-containing layer can be omitted) 2
6 and an ion selective layer 24, but a detailed explanation of their structure and operation is not considered necessary for the present invention.

しかし電極の実施態様およびその使用方法の詳細は説明
は特開昭47−82897号、特開昭52−14258
4号、米国特許第4,053,581号および特開昭5
7−17851号公報等に開示されている。また、本発
明のように未知のイオン活量成分を含む被検液と既知の
イオン活量の標準液のイオン活量に基づく電位差を測定
する示差測定では対電極の電気化学的特性が同一である
ことが望ましい。このような観点に基づいて、簡単に同
一物性の対電極を構成でき、しかも特別の電気絶縁化手
段も必要としない発明が本発明者等によって特願昭第5
7−40398号で提案されている。即ち、電気絶縁性
支持体に積層される各電極構成層において、好ましくは
その最外層のイオン選択層形成前にその電極構成層上よ
り金属層を分断するスクラッチ処理を実施する事により
対電極を構成するのである。このスクラッチ操作は鋭利
な刃物などで簡単に行なえ、しかも分割される金属層間
の成気絶縁は完全に達成できて対電極が得られる。
However, details of the embodiment of the electrode and its method of use are described in JP-A-47-82897 and JP-A-52-14258.
No. 4, U.S. Patent No. 4,053,581 and JP-A No. 5
It is disclosed in JP 7-17851 and the like. Furthermore, in differential measurement as in the present invention, which measures the potential difference based on the ionic activity of a test solution containing an unknown ionic activity component and a standard solution of known ionic activity, the electrochemical characteristics of the counter electrode are the same. It is desirable that there be. Based on this viewpoint, the present inventors have proposed an invention in which a counter electrode with the same physical properties can be easily constructed and does not require any special electrical insulation means.
No. 7-40398. That is, in each electrode constituent layer laminated on the electrically insulating support, preferably, before forming the outermost ion selective layer, a scratching process is performed to separate the metal layer from above the electrode constituent layer to form a counter electrode. It composes. This scratching operation can be easily performed with a sharp knife, and moreover, complete vapor insulation between the divided metal layers can be achieved and a counter electrode can be obtained.

このようにして構成された長尺な帯状の対電極上に本発
明の一実施態様のような個々の毛細管作用ブリッジをそ
れぞれ載置して接着後裁断していくか、或いは予め前記
のように構成された毛細管作用ブリッジも長尺な帯状と
して構成し、対′電極に接着後、毛細管作用ブリッジと
電極を一緒に裁断して一個のイオン活量測定器具を得る
こともできる。以上の如く記載した態様において、その
シールドされた毛細管作用ブリッジに該当する部分は狭
い程、接触界面が形成されてイオン移動がIF谷される
までに要する時間が短かく、また点着される液量が少な
くてすむので好ましい。
Individual capillary action bridges such as one embodiment of the present invention are placed on the long strip-shaped counter electrode constructed in this manner, and then cut after adhesion, or alternatively, as described above, The constructed capillary action bridge may also be constructed as a long strip, and after adhering to the counter electrode, the capillary action bridge and the electrode may be cut together to obtain a single ion activity measuring instrument. In the embodiments described above, the narrower the portion corresponding to the shielded capillary action bridge, the shorter the time required for the contact interface to be formed and the IF trough of ion movement, and the more the deposited liquid This is preferable because the amount can be small.

以上述べた通り、本発明は毛細管作用ブリッジを構成す
る多孔性部材で対電極表面を被って毛細管作用ブリッジ
一体型カバーシートを形成することで従来タイプのカバ
ーシートとフレームかうするシールドケースを不要とし
、しかも従来のものと同等の機能を有するイオン活量測
定器具が間単に得られることである。
As described above, the present invention eliminates the need for a conventional type of shield case that uses a cover sheet and frame by covering the counter electrode surface with a porous member constituting a capillary action bridge to form a capillary action bridge integrated cover sheet. Moreover, it is possible to easily obtain an ion activity measuring instrument having the same functions as conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来タイプのイオン活量測定器具の構成を説明
する概略斜視図。 6図は第2図の1−1線における断面図である。 1・・・毛細管作用ブリッジ、2,6・・・液受は孔、
4・・・シールド、5,6・・・電気接続端子孔、7,
8・・・イオン選択電極、9・・・接着層、10・・・
水不透過第  1  図 η 第  2  図
FIG. 1 is a schematic perspective view illustrating the configuration of a conventional type of ion activity measuring instrument. FIG. 6 is a sectional view taken along line 1-1 in FIG. 1... Capillary action bridge, 2, 6... Liquid receiver is hole,
4... Shield, 5, 6... Electrical connection terminal hole, 7,
8... Ion selective electrode, 9... Adhesive layer, 10...
Water impermeability Figure 1 η Figure 2

Claims (1)

【特許請求の範囲】 (1)電気的に絶縁された位置関係にある対構造よりな
るイオン選択電極と、該対構造の各電極に被検液と標準
液を適用可能とする液受は孔を水不透過性層を支持層と
した毛M41J管作用を有する連続空隙を有する多孔性
部材を有し、該多孔性部材が前記対構造の電極を連絡し
うるように該電極上に設けられ、且つ少くとも前記液受
は孔の底部金除いて前記水不透過性層を介して該電極に
接着されており、前記液受は孔にそれぞれ液を適用後画
液が前記多孔性部材内を拡散してイオン流を生じるイオ
ン活量測定器具において、前記多孔性部材が前記対構造
の電極の実質的全表面を被い、且つ前記液受は礼金一つ
の区域に内包するようにして取り囲み液の拡散を閉塞す
るシールドにより区画された領域からなる多孔性ブリッ
ジが前記多孔性部材に設けられていることを特徴とする
イオン活 量測定器具。 (2)前記シールドが前記多孔性部材の毛管作用を有す
る連続空隙を目づめすることにより設けられたものであ
る特許請求の範囲第1項記載のイオン活量測定器具。 (5)  前記多孔性部材が表面が疎水性を有し、熱融
着可能な部材であり、前記シールドが前記多孔性部材の
毛管作用を有する連続空隙を加熱により融着して目づめ
することにより設けられたものである特許請求の範囲第
1項記載のイオン活量測定器具。
[Claims] (1) An ion-selective electrode consisting of a pair structure in an electrically insulated positional relationship, and a liquid receiver that enables application of a test liquid and a standard solution to each electrode of the pair structure has a hole. has a porous member having continuous voids having a water-impermeable layer as a support layer and a capillary M41J tube action, and the porous member is provided on the electrode so as to connect the electrodes of the paired structure. , and at least the liquid receiver is bonded to the electrode through the water-impermeable layer except for the metal at the bottom of the hole, and the liquid receiver is configured such that after applying the liquid to each hole, the liquid is inside the porous member. In an ion activity measurement device that generates an ion flow by diffusing a material, the porous member covers substantially the entire surface of the paired electrode, and the liquid receiver is surrounded so as to be included in one area of the key money. An ion activity measuring instrument characterized in that the porous member is provided with a porous bridge consisting of a region partitioned by a shield that blocks diffusion of liquid. (2) The ion activity measuring instrument according to claim 1, wherein the shield is provided by filling continuous voids having capillary action in the porous member. (5) The porous member has a hydrophobic surface and is heat-sealable, and the shield seals the continuous voids of the porous member that have a capillary action by welding them by heating. An ion activity measuring instrument according to claim 1, which is provided by.
JP8406282A 1982-05-20 1982-05-20 Instrument for determining ionic activity Pending JPS58201056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8406282A JPS58201056A (en) 1982-05-20 1982-05-20 Instrument for determining ionic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8406282A JPS58201056A (en) 1982-05-20 1982-05-20 Instrument for determining ionic activity

Publications (1)

Publication Number Publication Date
JPS58201056A true JPS58201056A (en) 1983-11-22

Family

ID=13820004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8406282A Pending JPS58201056A (en) 1982-05-20 1982-05-20 Instrument for determining ionic activity

Country Status (1)

Country Link
JP (1) JPS58201056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903335B1 (en) 1998-06-05 2005-06-07 Arkray, Inc. Ion activity-measuring device and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903335B1 (en) 1998-06-05 2005-06-07 Arkray, Inc. Ion activity-measuring device and method for producing the same

Similar Documents

Publication Publication Date Title
CA1145398A (en) Capillary bridge in apparatus for determining ionic activity
US3715192A (en) Indicator strip
JPS58211648A (en) Ion activity measuring apparatus
CA2305922C (en) Improved electrochemical sensor design
CA1071305A (en) Device and method for determining ionic activity of components of liquid drops
RU2002125857A (en) Conductive structures for monitoring the filling of medical devices
US4684445A (en) Method and device of measuring ion activity
US5547554A (en) Electrochemical measuring cell having a gas-permeable housing
US4340565A (en) Hematocrit value determining element
US3483036A (en) Fuel cell with ion exchange electrolyte
JP2012189597A (en) Vented oxygen cell
JPS5814050A (en) Ion activity measuring apparatus
US4842712A (en) Device for measuring ion activity
JPS58201056A (en) Instrument for determining ionic activity
DE3687022T2 (en) METHOD AND DEVICE FOR MEASURING ION ACTIVITY.
US4871441A (en) Ion activity measuring device
US2579743A (en) Dry cell and electrode therefor
ES2091435T3 (en) DEVICE THAT ALLOWS TO PERFORM IN A SINGLE TIME THE SEPARATION AND VISUALIZATION OF THE ERYTHROCITAL AGGLUTINATES.
JP3839523B2 (en) Ion contact bridge
JP4206462B2 (en) Ion activity measuring instrument and method for manufacturing the same
JP3164255B2 (en) Electrochemical gas detector
CN202757936U (en) Colloidal gold immunochromatography assay test strip
US5330625A (en) Round potentiometric slide elements and method of using the same
JPS6212285Y2 (en)
JPS6239758A (en) Measuring instrument for ion activity