[go: up one dir, main page]

JPS58200153A - Gas detection element - Google Patents

Gas detection element

Info

Publication number
JPS58200153A
JPS58200153A JP8344582A JP8344582A JPS58200153A JP S58200153 A JPS58200153 A JP S58200153A JP 8344582 A JP8344582 A JP 8344582A JP 8344582 A JP8344582 A JP 8344582A JP S58200153 A JPS58200153 A JP S58200153A
Authority
JP
Japan
Prior art keywords
gas
powder
detection element
sensitivity
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8344582A
Other languages
Japanese (ja)
Other versions
JPS6160381B2 (en
Inventor
Yoshihiko Nakatani
吉彦 中谷
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8344582A priority Critical patent/JPS58200153A/en
Publication of JPS58200153A publication Critical patent/JPS58200153A/en
Publication of JPS6160381B2 publication Critical patent/JPS6160381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a combustible gas detection element which is highly sensitive at a relatively low working temperature even with a high sensitivity to CH4 gas by use of a gas sensitive body mainly composed of SnO2 and containing SO4<--> within the specified range of proportion. CONSTITUTION:An SnO2 powder is mixed with an SnSO4 powder and after an organic binder is added thereto, the mixture is graded to particles of 100-200mum to make a powder. The powder is pressure-molded into a rectangular parallel piped and sintered in the air. Au or the like is evaporated on the surface of a sintered body to provide a pair of comb-shaped electrodes while a heat generating body made of Pt or the like is provided on the back thereof to obtain a combustible gas detection element. The sintered body is produced from a mixture containing SO<--> 0.05-10wt% by addition of SnSO4. The presence of SO4<--> provides an element which is sufficiently sensitive within a range several tens - a fraction of the lower limit concentration of explosion even with a high sensitivity to CH4 gas.

Description

【発明の詳細な説明】 本発明は可燃性ガスを検知するガス検知素子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas detection element for detecting combustible gas.

近年、可燃性ガスの検知素子材料について種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や有毒ガスによ
る中毒事故が多発し、大きな社会問題となっていること
にも強く起因している。特にプロパンガスは、爆発下限
界(LIEL)が低く、かつ比重が空気よりも大きく、
部屋に停滞しやすいために事故があとを断たず、毎年多
数の死傷者を出している。
In recent years, various research and development activities regarding materials for sensing elements for flammable gases have become active. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently in ordinary households and in various factories, which have become major social problems. In particular, propane gas has a low lower explosive limit (LIEL) and a higher specific gravity than air.
Because they tend to get stuck in rooms, accidents continue to occur, resulting in numerous casualties every year.

近年になって、酸化第二錫(5nO2)やガンマ型酸化
第二鉄(γ−y・203)などの金属酸化物を用いたガ
ス検知素子が実用化され、ガス漏れ警報器などに応用さ
れている。そして、ガス漏れなどの事態が発生してもL
IELに至るまでの間に、プロパンガスの存在をいち早
く検知し、爆発を未然に防げるようになっている。
In recent years, gas detection elements using metal oxides such as stannic oxide (5nO2) and gamma-type ferric oxide (γ-y・203) have been put into practical use, and are being applied to gas leak alarms. ing. And even if a situation such as a gas leak occurs, L
By the time the IEL is reached, the presence of propane gas can be quickly detected and an explosion can be prevented.

ところで、日本でもメタンガスを主成分とする液化天然
ガス(LNG )が一般家庭用として用いられるように
なり、徐々に普及して来ている。したがって、このLN
Gの主成分であるメタンガスを選択性よく検出するガス
検知素子の要請も非常に大きくなってきている。
Incidentally, in Japan, liquefied natural gas (LNG) whose main component is methane gas has come to be used for general household use and is gradually becoming popular. Therefore, this LN
The demand for gas detection elements that can detect methane gas, which is the main component of G, with high selectivity is also increasing.

勿論、すでにメタンガスに感応するガス検知素子は開発
されてはいるが、その多くはJ8応体材料に増感剤とし
て貴金属触媒を用いているため、種3− 々のガスによる触媒被毒の問題、メタンガスに対する選
択度が小さい点、あるいは周囲湿度に対する依存性が大
きい点などの課題を抱えている。したがって、実用に際
しては未だ不十分な特性であるのが現状である。
Of course, gas detection elements sensitive to methane gas have already been developed, but since most of them use precious metal catalysts as sensitizers in the J8 reaction material, there is a problem of catalyst poisoning by three different gases. , they have problems such as low selectivity for methane gas and high dependence on ambient humidity. Therefore, the current situation is that the properties are still insufficient for practical use.

本発明はこのような状況に鑑みてなされたもので、メタ
ンガスに対しても実用上十分大きな感度を持ったガス検
知素子を提供するものである。メタンガスはそれ自身非
常に安定なガスであるだけに、これに十分な感度を有す
る検知素子は非常に高活性である必要がある。したがっ
て、メタンガスに対して大きな感度を実現するためには
、従来は、貴金属触媒を感応体材料に添加して用いるか
The present invention has been made in view of this situation, and it is an object of the present invention to provide a gas detection element that has a sensitivity sufficiently high for practical use even to methane gas. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, a noble metal catalyst has traditionally been added to the sensitive material.

あるいは感応体をかなり高い温度で動作させるなどの工
夫がなされてきた。これに対し、本発明は貴金属触媒を
一切添加することなく、また比較的低い動作温度でも対
メタンi度の大きい素子を実現するものである。
Alternatively, efforts have been made to operate the sensitive body at a considerably high temperature. In contrast, the present invention realizes an element with a high degree of methane resistance even at a relatively low operating temperature without adding any noble metal catalyst.

本発明は酸化第二錫(Sn02)をガスg応体として用
いたガス検知素子において、これに含まれついて検討し
ている中で見出されたものである。
The present invention was discovered in the course of research into a gas sensing element using stannic oxide (Sn02) as a gas reactant.

すなわち、ガス感応体の母材料である5n02が硫酸イ
オン(804−−)を含有することによりガス感応特性
が飛躍的に向上し、しかも先述のメタンガスに対しても
実用上十分大きな感度を実現し得ることを見出したこと
によってなされたものである。
In other words, by containing sulfate ions (804--) in 5n02, which is the base material of the gas sensitive material, the gas sensitivity characteristics are dramatically improved, and the sensitivity to the aforementioned methane gas is sufficiently high for practical use. This was done by discovering what could be achieved.

以下、本発明を具体的な実施例に基づいて説明する。The present invention will be described below based on specific examples.

〔実施例1〕 市販の酸化第二@(SnO2)試薬に1、硫酸イオンを
含有させるだめの添加物として種々の量の硫酸第一錫(
SnSO4)粉末をそれぞれ添加混合し、さらにこれに
有機バインダーを加えて100〜200μの大きさの粒
子に整粒したいくつかの粉体を作製した。このようにし
て得られた、硫酸第一錫の含まれる量の異るそれぞれの
粉体を直方体       1形状に加圧成形し、空気
中でaooocの温度で1時間焼成した。この焼結体の
表面にムUを蒸着して一対の櫛形電極を形成し、その裏
面には白金発熱体を無機接着剤で貼りつけてヒータとし
検知素子を作製した。この発熱体に電流を通じ、その電
流値を調節して素子の動作温度を制御した。素体温度を
4oo0Cに保持して、そのガス感応特性を測定した。
[Example 1] Various amounts of stannous sulfate (SnO2) were added as an additive to a commercially available sulfuric oxide (SnO2) reagent to contain sulfate ions.
SnSO4) powders were added and mixed, and an organic binder was further added thereto to produce several powders sized into particles of 100 to 200 μm in size. The thus obtained powders containing different amounts of stannous sulfate were press-molded into a rectangular parallelepiped shape and fired in air at a temperature of aooooc for 1 hour. MuU was vapor deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater and to produce a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. The temperature of the element body was maintained at 4oo0C and its gas sensitivity characteristics were measured.

空気中における抵抗値(R亀)については、乾燥した空
気が乱流のできない程度にゆっくり撹拌されている容積
601の測定容器中で測定し、ガス中での抵抗値(Rg
)はこの容器の中に純度99%以上のメタン(CH4)
、プロパン((3Hs)。
The resistance value in air (Rg) is measured in a measuring container with a volume of 601 in which dry air is slowly stirred to the extent that no turbulence occurs.
) contains methane (CH4) with a purity of over 99% in this container.
, propane ((3Hs).

イソブタン(i−C4H10)及び水素(H2)の各ガ
スを容量比率にして10ppm/秒の割合で流入させ、
その濃度が0.1容量%に達した時にそれぞれ測定した
。測定するガス濃度を0.1容量%に選んだのは、ガス
検知素子として実用上要望される検゛知濃度がそのガス
の爆発下限界濃度(LiEL)の数10分の1から数分
の1の範囲であり、上記のガスのそれぞれのLELが約
2容量%から6容量%であるからである。
Isobutane (i-C4H10) and hydrogen (H2) gases are introduced at a volume ratio of 10 ppm/sec,
Each measurement was made when the concentration reached 0.1% by volume. The gas concentration to be measured was chosen to be 0.1% by volume because the detection concentration that is practically required for a gas detection element is from several tenths to several tenths of the lower explosive limit concentration (LiEL) of the gas. 1 and the LEL of each of the above gases is about 2% by volume to 6% by volume.

またガス感応体に含まれる硫酸イオン(804−’−)
の存在は赤外線吸収スペクトルで確認し、含有されてい
る量はTG−DTム曲線及び螢光X線分析から固定した
。表に種々のFi!teイオン量を含むガス感応体の感
応特性を示す。また、第1図(IL) 、 (b)はこ
れを感度(Ra/1g)で表わしたものであり、第1図
(IL)にはメタンとプロパン、第1図(b)にはイソ
ブタンと水素に対する特性を5示す。
Also, sulfate ion (804-'-) contained in the gas sensitive material
The presence of the compound was confirmed by infrared absorption spectrum, and the amount contained was determined from the TG-DT curve and fluorescent X-ray analysis. Various Fi! The sensitive characteristics of a gas sensitive material containing the amount of te ions are shown. In addition, Figure 1 (IL) and (b) express this in terms of sensitivity (Ra/1g); Figure 1 (IL) shows methane and propane, and Figure 1 (b) shows isobutane and 5 characteristics for hydrogen are shown.

(以下余白) 上記表および第1図から明らかなように、硫酸イオン(
804” −)を0.005〜10.0重量%含有する
ことによって、ガス感応特性、特にメタンに対する感度
が飛躍的に向上していることがわかる。
(Left below) As is clear from the table above and Figure 1, sulfate ions (
It can be seen that by containing 0.005 to 10.0% by weight of 804''-), the gas sensitivity characteristics, especially the sensitivity to methane, are dramatically improved.

なお、本実施例において含有される硫酸イオン(804
−−)ノ量を0.005〜10.0重量%に限定したの
は、まずo、oos重量%未満では上記表に見られるよ
うにガス感応特性を向上せしめる効果が見られず、逆に
10.0重量%を超えると特性の安定性、あるいは機械
的強度の面で実用性に欠けるからである。上記表におい
て※印を付したものはこれに該当するものであり5表中
では比較例として記載した。表中のN001に示されて
いる様に、通常の5nOs+そのものではガス感応特性
が十分でなく、そのままでは実用に供し得るものではな
い。
Note that the sulfate ion (804
--) The reason for limiting the amount of 0.005 to 10.0% by weight is that if the amount is less than 0.005 to 10.0% by weight, as shown in the table above, there is no effect of improving the gas sensitivity characteristics; This is because if it exceeds 10.0% by weight, it is impractical in terms of stability of properties or mechanical strength. Items marked with * in the table above correspond to this, and are listed as comparative examples in Table 5. As shown in No. 001 in the table, ordinary 5nOs+ itself does not have sufficient gas sensitivity characteristics and cannot be put to practical use as it is.

しかしこれに硫酸イオンが含有されることによって、上
記表及び第1図に見られる様に、メタンをはじめとする
種々の可燃性ガスに対して大きな感度が現出するわけで
ある。
However, by containing sulfate ions, as shown in the above table and FIG. 1, a large sensitivity to various flammable gases including methane appears.

また一般的には、ある程度非晶質の状態の金属酸化物の
方が、結晶化されているものより可燃性ガスに対する吸
脱着現象などの物理化学現象が活性になり易いと云われ
ている。しかし、はぼ完全に近く結晶化されている本実
施例で使用した市販試薬の酸化第二錫でも、硫酸イオン
を含有することにより極めて高い活性度を示し、結果的
には非常に大きなガス!1′8応特性を示すことになる
Additionally, it is generally said that physicochemical phenomena such as adsorption/desorption phenomena for combustible gases are more likely to become active in metal oxides that are amorphous to some extent than those that are crystallized. However, even the commercially available tin oxide used in this example, which is nearly completely crystallized, shows extremely high activity due to the presence of sulfate ions, resulting in a very large amount of gas! This results in a 1'8 response characteristic.

上記実施例1では、感応体が焼結体の場合について述べ
たが、本発明が焼結体を感応体にした時のみならず焼結
膜の場合も同様に有効であることを次の実施例2を用い
て説明する。また、実施例1では動作温度が400°C
の場合のみについて述べたが、動作温度を変えることに
よって本発明による素子のガス選択性(ある特定のガス
を選択的に検出する能力を示す要素)が著しく変化する
こと、すなわち、動作温度によってガス選択性を大幅に
制御し得るという本発明のいまひとつの重要な効果につ
いても次に示す実施例2で具体的に説明することにする
。なお実施例2においては、被検ガスとしてプロパンガ
スとほぼ同じ特性を示す0 イソブタンガスの代りにエタノールを用いて測定した。
In Example 1 above, the case where the sensitive body is a sintered body was described, but the following example shows that the present invention is effective not only when a sintered body is used as the sensitive body but also when a sintered film is used. This will be explained using 2. In addition, in Example 1, the operating temperature was 400°C.
Although only the case of Another important effect of the present invention, which is that selectivity can be significantly controlled, will be specifically explained in Example 2 shown below. In Example 2, ethanol was used as the test gas instead of 0 2 isobutane gas, which has almost the same characteristics as propane gas.

U実施例2〕 市販の酸化第二錫(SnOz)の試薬と、硫酸イオンを
含有させる添加物としての種々の濃度に調製した硫酸第
一錫(8nSO4)の水溶液を準備した。
U Example 2] A commercially available reagent of tin oxide (SnOz) and an aqueous solution of stannous sulfate (8nSO4) adjusted to various concentrations as an additive containing sulfate ions were prepared.

次に、上記SnO2の試薬を1ogづつ秤取し、これら
に上記の硫酸第一錫水溶液をそれぞれ滴下し混合した。
Next, 1 og of the above SnO2 reagent was weighed out, and the above stannous sulfate aqueous solution was added dropwise to each of these and mixed.

このようにして得られたいくつかの混合粉体を空気中で
400°Cの温度で2時間熱処理した。さらにこの粉体
を60〜100μに整粒し、トリエタノールアミンを加
えてペースト化した。
Some of the mixed powders thus obtained were heat treated in air at a temperature of 400°C for 2 hours. Further, this powder was sized to a size of 60 to 100 microns, and triethanolamine was added to form a paste.

一方、ガス検知素子の基板として縦、横それぞれ6mm
、厚みo、smmのアルミナ基板を用意し、この表面に
o、tsmmの間隔に櫛形に金ペーストを印−リし、焼
きつけて一対の櫛形電極を形成した。  \そして、ア
ルミナ基板の裏面には金電極の間に市販の酸化ルテニウ
ムのグレーズ抵抗体を印刷し、焼きつけてヒータとした
On the other hand, the length and width of the substrate for the gas detection element are 6 mm each.
An alumina substrate having a thickness of o, smm was prepared, and a pair of comb-shaped electrodes were formed by printing gold paste on the surface in a comb shape at intervals of o, ts mm and baking it. Then, on the back side of the alumina substrate, a commercially available ruthenium oxide glaze resistor was printed between the gold electrodes and baked to form a heater.

次に、上述のペーストを基板の表面に約70μの厚みに
印刷し、室温で自然乾燥させた後、4oO0Cの温度に
なるまで徐々に加熱し、この温度で1時間保持した。こ
の段階でペーストが蒸発し、硫酸イオンを含有する酸化
第二錫(Sn02)の焼結膜になった。このガス感応体
の厚みは約66μであった。このようにしてガス検知素
子を得た。
Next, the above-mentioned paste was printed on the surface of the substrate to a thickness of about 70 μm, and after air drying at room temperature, it was gradually heated to a temperature of 4oOOC and held at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film of stannic oxide (Sn02) containing sulfate ions. The thickness of this gas sensitive member was approximately 66μ. A gas sensing element was thus obtained.

またガス感応膜に含まれる硫酸イオン量の同定は、上記
の各ペーストの一部を、アルミナ基板に印刷するのでは
なく、ペーストのまま上述と同じ様に400°Cの温度
で徐加熱し、これをTG−DTムならびに螢光X線分析
にかけて行なった。また硫酸イオンの存在は実施例1と
同じく赤外線吸収スペクトルを分析することにより行な
った。
In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, the paste itself was slowly heated at 400°C in the same manner as described above. This was subjected to TG-DT and fluorescent X-ray analysis. Further, the presence of sulfate ions was determined by analyzing the infrared absorption spectrum as in Example 1.

このようにして得られた検知素子について、動作温度を
350°Gおよび4600Gの2点とした以外は実施例
1と同じ方法でガス感応特性を測定した。第2図(IL
)〜第2図(d)は硫酸イオン含有量と各種可燃性ガス
に対する感度(Ra/1g)の関係を示す時性図であり
、第2図(IL)はメタン、第2図(b)はプロパン、
第2図(0)は水素、第2図((11はエタノ−第2図
から明らかなように、硫酸イオン(so4−)が0.0
05重量%以上含まれることにより、36゜0C,46
0°Gのいずれの動作温度においてもガス感応特性が飛
躍的に向上していることがわかる。
The gas sensitivity characteristics of the thus obtained sensing element were measured in the same manner as in Example 1 except that the operating temperatures were set at two points, 350°G and 4600G. Figure 2 (IL
) to Figure 2(d) are temporal diagrams showing the relationship between sulfate ion content and sensitivity (Ra/1g) to various flammable gases; Figure 2(IL) is for methane, Figure 2(b) is for methane; is propane,
Figure 2 (0) is hydrogen, Figure 2 ((11 is ethanol), and as is clear from Figure 2, sulfate ion (so4-) is 0.0
By containing 05% by weight or more, 36° 0C, 46
It can be seen that the gas sensitivity characteristics are dramatically improved at any operating temperature of 0°G.

(ただ、この硫酸イオンが10重量%を超えて含まれる
と、実施例1の場合と同様に特性が安定せず、また機械
的強度も弱くなり実用素子としては不適当であるため第
2図ではデータを記載していない。)いまひとつ重要な
点は、動作温度によってガス選択性が大幅に異る点であ
る。1例として硫酸イオンが0.5重量%含まれている
時の感度と動作温度の関係を第3図に示す。第3図から
明らかなように、3600Cの動作温度においてはエタ
ノールに対する感度が他のガスのそれに比べて著しく大
きく、エタノールに対する選択性が非常に高いことがわ
かる。一方、460°Gの動作温度においては逆にエタ
ノールに対する感度が非常に小さく、他のメタン、プロ
パン及び水素に対する感度が相対的に極めて大きくなっ
ている。換言すれ3 ば、この素子は動作温度を変えることによって、エタノ
ールとそれ以外のガスとの相対感度を容易に制御出来る
特徴を持っているということになる。
(However, if this sulfate ion is contained in an amount exceeding 10% by weight, the characteristics will not be stable as in the case of Example 1, and the mechanical strength will also be weakened, making it unsuitable for use as a practical device. (The data are not listed here.) Another important point is that gas selectivity varies greatly depending on the operating temperature. As an example, FIG. 3 shows the relationship between sensitivity and operating temperature when 0.5% by weight of sulfate ions are contained. As is clear from FIG. 3, at an operating temperature of 3600C, the sensitivity to ethanol is significantly greater than that of other gases, indicating that the selectivity to ethanol is extremely high. On the other hand, at an operating temperature of 460°G, the sensitivity to ethanol is very low, and the sensitivity to other methane, propane, and hydrogen is relatively very high. In other words, this element has the feature that the relative sensitivity between ethanol and other gases can be easily controlled by changing the operating temperature.

これは実用的な見地から見れば、動作温度を周期的に変
えるなり、あるいは動作温度の異る2つの素子を併用す
るなりの工夫をすることにより、エタノールとそれ以外
のガスとを容易に識別出来る機能を有したガス検知素子
を形成することができるということを意味するものでも
ある。この点も本発明の大きな効果のひとつであり、本
発明の効用範囲を大きく広げるものである。
From a practical standpoint, this means that it is possible to easily distinguish between ethanol and other gases by periodically changing the operating temperature or by using two elements with different operating temperatures. This also means that it is possible to form a gas sensing element with functions that can be achieved. This point is also one of the great effects of the present invention, and greatly expands the scope of the present invention.

なお、上記各実施例においては、出発原料として酸化第
二錫(SnO2)の市販試薬を用いたが、本発明は何ら
出発原料や製造工法を限定するものではない。また特性
を向上させるために更に添加l  物を加えることも勿
論可能である。
In each of the above Examples, a commercially available reagent of tin oxide (SnO2) was used as a starting material, but the present invention is not intended to limit the starting material or manufacturing method in any way. Of course, it is also possible to add further additives to improve the properties.

以上述べたように、本発明のガス検知素子はガス感応体
の母材料である酸化第二錫(SnO2)が硫酸イオンを
含有することによりガス感応特性が飛躍的に向上し、こ
れまで貴金属触媒を用いずに4 は微量検知が難かしいとされてきたメタンガスに対して
も非常に大きい感度を実現し得るものである。これは都
市ガスの天然ガス(主成分:メタンガス)化に伴って要
求が大きくなりつつある社会ニーズに的確に対応するも
のであり、その効果は極めて大なるものである。またす
でに述べたように、動作温度によってガス選択性を大幅
に制御することが出来る点も本発明の実用面から見た大
きな効果である。このように、本発明のガス検知素子は
ますます重要性が増しつつある種々のガス防災分野に極
めて大きな貢献をするものと期待される。
As described above, the gas sensing element of the present invention has dramatically improved gas sensitivity characteristics due to the inclusion of sulfuric ions in the stannic oxide (SnO2), which is the base material of the gas sensing element. 4 can achieve extremely high sensitivity even for methane gas, which has been considered difficult to detect in trace amounts. This precisely responds to social needs, which are becoming increasingly demanding as city gas is replaced with natural gas (main component: methane gas), and its effects are extremely significant. Furthermore, as already mentioned, the fact that gas selectivity can be greatly controlled by the operating temperature is also a great advantage from a practical standpoint of the present invention. As described above, the gas detection element of the present invention is expected to make an extremely large contribution to various gas disaster prevention fields that are becoming increasingly important.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&) 、 (b)は本発明の一実施例における
硫酸イオン含有量と感度(Ra/1g)  との関係を
示した特性図、第2図(&) 、 (b) 、 (C)
 、 (+1)は本発明の他の実施例におけるメタン、
プロパン、水素、−[−タ/−ルの各可燃性ガスに対す
る硫酸イオン含有量と感度(Ra/1g)の関係を動作
温度をパラメータに−して表わした特性図、第3図は同
実施例における感度(Ra/Rg)の動作温度依存性を
示した特性図である。 代理人の氏名 弁理ト 中 尾 敏 男 ほか1名第1
図 ra少 液酸イオンめ含有量(重量%J 纂1図 oJ θ 硫蕨ノオンめ含有t(東l’/1 第2図 tの 否克西友イオンめ4−有1重量−/、)餓2図 1幻 第2tl! tCノ 第2図 (d)
Figure 1 (&), (b) is a characteristic diagram showing the relationship between sulfate ion content and sensitivity (Ra/1g) in one embodiment of the present invention, and Figure 2 (&), (b), ( C)
, (+1) is methane in another embodiment of the present invention,
A characteristic diagram showing the relationship between sulfate ion content and sensitivity (Ra/1g) for each flammable gas such as propane, hydrogen, and -[-tar/-tar, with operating temperature as a parameter. Figure 3 shows the same results. FIG. 3 is a characteristic diagram showing the operating temperature dependence of sensitivity (Ra/Rg) in an example. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure ra Low liquid acid ion content (wt% 2 Figure 1 Illusion 2nd tl! tC Figure 2 (d)

Claims (2)

【特許請求の範囲】[Claims] (1)酸化第二錫(Sn02)を主成分とし%硫酸イオ
ンが0.006〜10重量%含有されたものをガス感応
体として用いることを特徴とするガス検知素子。
(1) A gas sensing element characterized by using as a gas sensitive material a material mainly composed of stannic oxide (Sn02) and containing 0.006 to 10% by weight of sulfate ions.
(2)ガス感応体が加圧成型し焼成して得られる焼結体
、またはペーストを印刷し焼成して得られる焼結膜であ
ることを特徴とする特許請求の範囲第(1)項記載のガ
ス検知素子。
(2) The gas sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste, according to claim (1). Gas detection element.
JP8344582A 1982-05-17 1982-05-17 Gas detection element Granted JPS58200153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8344582A JPS58200153A (en) 1982-05-17 1982-05-17 Gas detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8344582A JPS58200153A (en) 1982-05-17 1982-05-17 Gas detection element

Publications (2)

Publication Number Publication Date
JPS58200153A true JPS58200153A (en) 1983-11-21
JPS6160381B2 JPS6160381B2 (en) 1986-12-20

Family

ID=13802631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8344582A Granted JPS58200153A (en) 1982-05-17 1982-05-17 Gas detection element

Country Status (1)

Country Link
JP (1) JPS58200153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163956A (en) * 1986-01-16 1987-07-20 Nippon Muki Kk Gas detection element
CN114839231A (en) * 2022-04-27 2022-08-02 河南森斯科传感技术有限公司 Anti-interference gas-sensitive coating for semiconductor combustible gas sensor and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346090A (en) * 1989-07-13 1991-02-27 Sanyo Electric Co Ltd Detector for storage quantity of water tank in automatic vending machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163956A (en) * 1986-01-16 1987-07-20 Nippon Muki Kk Gas detection element
CN114839231A (en) * 2022-04-27 2022-08-02 河南森斯科传感技术有限公司 Anti-interference gas-sensitive coating for semiconductor combustible gas sensor and preparation method and application thereof

Also Published As

Publication number Publication date
JPS6160381B2 (en) 1986-12-20

Similar Documents

Publication Publication Date Title
JPS58200153A (en) Gas detection element
US20060102494A1 (en) Gas sensor with nanowires of zinc oxide or indium/zinc mixed oxides and method of detecting NOx gas
JPS6160380B2 (en)
JPS58200150A (en) Gas detection element
JPS6160382B2 (en)
JPS5957153A (en) Gas detecting element
JPS5994050A (en) Gas detection element
JPH0159542B2 (en)
JPS6160379B2 (en)
JPS5957154A (en) Gas detecting element
JPS6222414B2 (en)
JPS6223252B2 (en)
JPS5992338A (en) Gas detecting element
JPS6222417B2 (en)
US20080006078A1 (en) Gas sensor with nanowires of zinc oxide or indium/zinc mixed oxides and method of detecting NOx gas
JPS6222420B2 (en)
JPS6160377B2 (en)
JPS5957151A (en) Gas detecting element
JPS6160385B2 (en)
JPH027025B2 (en)
JPS6160383B2 (en)
JPS5957150A (en) Gas detecting element
JPS6156789B2 (en)
JPS59107250A (en) Gas detecting element
JPS6222419B2 (en)