[go: up one dir, main page]

JPS58198335A - Scanning line moving system of ultrasonic probe - Google Patents

Scanning line moving system of ultrasonic probe

Info

Publication number
JPS58198335A
JPS58198335A JP57080701A JP8070182A JPS58198335A JP S58198335 A JPS58198335 A JP S58198335A JP 57080701 A JP57080701 A JP 57080701A JP 8070182 A JP8070182 A JP 8070182A JP S58198335 A JPS58198335 A JP S58198335A
Authority
JP
Japan
Prior art keywords
scanning line
elements
probe
scanning
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57080701A
Other languages
Japanese (ja)
Other versions
JPH0346141B2 (en
Inventor
三輪 博秀
治 林
孚城 志村
安津夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57080701A priority Critical patent/JPS58198335A/en
Publication of JPS58198335A publication Critical patent/JPS58198335A/en
Publication of JPH0346141B2 publication Critical patent/JPH0346141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、分割振動子型の超音波探触子の走査線移動方
式に関し、同時に選択される素子群の送信駆動電圧およ
び/または受信増幅利得に重みづけを行なうことにより
超音波ビームの走査ピンチを該素子の配列ピンチ以下に
しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a scanning line movement method for a split transducer type ultrasonic probe, in which weighting is applied to the transmission drive voltage and/or reception amplification gain of simultaneously selected element groups. This is intended to reduce the scanning pinch of the ultrasonic beam to less than the arrangement pinch of the elements.

従来技術と問題点 リニア・アレイ型探触子を用いる超音波診断装置では、
同時に駆動する素子群を逐次変更して第1図1alまた
は中)に示すように超音波ビームを平行移動させる。同
図(alの例は複数のトランスデユーサ素子1,2,3
.−−−−−−から成る又はそれに分割された超音波探
触子20がら選択する連続した5素子を順次変える(交
替させる)ことにより、集束形成された超音波ビーム3
oを矢印方向に平行移動させる。■、■、■・・・・・
・は素子群の選択順序、30′は平行移動した最初のビ
ームを示す、ビームの走査ピッチP1を小さくすると画
質を緻密にできるが、この走査方式では該ピッチの最少
値は分割間隔(素子幅または素子配列ピンチ)Wが限界
である。このため更に画質を緻密にしようとすれば分割
間隔Wを狭くしなければならないので、素子の機械的強
度が低下、加工困難などの問題が生じる。また全体の幅
が一定ならば探触子20に対する、リード線の本数が分
割数増大につれて増え探触子の取扱いが容易でなくなる
欠点がある。
Conventional technology and problems In ultrasonic diagnostic equipment that uses a linear array probe,
By sequentially changing the element groups that are driven simultaneously, the ultrasonic beam is translated in parallel as shown in FIG. 1 (al or middle). The same figure (al example shows multiple transducer elements 1, 2, 3)
.. By sequentially changing (alternating) five consecutive elements selected from the ultrasonic probe 20 consisting of or divided into -------, the ultrasonic beam 3 is focused and formed.
Translate o in the direction of the arrow. ■、■、■・・・・・・
・denotes the selection order of the element group, and 30' indicates the first beam that has been translated in parallel.If the beam scanning pitch P1 is reduced, the image quality can be made finer, but in this scanning method, the minimum value of the pitch is the division interval (element width). or element arrangement pinch) W is the limit. Therefore, in order to further improve the image quality, the division interval W must be narrowed, which causes problems such as a decrease in the mechanical strength of the element and difficulty in processing. Furthermore, if the overall width is constant, the number of lead wires for the probe 20 increases as the number of divisions increases, making it difficult to handle the probe.

第1図(b)の例は、同図+8)では右端に1個加える
と同時に右端1個を外し、1時に2個の素子を変えるの
に対し、1時には1素子増減する(例えば■は■に対し
て右端に素子6を追加し、■は■の左端の素子1を取り
除いている)ことにより、と−430を素列配列ピンチ
の半分のピッチP2−W/2で移動させるようにしたも
のである。この方式では第1図(alに比べて、2倍の
緻密度が得られるが、しかし、この場合でもW/2未満
の走査ピッチは実現できない。また、1走査毎に駆動素
子数が変るため受信音圧が走査線毎に変動する欠点があ
る。
In the example shown in Figure 1(b), +8) in the same figure adds one element to the right end and removes one right end at the same time, changing two elements at one time, whereas one element increases or decreases at one time (for example, ■ By adding element 6 to the right end for ■, and removing element 1 at the left end of ■ for ■, we can move -430 with a pitch of P2-W/2, which is half the element array pinch. This is what I did. This method can achieve twice the density as shown in Figure 1 (al), but even in this case, a scan pitch of less than W/2 cannot be achieved.Also, since the number of drive elements changes for each scan, There is a drawback that the received sound pressure varies from scanning line to scanning line.

発明の目的 本発明は、選択された素子群の各素子の駆動電圧および
/または受信利得に重みづけをすることにより素子配列
ピンチに関係ない任意のピンチで走査可能としようとす
るものである。
OBJECTS OF THE INVENTION The present invention attempts to enable scanning in any pinch, regardless of the element arrangement pinch, by weighting the drive voltage and/or reception gain of each element in a selected element group.

発明の構成 本発明は、多数の送受トランスデユーサ素子を配列し、
該配列内の複数素子を1群として選択して開口面とし、
該面内の素子を作動させて超音波ビームを集束形成し走
査線とすると共に選択素子を変更して該走査線を移動さ
せる超音波探触子の走査線移動方式において、1本の超
音波ビームを集束形成するに必要な開口面形状と、該開
口面内の送信駆動音圧及び又は受信増幅利得の分布を予
め設定し、走査線を素子配列ピンチに関係ないピンチで
仮想的に移動さすてその各走査線に対し、その開口面形
状内に存在する各素子の送信駆動電圧及び又は受信増幅
利得を前記設定分布に従って決定し、その決定値により
作動させることを特徴とするが、以下図示の実施例を参
照しながらこれを詳細に説明する。
Structure of the Invention The present invention arranges a large number of transmitting/receiving transducer elements,
Selecting a plurality of elements in the array as one group as an aperture surface,
In the scanning line movement method of an ultrasound probe in which the elements in the plane are activated to focus the ultrasound beam to form a scanning line and the selection element is changed to move the scanning line, one ultrasonic probe The shape of the aperture necessary to focus and form the beam and the distribution of the transmission drive sound pressure and/or reception amplification gain within the aperture are set in advance, and the scanning line is virtually moved in a pinch unrelated to the element arrangement pinch. For each scanning line, the transmission drive voltage and/or reception amplification gain of each element existing within the aperture shape is determined according to the set distribution, and the determined value is used to operate. This will be explained in detail with reference to an example.

発明の実施例 第2図は本発明の一実施例を示す説明図で、実線曲線4
1が駆動もしくは受信ビームの理想的強度分布であり、
それを実現するために各素子1〜7に実線棒グラフ42
で示す重みづけを与える。このようにすれば送信もしく
は受信される超音波ビーム30は図示の如く素子4を中
心とする同じ分布になることは明らかである0次に破線
曲線43で示す分布に変えると超音波ビーム30′の中
心は素子4と5の中間の分布の重心地点に移動する。
Embodiment of the invention FIG. 2 is an explanatory diagram showing an embodiment of the invention, in which the solid line curve 4
1 is the ideal intensity distribution of the driving or receiving beam,
To achieve this, each element 1 to 7 has a solid line bar graph 42.
Give the weighting shown by . In this way, it is clear that the transmitted or received ultrasound beam 30 will have the same distribution centered on the element 4 as shown in the figure.If we change the distribution to the zero-order dashed curve 43, the ultrasound beam 30' The center of is moved to the centroid point of the distribution between elements 4 and 5.

この移動量は曲線43で設定した値により素子4と5の
間の任意の位置に設定することが可能である。下表にピ
ッチP3をW/3とする重み付けの例を示す。
This amount of movement can be set at any position between elements 4 and 5 based on the value set by curve 43. The table below shows an example of weighting in which pitch P3 is set to W/3.

表  1 このような表を得る簡単な方法は先ず第2図の曲線41
の形状を決定し、所望のピンチでそれを探触子20に沿
って移動させて各移動点における棒グラフ42を読取る
ことである。棒グラフ42の各端は探触子の曲線41で
覆われる部分(開口面)の各素子の送信駆動電圧又は受
信増幅利得の指標となるが、これらに比例した値で素子
を動作させるには読取り専用メモリ (ROM)に該各
端を記憶させておき、それを読出して当該開口内素子群
の駆動、増幅回路に係数として入力するとよい。
Table 1 An easy way to obtain such a table is to first use curve 41 in Figure 2.
, move it along the probe 20 in the desired pinch and read the bar graph 42 at each point of movement. Each end of the bar graph 42 is an indicator of the transmission drive voltage or reception amplification gain of each element in the part covered by the curve 41 (aperture surface) of the probe, but in order to operate the elements at a value proportional to these, reading is required. It is preferable to store each end in a dedicated memory (ROM), read it out, and input it as a coefficient to the drive and amplification circuit for the in-aperture element group.

重みつけ用の分布曲線41.43をガラス分布、COS
分布、C082分布等とすればビーム形状が良くなるが
、必ずしもこれに限らない、要は一様分布でなければビ
ーム中心を素子幅Wの制約なしに任意の位置に移動でき
るということである。
Distribution curve 41.43 for weighting is glass distribution, COS
If the distribution is a C082 distribution, etc., the beam shape becomes better, but it is not necessarily limited to this.The point is that if the distribution is not uniform, the beam center can be moved to an arbitrary position without the restriction of the element width W.

また、一括して選択する素子数も上記の例に限定されな
い。
Furthermore, the number of elements to be selected at once is not limited to the above example.

第3図は素子配列が円弧状に湾曲した扇形走査型探触子
への応用例で、21は超音波伝達媒体が充填される前室
、22は被測定体である。(a)の例は前室内媒体の超
音波伝播速度v1が被測定体22のそれv2とほぼ等し
い場合である。このときはビーム30は探触子20の曲
率のほぼ中心23を通って被測定体22内を扇状に走査
する。このため、肋骨のすき間から心臓を観測する場合
等に有効である。(blの例はv 1 < v 2とし
てビーム30を屈折させ(θ2〉θ1)探触子を素子配
列の幅および前室の深さ共に小型化したものである。
FIG. 3 shows an example of application to a fan-shaped scanning probe in which the element array is curved in an arcuate manner, where 21 is a front chamber filled with an ultrasonic transmission medium, and 22 is an object to be measured. The example in (a) is a case where the ultrasonic propagation velocity v1 of the medium in the front room is approximately equal to that of the object to be measured 22 v2. At this time, the beam 30 passes approximately through the center 23 of the curvature of the probe 20 and scans inside the object to be measured 22 in a fan shape. Therefore, it is effective when observing the heart through the gap between the ribs. (In the example of bl, the beam 30 is refracted so that v 1 < v 2 (θ2>θ1), and the probe is made smaller in both the width of the element array and the depth of the front chamber.

この場合には探触子20の素子間隔が均一で前室内超音
波ビームの走査ピンチが均一でも被測定体22内の走査
ピンチは周辺部へ向かうほど粗くなるが、本発明を適用
することでこの走査ピンチの粗密も補正できる。即ち周
辺部での走査ピッチが中心部のそれより密になるように
重み付は等を変ればよい。
In this case, even if the element spacing of the probe 20 is uniform and the scanning pinch of the front chamber ultrasound beam is uniform, the scanning pinch in the object to be measured 22 becomes coarser toward the periphery. The density of this scanning pinch can also be corrected. That is, the weighting may be changed so that the scanning pitch in the peripheral area is denser than that in the central area.

第4図は円弧状の探触子20.20’を交叉して配設し
、2断面を同時に観察できる探触子であるが、これに本
発明は適用できる。また第5図のように探触子20をマ
トリクス状に分割した2次元走査平面アレイ型の場合に
も本発明を通用できる。この場合には重み付けは3次元
的な山形となる。この場合には同じ走査ピンチを得るの
に本発明の駆動性通用で分割数を低減できるので、例え
ば分割数を縦横共に1/2に低減すると全体で1/4の
分割数で済み、製造コスト低減、リード線数低減による
走査性向上などの利点がある。
FIG. 4 shows a probe in which arc-shaped probes 20 and 20' are disposed in an intersecting manner so that two cross sections can be observed simultaneously, and the present invention can be applied to this probe. The present invention can also be applied to a two-dimensional scanning plane array type probe in which the probe 20 is divided into a matrix as shown in FIG. In this case, the weighting becomes a three-dimensional mountain shape. In this case, in order to obtain the same scanning pinch, the number of divisions can be reduced due to the driving performance of the present invention. For example, if the number of divisions is reduced to 1/2 in both the vertical and horizontal directions, the total number of divisions will be reduced to 1/4, and the manufacturing cost will be reduced. There are advantages such as improved scanning performance due to reduced number of lead wires.

第6図は振動子20の重みづけ駆動および受信回路の構
成例である。タイミング発生回路50からの信号は駆動
波形発生回路51に導びかれ、ここで駆動波形が発生す
る。この駆動波形は例えばインパルス、或いは振動子2
0の共振周波数に応した正弦波の1〜3波な□どである
。前掲の表1のような重みづけデータはデジタル値でメ
モリ (ROM)52に格納されている。このメモリ5
2から読出された重みづけデータはD/A変換器53で
アナログ値に変換され、ゲインコントローラ54で受信
アンプ(RA)55および駆動アンプ(DA)56のゲ
イン調整に用いられる。これらのアンプ55.56はそ
れぞれ振動子20の分割素子数分設けである。57は駆
動時の過大電圧が受信アンプ55へ入力するのを素子す
るリミッタ、58は受信アンプ55の全出力を合成する
加算器、59はその出力を整流する整流回路、60は陰
極線管(CR’l’)である。超音波送信時には探触子
20内の多数の素子の一部の複数素子を同時選択し、か
つその選択素子を逐次変え、選択素子内容素子の駆動電
圧を前記分布曲線に従って変えるが、これらの制御は増
幅器の利得制御のみで行なうことができる。即ち非選択
素子の増幅器の利得は0とし、選択素子の増幅器の利得
は該分布曲線に従う値とすればよい。こうして超音波ビ
ームを走査線とする平行走査、扇形走査などが行なわれ
、また反射波は同じ(同じでなくてもよいが)探触子2
0で受信され、アンプ55で重み付は増幅され、加算、
整流後、CRT60に表示される。
FIG. 6 shows a configuration example of a weighted drive and reception circuit for the vibrator 20. A signal from the timing generation circuit 50 is guided to a drive waveform generation circuit 51, where a drive waveform is generated. This drive waveform is, for example, an impulse or the vibrator 2
These are waves 1 to 3 of the sine wave corresponding to the resonance frequency of 0, etc. Weighting data as shown in Table 1 above is stored in a memory (ROM) 52 as digital values. This memory 5
The weighted data read out from RA 2 is converted into an analog value by a D/A converter 53, and is used by a gain controller 54 to adjust the gains of a receiving amplifier (RA) 55 and a driving amplifier (DA) 56. These amplifiers 55 and 56 are provided for the number of divided elements of the vibrator 20, respectively. 57 is a limiter that prevents excessive voltage from being input to the receiving amplifier 55 during driving, 58 is an adder that combines all the outputs of the receiving amplifier 55, 59 is a rectifier circuit that rectifies the output, and 60 is a cathode ray tube (CR). 'l'). During ultrasonic transmission, some of the multiple elements in the probe 20 are simultaneously selected, the selected elements are sequentially changed, and the drive voltages of the selected elements are changed according to the distribution curve, but these controls can be achieved only by controlling the gain of the amplifier. That is, the gain of the amplifier of the non-selected element may be set to 0, and the gain of the amplifier of the selected element may be set to a value that follows the distribution curve. In this way, parallel scanning, fan-shaped scanning, etc. are performed using the ultrasonic beam as a scanning line, and the reflected waves are the same (although they do not have to be the same) between the probes 2 and 3.
0, the weighting is amplified by the amplifier 55, and the summation is performed.
After rectification, it is displayed on the CRT 60.

本例では送信(駆動)時および受信時のいずれについて
も重みづけを行っているが、いずれが一方だけでも有効
である。受信側だけ重み付けする場合は、探触子前面か
ら超音波を繰り返し送信し、反射波を受信側で走査して
取込む、或いは送信側では素子配列から定まるピッチで
粗い走査を繰り返し行ない、受信側では細かなピンチで
それを取込む、等の方式が考えられる。
In this example, weighting is performed both at the time of transmission (driving) and at the time of reception, but it is effective even if only one of them is used. If only the receiving side is weighted, ultrasonic waves are repeatedly transmitted from the front of the probe, and the reflected waves are scanned and captured on the receiving side, or the transmitting side repeatedly performs coarse scanning at a pitch determined by the element arrangement, and then the receiving side Then, a method such as capturing it with a small pinch may be considered.

発明の効果 以上述べたように本発明によれば、振動子の分割間隔以
下の細かい走査ピンチが得られるので、振動子を細かく
分割する必要がなくなる。このため振動子の製造が容易
となってコスト面で大きく改善されるばかりでなく、リ
ード線を少なくでき操作性もあがる利点がある。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a fine scanning pinch that is smaller than the dividing interval of the vibrator, so there is no need to divide the vibrator into small pieces. This not only facilitates the manufacture of the vibrator and greatly improves the cost, but also has the advantage of reducing the number of lead wires and improving operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のりニアアレイ型超音波探触子の説明図、
第2図は本発明の一実施例を示す要部説明図、第3図〜
第5図は本発明を適用可能な種々の探触子の説明図、第
6図は本発明に係る振動子の重みづけ駆動および受信回
路の構成図である。 図中、1〜10は送受トランスデユーサ素子、20は探
触子、30.30’は超音波ビーム、41.43は分布
曲線である。 出願人 富士通株式会社 代理人弁理士  青  柳    稔
Figure 1 is an explanatory diagram of a conventional linear array type ultrasound probe.
Fig. 2 is an explanatory diagram of the main parts showing one embodiment of the present invention, and Figs.
FIG. 5 is an explanatory diagram of various probes to which the present invention can be applied, and FIG. 6 is a configuration diagram of a vibrator weighting drive and reception circuit according to the present invention. In the figure, 1 to 10 are transmitting/receiving transducer elements, 20 is a probe, 30.30' is an ultrasonic beam, and 41.43 is a distribution curve. Applicant Fujitsu Limited Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】 +l)多数の送受トランスデユーサ素子を配列し、該配
列内の複数素子を1群として選択して開口面とし、線面
内の素子を作動させて超音波ビームを集束形成し走査線
とすると共に選択素子を変更して該走査線を移動させる
超音波探触子の走査線移動方式において、 1本の超音波ビームを集束形成するに必要な開口面形状
と、該開口面内の送信駆動音圧及び又は受信増幅利得の
分布を予め設定し、走査線を素子配列ピッチに関係ない
ピンチで仮想的に移動させてその各走査線に対し、その
開口面形状内に存在する各素子の送信駆動電圧及び又は
受信増幅利得を前記設定分布に従って決定し、その決定
値により作動させることを特徴とする超音波探触子の走
査線移動方式。 (2)多数の送受トランスデユーサ素子が直線状、円弧
状、球面状、または平面状に配列されることを特徴とす
る特許請求の範囲第1項記載の超音波探触子の走査線移
動方式。
[Claims] +l) Arranging a large number of transmitting/receiving transducer elements, selecting a plurality of elements in the array as one group to form an aperture plane, and focusing the ultrasonic beam by activating the elements in the linear plane. In an ultrasonic probe scanning line movement method in which a scanning line is formed and a selection element is changed to move the scanning line, the aperture shape necessary to focus and form one ultrasonic beam, and the The distribution of the transmission driving sound pressure and/or reception amplification gain within the aperture plane is set in advance, and the scanning line is virtually moved in a pinch independent of the element arrangement pitch, and each scanning line is moved within the aperture shape. A scanning line movement method for an ultrasonic probe, characterized in that the transmission drive voltage and/or reception amplification gain of each existing element is determined according to the set distribution, and the determined value is used to operate. (2) Scanning line movement of the ultrasound probe according to claim 1, characterized in that a large number of transmitting and receiving transducer elements are arranged in a linear, arcuate, spherical, or planar shape. method.
JP57080701A 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe Granted JPS58198335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080701A JPS58198335A (en) 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080701A JPS58198335A (en) 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS58198335A true JPS58198335A (en) 1983-11-18
JPH0346141B2 JPH0346141B2 (en) 1991-07-15

Family

ID=13725626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080701A Granted JPS58198335A (en) 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS58198335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227927A (en) * 1985-07-29 1987-02-05 アドバンスト・テクノロジ−・ラボラトリ−ズ・インコ−ポレイテツド High resolving multiple line ultrasonic beam forming apparatus
JPH04193270A (en) * 1990-11-27 1992-07-13 Matsushita Electric Ind Co Ltd Ultrasonic diagnosis apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155683A (en) * 1978-05-30 1979-12-07 Matsushita Electric Ind Co Ltd Electronic scanning system ultrasoniccwave tomooinspection device
JPS5636942A (en) * 1976-09-23 1981-04-10 Hoffmann La Roche Forming device for picture of section
JPS56164974A (en) * 1980-05-23 1981-12-18 Touitsu Kogyo Kk Electronic scanning type ultrasonic video device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636942A (en) * 1976-09-23 1981-04-10 Hoffmann La Roche Forming device for picture of section
JPS54155683A (en) * 1978-05-30 1979-12-07 Matsushita Electric Ind Co Ltd Electronic scanning system ultrasoniccwave tomooinspection device
JPS56164974A (en) * 1980-05-23 1981-12-18 Touitsu Kogyo Kk Electronic scanning type ultrasonic video device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227927A (en) * 1985-07-29 1987-02-05 アドバンスト・テクノロジ−・ラボラトリ−ズ・インコ−ポレイテツド High resolving multiple line ultrasonic beam forming apparatus
JPH04193270A (en) * 1990-11-27 1992-07-13 Matsushita Electric Ind Co Ltd Ultrasonic diagnosis apparatus

Also Published As

Publication number Publication date
JPH0346141B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
Thurstone et al. A new ultrasound imaging technique employing two-dimensional electronic beam steering
US8986210B2 (en) Ultrasound imaging apparatus
VonRamm et al. Cardiac imaging using a phased array ultrasound system. I. System design.
JP4172841B2 (en) Ultrasound imaging system, method of operating ultrasound imaging system and multiplexer motherboard
US4245250A (en) Scan converter for ultrasonic sector scanner
US7135809B2 (en) Ultrasound transducer
JP4242472B2 (en) Ultrasonic transducer array and ultrasonic imaging system
US4159462A (en) Ultrasonic multi-sector scanner
US5027820A (en) Device for the three-dimensional focusing of an ultrasonic beam
US9364152B2 (en) Object information acquiring apparatus
US6821251B2 (en) Multiplexer for connecting a multi-row ultrasound transducer array to a beamformer
GB2099582A (en) Ultrasonic image methods and apparatus
JPS58625B2 (en) Ultrasonic imaging method and system
US4442713A (en) Frequency varied ultrasonic imaging array
US5027659A (en) Ultrasonic imaging device in which electroacoustic transducers are disposed on a convex probe
JPH1170110A (en) Ultrasonic three-dimensional image converting method using intersecting array and its device
EP0002061A1 (en) Scan converter for ultrasonic sector scanner and method
JPS58198335A (en) Scanning line moving system of ultrasonic probe
JP4643591B2 (en) Ultrasonic imaging device
Bom et al. A dynamically focused multiscan system
JP3256698B2 (en) Ultrasound diagnostic equipment
JPS5937940A (en) Ultrasonic diagnostic apparatus
JP4751388B2 (en) Ultrasonic imaging device
JP4673678B2 (en) Ultrasonic imaging device
CA1137211A (en) Variable delay system