[go: up one dir, main page]

JPS5819716B2 - Kakohouhou - Google Patents

Kakohouhou

Info

Publication number
JPS5819716B2
JPS5819716B2 JP47021797A JP2179772A JPS5819716B2 JP S5819716 B2 JPS5819716 B2 JP S5819716B2 JP 47021797 A JP47021797 A JP 47021797A JP 2179772 A JP2179772 A JP 2179772A JP S5819716 B2 JPS5819716 B2 JP S5819716B2
Authority
JP
Japan
Prior art keywords
processing
inorganic polymer
abrasive
workpiece
lapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP47021797A
Other languages
Japanese (ja)
Other versions
JPS4890081A (en
Inventor
荒木義昭
里見国雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP47021797A priority Critical patent/JPS5819716B2/en
Publication of JPS4890081A publication Critical patent/JPS4890081A/ja
Publication of JPS5819716B2 publication Critical patent/JPS5819716B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】 本発明は、被加工物を研磨、研削、切削等の手段として
従来から用いられている方法によ、り加工する場合、被
加工物面に対し、微粉末の無機高分子弗化炭素を粉末状
で供給して前記加工を行なう加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION When a workpiece is processed by a method conventionally used as a polishing, grinding, cutting, etc. The present invention relates to a processing method in which the processing is performed by supplying polymeric carbon fluoride in powder form.

従来、被加工物を研磨、研削、切削等の手段により加工
する方法としては、バイト、ヤスリ等で切削する手段、
或いはラッピング仕上、サンドブラスト、ショットピー
ニング、を含めた噴射加工方法、或いはパフ加工、バレ
ル加工等砥粒を用いた加工方法等、多くの加工手段が知
られている。
Conventionally, methods for processing workpieces by polishing, grinding, cutting, etc. include cutting with a cutting tool, file, etc.;
Alternatively, many processing methods are known, including jet processing methods including lapping, sandblasting, and shot peening, and processing methods using abrasive grains such as puff processing and barrel processing.

これ等従来の加工方法に於いては加工量が少ない、精度
の高い表面状態の実現が難かしい、或いは高硬度な材質
の表面加工には量産的でない、単位仕事量当りの仕上量
が小さい、砥粒や異物の介入によって発生する砂目とよ
ばれるキズが発生する等、砥粒加工効率及び経済性等の
点で極めて多くの問題がある。
With these conventional processing methods, the amount of processing is small, it is difficult to achieve a highly accurate surface condition, or it is not suitable for mass production for surface processing of highly hard materials, and the amount of finish per unit of work is small. There are many problems in terms of abrasive grain processing efficiency and economic efficiency, such as the occurrence of scratches called grains caused by the intervention of abrasive grains and foreign matter.

これ等諸問題を解決する為に各々加工手段に就いて改良
が加えられているが、いずれも砥粒材質、粒度、分散媒
との混合割合を選択するとか、或いは、圧力、回転数、
加工液投入量等の物理的条件を選定し若干ながら効果を
高めていたものである。
In order to solve these problems, improvements have been made to each processing method, but all of them involve selecting the abrasive grain material, particle size, mixing ratio with the dispersion medium, or changing the pressure, rotation speed,
The effect was slightly improved by selecting physical conditions such as the amount of machining fluid input.

これ等条件の選定では、逆に加工速度の低下、コストの
増加等が加わり、抜本的な解決には至っていない。
Selection of these conditions conversely results in a reduction in machining speed, an increase in cost, etc., and a fundamental solution has not been reached.

本発明は、これ等従来の共通する欠点を解消するもので
、割れ、キズ、ヤケ、肌荒れ等の損傷を招くことなく、
工業的加工効率を向上させ、経済上の利益を得ると共に
、良好な仕上面を得ることを目的とする。
The present invention eliminates these common drawbacks of the conventional technology, and does not cause damage such as cracks, scratches, discoloration, or rough skin.
The purpose is to improve industrial processing efficiency, obtain economic benefits, and obtain a good finished surface.

即ち本発明は、砥粒または切削する手段を用いて被加工
物を研磨または研削または切削する加工を行なうさきに
、液体を介在させずに無機高分子弗化炭素粉末を被加工
物面に粉末状で供給することにより、著しく加工効率を
高めるものである。
That is, the present invention provides a method for applying inorganic polymer fluorocarbon powder to the surface of a workpiece without intervening a liquid while polishing, grinding, or cutting the workpiece using abrasive grains or cutting means. By supplying the material in a form, processing efficiency is significantly increased.

ここで、切削する手段としてはバイト、ヤスリなどがあ
り、砥粒はラッピング仕上、サンドブラスト、ショット
ピーニングを含めた噴射加工方法、或いはパフ加工、バ
レル加工等に用いるものである。
Here, cutting means include a cutting tool, a file, etc., and abrasive grains are used for lapping finishing, sandblasting, injection processing methods including shot peening, puff processing, barrel processing, etc.

この無機高分子弗化炭素粉末の作用は明らかではないが
、概ね以下の作用であると考えられる。
The effect of this inorganic polymer fluorocarbon powder is not clear, but it is thought to be roughly as follows.

第1の作用は無機高分子弗化炭素の構成物質である含有
弗素に基くメカノケミカル作用である。
The first action is a mechanochemical action based on the fluorine content, which is a constituent of the inorganic polymer fluorocarbon.

メカノケミカル作用とは、主として固体物質が、摩砕、
衝撃、せん断、延伸5.摩擦などの手段で加えられた機
械的エネルギーによって引き起されたそれらの物理化学
的変化ならびにそれらをとりまく固体、液体あるいは気
体との間に起る一連の化学現象をいう。
Mechanochemical action is mainly a process in which solid substances are crushed,
Impact, shear, stretching5. It refers to the physicochemical changes caused by mechanical energy applied by means such as friction, as well as the series of chemical phenomena that occur between them and the surrounding solids, liquids, or gases.

いいかえると機械的エネルギーによって生じた固体物質
の極めて活性な新生面の生成ならびにそれらと他の物質
の化学反応を意味する。
In other words, it refers to the formation of highly active new surfaces of solid substances caused by mechanical energy and the chemical reactions between them and other substances.

即ち弗素を含有する無機高分子弗化炭素は種々の砥粒加
工方法による機械的作用によって局部的な圧力と摩擦熱
を受けて新生面を生成すると共に、それらの面に極めて
活性な弗素も遊離する。
That is, the inorganic polymer fluorocarbon containing fluorine receives local pressure and frictional heat due to the mechanical action of various abrasive grain processing methods to generate new surfaces, and extremely active fluorine is also liberated on these surfaces. .

一方被削物表面は同様に、摩擦、摩耗による強いせん断
ならびに大きな歪に伴って活性な新生面を生成する。
On the other hand, the surface of the workpiece similarly generates an active new surface due to strong shear and large strain due to friction and wear.

この新生面は先の活性な弗素と反応して被削物表面に極
めて脆い弗素化物あるいは可溶性に富む物質を形成し、
よって表面層の脱落あるいは溶解性が促進されるもので
ある。
This new surface reacts with the active fluorine to form an extremely brittle fluoride or highly soluble substance on the surface of the workpiece.
Therefore, shedding or solubility of the surface layer is promoted.

我々の実験によれば、従来の砥粒加工方法、例えば、ガ
ラスのラッピング加工に於て、研摩盤とガラス被削物間
へ砥粒懸濁液と更に無機高分子弗化炭素を単独ないし水
中に分散した状態で供給することにより著しい砥粒加工
効率の上昇が認められ、またこれ以外の加工方法によっ
ても、従来法に比較して同様の傾向が確認出来た。
According to our experiments, in conventional abrasive processing methods, such as glass lapping, an abrasive suspension and an inorganic polymer fluorocarbon are added alone or in water between the polishing machine and the glass workpiece. A significant increase in abrasive processing efficiency was observed by supplying abrasive grains in a dispersed state, and similar trends were confirmed with other processing methods compared to conventional methods.

一方、無機高分子弗化炭素粉末自身は常態に於て極めて
安定な化合物であり、種々の砥粒加工動作を伴わない場
合は被削物表面に何らの変化も認められない。
On the other hand, the inorganic polymer fluorocarbon powder itself is an extremely stable compound under normal conditions, and no change is observed on the surface of the workpiece unless it is accompanied by various abrasive processing operations.

即ち本発明に用いる無機高分子弗化炭素は被削物と種々
の砥粒加工装置との介在面に高い圧力と摩擦熱等の機械
的エネルギーが発生した場合のみ活性な弗素を生成して
被加工物と反応するが、通常の環境下では全く安定した
化合物であり、加工工具ならびに装置類は、伺ら損傷さ
せることなしに加工効率のみの促進をはかることが出来
る。
In other words, the inorganic polymeric carbon fluoride used in the present invention generates active fluorine only when mechanical energy such as high pressure and frictional heat is generated between the workpiece and various abrasive processing devices. Although it reacts with the workpiece, it is a completely stable compound under normal circumstances, and can only improve processing efficiency without damaging processing tools and equipment.

実際メカノケミカル反応に起因すると考えられる各種砥
粒加工効率の上昇は、無機高分子弗化炭素を用いたいず
れの形態に於ても認められ、結果としてガラスあるいは
金属の肌あれ、キズ、ヤケあるいは割れ等の損傷なしに
工業的砥粒加工効率を上昇させ、経済上着しい効果を上
げることに成功している。
In fact, an increase in the processing efficiency of various abrasive grains, which is thought to be caused by mechanochemical reactions, is observed in any form using inorganic polymer fluorocarbon, and as a result, it is possible to reduce roughness, scratches, discoloration, etc. on glass or metal surfaces. We have succeeded in increasing industrial abrasive processing efficiency without causing damage such as cracking, and achieving economical benefits.

第2の作用は無機高分子弗化炭素の潤滑作用に基(もの
である。
The second effect is based on the lubricating effect of the inorganic polymer fluorocarbon.

前述の如く無機高分子弗化炭素は弗素と炭素との反応生
成物であり、且つその層状構造によって良好な自己潤滑
性を有する固体潤滑剤である。
As mentioned above, inorganic polymeric carbon fluoride is a reaction product of fluorine and carbon, and is a solid lubricant having good self-lubricating properties due to its layered structure.

砥粒自身の有する自生刃ならびに被加工物に対する潤滑
剤の役割りは極めて重要である。
The role of a lubricant on the self-growing edge of the abrasive grain itself and on the workpiece is extremely important.

その第1の理由は砥粒自生刃および被加工物が摩擦熱に
よる温度上昇を伴うと低温の場合に比較して初期硬度が
低下し、仕上面に種種のムラが生ずると共に砥粒の寿命
を著しく低下させるため、潤滑剤の作用によって摩擦熱
の上昇を抑制することが極めて重要な事である。
The first reason is that when the temperature of the abrasive grain self-growing blade and workpiece increases due to frictional heat, the initial hardness decreases compared to when the temperature is low, causing unevenness in the finished surface and shortening the life of the abrasive grains. Therefore, it is extremely important to suppress the increase in frictional heat through the action of a lubricant.

第2の理由は、潤滑剤の作用が自生刃の摩耗を軽減させ
砥粒自身の寿命を延長させると同時に被加工物の表面状
態にも好結果を与えることである。
The second reason is that the action of the lubricant reduces the wear of the self-sharpening blade and extends the life of the abrasive grains themselves, while at the same time giving good results to the surface condition of the workpiece.

本発明に用いる無機高分子弗化炭素粉末は、特公昭43
−25012号に於いて「耐熱、耐薬品、撥水、溌油お
よび潤滑の各性能を有する無機高分子弗化炭素の製造法
」として提供されている炭素材料と弗素との反応生成物
で、通常7μ以下の微粉体を呈する。
The inorganic polymer fluorocarbon powder used in the present invention is
A reaction product of a carbon material and fluorine, which is provided in No. 25012 as a "method for producing inorganic polymer fluorocarbon having heat-resistant, chemical-resistant, water-repellent, oil-repellent, and lubricating properties." Usually presents as a fine powder of 7μ or less.

無機高分子弗化炭素は、層状構造を有する固体潤滑剤の
1つであり、特に高荷重、高速度下に於る摩擦、摩耗特
性は極めて優れており、また撥水、撥油効果は、弗素化
合物に共通する低表面張力に基くものであり、弗素樹脂
等と同時または、それ以上の特性を有する。
Inorganic polymer carbon fluoride is a type of solid lubricant with a layered structure, and it has extremely excellent friction and wear properties, especially under high loads and high speeds, and has excellent water and oil repellent effects. It is based on the low surface tension common to fluorine compounds, and has characteristics that are equal to or better than those of fluorine resins.

更に無機高分子弗化炭素は分解温度が450−500℃
と高く、酸、アルカリおよび溶剤に対して安定である等
の特性を有し、常温で安定であるが、熱その他のエネル
ギーによってはかなりの反応性を有する。
Furthermore, the decomposition temperature of inorganic polymer carbon fluoride is 450-500℃.
It has properties such as being highly stable against acids, alkalis, and solvents, and is stable at room temperature, but has considerable reactivity when exposed to heat and other forms of energy.

無機高分子弗化炭素を用いて加工を実施する場合の応用
形態は基本的に次の三つに大別出来る。
Applications for processing using inorganic polymeric carbon fluoride can basically be divided into the following three types.

第1の形態は、無機高分子弗化炭素粉末を単独或は、砥
粒と共に混合した粉体のみの状態で加工面へ供する形態
である。
In the first form, the inorganic polymer fluorocarbon powder alone or mixed together with abrasive grains is applied to the processing surface.

この形態で用いられる場合は少ないが、例えばガラスの
ラッピング加工時にラップと被加工物との間へ、無機高
分子弗化炭素粉末を単独又は研摩材と共に粉体で供給す
る場合、或いは、パフの表面へ上記形態の砥粒剤を付着
させ、パフ加工を行なう場合等がその応用の一例である
Although it is rarely used in this form, it is used, for example, when inorganic polymer fluorocarbon powder is supplied as a powder alone or together with an abrasive between the wrap and the workpiece during glass lapping processing, or as a puff. An example of its application is when an abrasive of the above type is attached to a surface and puff processing is performed.

無機高分子弗化炭素粉末を単独で用いる形態の一つとし
て、例えば、従来、研削、切削時に、研削液、切削液を
被加工物面に供給していたが、それに替えて無機高分子
弗化炭素粉末のみを供給する場合がある。
As one of the forms in which inorganic polymer fluorocarbon powder is used alone, for example, in the past, grinding fluid or cutting fluid was supplied to the workpiece surface during grinding or cutting, but instead of that, inorganic polymer fluorocarbon powder In some cases, only carbonized carbon powder is supplied.

第2の形態は、第1の形態を、水、油やグリース状の粘
性体、或いは既に切削液、研削液として調合された溶液
等に分散させて得られる形態である。
The second form is obtained by dispersing the first form in a viscous body such as water, oil or grease, or a solution already prepared as a cutting fluid or grinding fluid.

この分散媒中には、砥粒が含まれる場合、及び切削手段
等の補助剤として使用される場合の砥粒を含まない場合
等がある。
This dispersion medium may contain abrasive grains, or may not contain abrasive grains when used as an auxiliary agent for cutting means or the like.

分散媒は、砥粒の運動が、比較的自由な媒体を広く意味
するものであり、特に物質を限定しない。
The dispersion medium broadly refers to a medium in which the movement of abrasive grains is relatively free, and the substance is not particularly limited.

例えば、ガラスのラッピング加工時の、ガラス被削物と
ラップ盤間に無機高分子弗化炭素粉末および砥粒を水溶
液に分散させた懸濁液を供給する場合、または無機高分
子弗化炭素粉末と砥粒を液体に混合して噴射加工を行な
う液体ホーニング法、または、パフ加工時のステアリン
酸、水素添加魚油中に無機高分子弗化炭素粉末や砥粒を
混合して油性研摩材とし、それらをパフ表面へ付着させ
て加工を行う場合などがそれぞれ相当する。
For example, when supplying a suspension of inorganic polymer fluorocarbon powder and abrasive grains dispersed in an aqueous solution between the glass workpiece and the lapping machine during glass lapping, or inorganic polymer fluorocarbon powder The liquid honing method involves jetting by mixing abrasive grains with a liquid, or the liquid honing method involves mixing inorganic polymer fluorocarbon powder and abrasive grains with stearic acid and hydrogenated fish oil during puff processing to create an oil-based abrasive. This corresponds to cases in which they are attached to the surface of a puff and processed.

第3の形態は無機高分子弗化炭素粉末、砥粒を若干の結
合材によ−って基体に固着したものであり、例えはパフ
加工に於てパフ表面へ膠などを用いて一時的にパフを構
成する繊維の比較的先端部へ固着させる場合等が相当す
る。
The third form is one in which inorganic polymer fluorocarbon powder and abrasive grains are fixed to a substrate with some binder. This corresponds to the case where the fibers that make up the puff are fixed to a relatively leading end.

本形態は同様に結合材を用いる砥石あるいは研摩布紙等
と類似点が多いが、加工時に於ける砥粒の運動量の違い
にその差を有すると考える。
This form has many similarities to a grindstone or abrasive cloth paper that also uses a binder, but the difference is thought to be due to the difference in momentum of the abrasive grains during processing.

本発明の砥粒加工方法ではその砥粒材質として酸化セリ
ウノ・、酸化クロム、俊化鉄(ベンガラ)、人造ダイヤ
モンド、炭化ホウ素、エメリー、ガーネット、コランダ
ム、金剛砂、ダイヤモンド、スピネル、アランダム、カ
ーボランダム、マンガ゛ン鋼球、ガラスピーズ、クルミ
粉末、鉄粉、石英、ケイソウ土、あるいは、バレル研摩
専用メディア等の単独または、それらの混合物をいうが
、基本的には、被加工物表面に(機械的作用をもたらす
機能が重要であり、材質は何ら限定するものではない。
In the abrasive grain processing method of the present invention, the abrasive grain materials include cerium oxide, chromium oxide, iron oxide (red iron), artificial diamond, boron carbide, emery, garnet, corundum, diamond sand, diamond, spinel, alundum, and carborundum. , manganese steel balls, glass peas, walnut powder, iron powder, quartz, diatomaceous earth, or media for barrel polishing, etc., singly or in combination, but basically, ( The function of providing mechanical action is important, and the material is not limited in any way.

一方、無・幾高分子弗化炭素は、原料炭素として石油コ
ークス、石炭コークス、天然黒鉛、木炭、カーボンブラ
ック等の単独または混合物を用いて弗素と共有結合させ
た化合物をいうが、特性上の効果から弗素化率(全炭素
に対する弗素の反応比率)は100%のもののみに限定
しない。
On the other hand, non-polymerized carbon fluoride refers to a compound in which fluorine is covalently bonded to petroleum coke, coal coke, natural graphite, charcoal, carbon black, etc. alone or in a mixture as raw carbon, but due to the characteristics Due to the effect, the fluorination rate (reaction ratio of fluorine to total carbon) is not limited to 100%.

また平均粒径のバラツキは本質的に本発明に影響しない
が、概ね3〜5μ位が適当である。
Further, although variations in the average particle diameter do not essentially affect the present invention, a range of about 3 to 5 μm is appropriate.

実際に砥粒加工方法、無機高分子弗化炭素を供給する方
法は、単独且つ粉末状で用いる場合は、加工作用面に自
動供給装置またはスプーンあるいは小規模の場合は手指
によって行なうことが容易に可能である。
Actually, the abrasive grain processing method and the method of supplying inorganic polymeric polymer fluorocarbon can be easily carried out using an automatic supply device or a spoon on the processing surface, or by hand in small-scale cases when used alone and in powder form. It is possible.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例 I C0,9〜1.0重量%、、SiO,35重量%、Mn
0.9〜12重量%、Po、03重量%、80.03重
量%、Co O,5〜1.0重量%、Wo、5〜1.0
重量%の組成を有するJIS記号5KS−3の合金工具
鋼をフライス盤により50 mrtt X 100 m
m X10.5mmに仕上げ、これを粗ラップ剤(アラ
ンダム4(,10#)と細ラップ剤(アランダム800
#)を用いて表面アラサをISに仕上げ(片面のみ)、
寸法を50mmX 100mm×10mmとした。
Example I C0.9-1.0% by weight, SiO, 35% by weight, Mn
0.9-12% by weight, Po, 03% by weight, 80.03% by weight, CoO, 5-1.0% by weight, Wo, 5-1.0
An alloy tool steel of JIS symbol 5KS-3 having a composition of 50 mrtt x 100 m by a milling machine
m x 10.5 mm, and coated with coarse wrap agent (Alundum 4 (,10#)) and fine wrap agent (Alundum 800).
#) to finish the surface roughness to IS (one side only),
The dimensions were 50 mm x 100 mm x 10 mm.

これを第1図に示すラッピング方法によって押圧力Pが
1に9/crit、 ラップ速度V : 20 m 7
’rn t n N ラップ板1;鋳鉄の条件でラッピ
ングを行ない、ラップ間に粒径3μで弗素化率100%
の無機高分子弗化炭素を5 g/min量を添加した。
By the wrapping method shown in Fig. 1, the pressing force P is 1 to 9/crit, and the wrapping speed V: 20 m 7
'rn t n N Lapping plate 1: Lapping is performed under cast iron conditions, with a particle size of 3μ between the laps and a fluorination rate of 100%.
An inorganic polymeric carbon fluoride was added at a rate of 5 g/min.

この場合のラッピング時間(min)に於けるラップ仕
上能率と表面アラザを見た結果、従来のラップ剤に勝る
効果が認められた。
As a result of looking at the lapping finishing efficiency and surface roughness in the lapping time (min) in this case, it was found that it was more effective than conventional lapping agents.

図面に於いて1はラップ板、2は被加工物、3;よラッ
プ剤である。
In the drawings, 1 is a lapping plate, 2 is a workpiece, and 3 is a lapping agent.

第2図に於いて、aは無機高分子弗化炭素を加えた本発
明の場合である。
In FIG. 2, a shows the case of the present invention in which inorganic polymer fluorocarbon is added.

bは従来のラップ剤(酸化セリウムを水に10重量%分
散させたもの)を用いた場合である。
b is a case where a conventional wrapping agent (10% by weight of cerium oxide dispersed in water) was used.

本発明に係るラッピング方法に於いては短時間で著るし
いラップ仕上能率を上げる事ができ、時間の経過に於い
ても殆んど変化が無い。
In the lapping method according to the present invention, the lapping efficiency can be significantly increased in a short period of time, and there is almost no change over time.

又、第3図に於いて、aは無機高分子弗化炭素を加えた
本発明の場合であり、又、bは前記の従来のラップ剤を
用いてラッピングを行なったものである。
Further, in FIG. 3, a shows the case of the present invention in which inorganic polymer fluorocarbon is added, and b shows the case where wrapping was performed using the above-mentioned conventional wrapping agent.

第3図における表面アラサ(μ)は、JIS BO6
01による。
The surface roughness (μ) in Figure 3 is JIS BO6
According to 01.

時間の経過とともに表面アラサの仕上げが効果的に行な
えた。
As time passed, the surface roughness could be effectively finished.

又、乾式ラッピング法に於いて、従来のラップ剤は圧力
や速度が犬になるとラップ仕上げ能率が急に低下するが
、無機高分子弗化炭素を用いた場合、幅広い範囲の圧力
や速度に於いても効果的である。
In addition, in the dry lapping method, the lapping efficiency of conventional lapping agents suddenly decreases when the pressure or speed increases, but when inorganic polymer fluorocarbon is used, it can be used over a wide range of pressures and speeds. It is effective even if

実施例 2 次の条件で研削量を測定した。Example 2 The amount of grinding was measured under the following conditions.

試料;JIS H3321に規定する B s R2A (100m7rLX 50mmX 1
.5mm)(組成:Cu ;64.0〜68.重量%、
Pb:0.07重量%以下、Fe;0.05重量%以下
、Zu;残部) サンドブラスト装置;ターンテーブル付、研摩材自動供
給、回収装置付、ノズル口径8 mrrt。
Sample: B s R2A specified in JIS H3321 (100m7rLX 50mmX 1
.. 5mm) (Composition: Cu; 64.0 to 68.% by weight,
Pb: 0.07% by weight or less, Fe: 0.05% by weight or less, Zu: remainder) Sandblasting equipment: with turntable, automatic abrasive supply, collection device, nozzle diameter 8 mrrt.

ジェット部日経4 mm、空気圧力3 kg7’cwt
)作業距離20mm、噴射角度30゜ 研摩材;グリッド#120(砥粒)に対し、粒:経3μ
で弗素化率100%の無機高分子弗化炭素を重量比で各
々5.10.20.40%を添加した。
Jet part Nikkei 4 mm, air pressure 3 kg 7'cwt
) Working distance 20 mm, spray angle 30° Abrasive material; Grid #120 (abrasive), grain: diameter 3 μ
Inorganic polymer fluorinated carbon having a fluorination rate of 100% was added at a weight ratio of 5, 10, 20, and 40%, respectively.

研削条件;800mvt径のターンテーブルのセット位
置に上記試料の中心線を合わせて固定し、ターンテーブ
ルを40RPHとし、研削時間を3分間とした。
Grinding conditions: The center line of the sample was aligned and fixed at the set position of a turntable with a diameter of 800 mvt, the turntable was set at 40 RPH, and the grinding time was set for 3 minutes.

研削量;表1に示す。Amount of grinding; shown in Table 1.

以上の結果、無機高分子弗化炭素を添加したものは、無
添加に対して、著しい効果が認められた。
As a result, it was found that the product to which inorganic polymer fluorocarbon was added was significantly more effective than the product without the addition.

又、サンドブラストやショットピーニングで問題にされ
るノズル部の摩耗が著るしく改善され、更にサンドやグ
リッドと共にショットの寿命を向上させる効果が認めら
れた。
In addition, the wear of the nozzle, which is a problem in sandblasting and shot peening, was significantly improved, and it was also found that the product has the effect of improving the life of the shot as well as sand and grid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る加工方法の一実施態用図。 第2図及び第3図は、本発明に係る方法と、従来の方法
と比較したグラフ。 第4図乃至第6図は、本発明方法を行なう場合の被削物
及び収容器の一例を示す斜視図。 1・・・・・・ラップ板、2・・・・・・被加工物、3
・・・・・・ラップ剤。
FIG. 1 is a diagram for one embodiment of the processing method according to the present invention. 2 and 3 are graphs comparing the method according to the present invention and the conventional method. FIG. 4 to FIG. 6 are perspective views showing an example of a workpiece and a container when performing the method of the present invention. 1... Wrap plate, 2... Workpiece, 3
...Wrap agent.

Claims (1)

【特許請求の範囲】[Claims] 1 砥粒または切削する手段を用いて被加工物を研磨ま
たは研削または切削する加工を行なうときに、液体を介
在させずに無機高分子弗化炭素粉末を被加工物面に粉末
状で供給することを特徴とする加工方法。
1. When polishing, grinding, or cutting a workpiece using abrasive grains or cutting means, inorganic polymer fluorocarbon powder is supplied in powder form to the surface of the workpiece without intervening liquid. A processing method characterized by:
JP47021797A 1972-03-02 1972-03-02 Kakohouhou Expired JPS5819716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP47021797A JPS5819716B2 (en) 1972-03-02 1972-03-02 Kakohouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47021797A JPS5819716B2 (en) 1972-03-02 1972-03-02 Kakohouhou

Publications (2)

Publication Number Publication Date
JPS4890081A JPS4890081A (en) 1973-11-24
JPS5819716B2 true JPS5819716B2 (en) 1983-04-19

Family

ID=12065027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP47021797A Expired JPS5819716B2 (en) 1972-03-02 1972-03-02 Kakohouhou

Country Status (1)

Country Link
JP (1) JPS5819716B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022822A1 (en) * 2015-08-06 2017-02-09 三菱瓦斯化学株式会社 Cutting auxiliary lubricant and cutting method
US11225625B2 (en) 2017-05-25 2022-01-18 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process, lubricant sheet for assisting machining process, and machining method
US11325199B2 (en) 2016-02-17 2022-05-10 Mitsubishi Gas Chemical Company, Inc. Cutting work method and method for producing cut product
US11383307B2 (en) 2015-09-02 2022-07-12 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling and method for drilling processing using same
US11819930B2 (en) 2016-11-14 2023-11-21 Mitsubishi Gas Chemical Company, Inc. Material for built-up edge formation and built-up edge formation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924958A (en) * 1982-07-27 1984-02-08 Sumitomo Special Metals Co Ltd Accurate polishing method of insulating thin film
JPH0822503B2 (en) * 1990-03-30 1996-03-06 新日本製鐵株式会社 Polishing method using chemical action

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022822A1 (en) * 2015-08-06 2017-02-09 三菱瓦斯化学株式会社 Cutting auxiliary lubricant and cutting method
US10384322B2 (en) 2015-08-06 2019-08-20 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process and machining method
US11383307B2 (en) 2015-09-02 2022-07-12 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling and method for drilling processing using same
US11325199B2 (en) 2016-02-17 2022-05-10 Mitsubishi Gas Chemical Company, Inc. Cutting work method and method for producing cut product
US11819930B2 (en) 2016-11-14 2023-11-21 Mitsubishi Gas Chemical Company, Inc. Material for built-up edge formation and built-up edge formation method
US11225625B2 (en) 2017-05-25 2022-01-18 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process, lubricant sheet for assisting machining process, and machining method

Also Published As

Publication number Publication date
JPS4890081A (en) 1973-11-24

Similar Documents

Publication Publication Date Title
CA2283131C (en) Abrasive jet stream polishing
Paul et al. Effects of cryogenic cooling by liquid nitrogen jet on forces, temperature and surface residual stresses in grinding steels
Malkin Current trends in CBN grinding technology
CN103468204B (en) Comprise the coated abrasive products of aggregate
CA2809435A1 (en) Bonded abrasive article and method of forming
US3833346A (en) Abrading aid containing paraffin and an inhibitor
Luo et al. Analysis of the wear of a resin-bonded diamond wheel in the grinding of tungsten carbide
CA2809450A1 (en) Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
Pal et al. Development and performance evaluation of monolayer brazed cBN grinding wheel on bearing steel
US3168387A (en) Abrasives
JPS5819716B2 (en) Kakohouhou
Pal et al. Performance study of brazed type cBN grinding wheel on hardened bearing steel and high speed steel
JP2008200780A (en) Mixed abrasive wheel
US4226055A (en) Dressing and conditioning resin-bonded diamond grinding wheel
JP2659811B2 (en) Resin bond super abrasive whetstone
Kundu et al. Experimental investigation on the effect of grinding infeed and pass counts on grindability of mild steel
JP3040441B2 (en) Precision polishing method for ceramics
US2921419A (en) Grinding and polishing of glass sheets
JPS62148159A (en) Super abrasive super finishing whetstone
Kundu et al. on Grindability of Mild Steel
Ghorai et al. Experimental investigation on enhancing grindability of Ti–6Al–4V under varying coolant concentration
Lal et al. On the attritious wear of abrasive grains
Coes Chemistry of abrasive action
JPS63278763A (en) Dressing method for diamond or cbn grindstone
JPH05285812A (en) Grinding method