[go: up one dir, main page]

JPS58194356A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS58194356A
JPS58194356A JP7121483A JP7121483A JPS58194356A JP S58194356 A JPS58194356 A JP S58194356A JP 7121483 A JP7121483 A JP 7121483A JP 7121483 A JP7121483 A JP 7121483A JP S58194356 A JPS58194356 A JP S58194356A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
layer
silicon layer
silicon
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121483A
Other languages
Japanese (ja)
Inventor
Junji Sugawara
菅原 淳二
Masanori Kikuchi
菊地 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7121483A priority Critical patent/JPS58194356A/en
Publication of JPS58194356A publication Critical patent/JPS58194356A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To obtain favorable multilayer structure, and to make dielectric breakdown hardly generate between a first and a second polycrystalline silicon layers according to pin holes by a method wherein a silicon nitride film is provided under the substantially whole base of the second polycrystalline silicon layer on the first polycrystalline silicon layer. CONSTITUTION:After an oxide film is provided on the surface of a P type silicon substrate 11, the field oxide films 12 of the regions other than an active region of normal transistor, etc., are left. After gate oxide films 13 are formed, the first polycrystalline silicon layers are formed according to vapor phase growth, etc. Phosphorus is diffused into the substrate 11 and the first polycrystalline silicon layers 14 to form N type regions 15 in the substrate 11, while the polycrystalline silicon layers 14 are converted into the N type, and moreover the field oxide films 12 are converted into phosphorus glass. A silicon oxide film 16 is provided, the second polycrystalline silicon layer 18 to be adhered with a silicon nitride film 17 for protection is formed thereon, and the pattern is formed. Then phosphorus is diffused into the second polycrystalline silicon layer 18 and the silicon nitride film 17. Silicon oxide films 20 are provided again according to thermal oxidation, and by providing aluminum wirings 21, the three layer N channel MOS integrated circuit device is completed.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor integrated circuit device.

半導体集積回路装置では、集積度の向上は大きな要請で
あり、その要請を満す方法の一つとじて多層i!″線が
ある。配線は通常多結茜シリコン層とアルミニクム層の
2/i!構造であるが、これら2層間にさらに1層以上
の多結晶シリコン層を形成することによって多層配線が
実現できる。
In semiconductor integrated circuit devices, there is a big demand for increasing the degree of integration, and one way to meet this demand is multilayer i! The wiring usually has a 2/i! structure of a polycrystalline silicon layer and an aluminum layer, but multilayer wiring can be realized by forming one or more polycrystalline silicon layers between these two layers.

第1図は従来の多層配線の半導体集積回路装置の1例の
断面図である。
FIG. 1 is a cross-sectional view of an example of a conventional semiconductor integrated circuit device with multilayer wiring.

P型シリコン基板lにフィールド酸化膜2を設けた後、
開孔してゲート酸化膜3を設ける。第1の多結晶シリコ
ン層4を前記酸化膜2,3の上に設けた後、活性領域と
なるべき領域を開口し、リン拡散してN型領域5を形成
する。再び酸化して酸化シリコン膜6を形成し、その上
に第2の多結晶シリコン層を設け、写真食刻法で選択エ
ツチングし、第2の多結晶シリコン17のパターンを形
成する。この選択エツチングには通常弗酸−硝酸系溶液
が用いられるので、工、チングの際同時ニ酸化シリコン
膜6も侵され第2の多結晶シリコン層7の端の下部の酸
化シリコン膜が除去されることがある。一方、このため
に第2の多結晶シリコン層の周辺部にシリコン窒化膜を
設けると第1の多結晶シリコン層と第2の多結晶シリコ
ン層との間にこのシリコン窒化膜を設けたことによる表
面の凹凸が生じる。又、第1および第2の多結晶シリコ
ン層間のキャパシターは各部分にお(・て一定とはなら
ない。
After providing a field oxide film 2 on a P-type silicon substrate l,
A hole is opened and a gate oxide film 3 is provided. After a first polycrystalline silicon layer 4 is provided on the oxide films 2 and 3, a region to become an active region is opened and phosphorus is diffused to form an N-type region 5. A silicon oxide film 6 is formed by oxidation again, a second polycrystalline silicon layer is provided thereon, and selectively etched by photolithography to form a second polycrystalline silicon pattern 17. Since a hydrofluoric acid-nitric acid solution is usually used for this selective etching, the silicon dioxide film 6 is also attacked during etching and etching, and the silicon oxide film below the edge of the second polycrystalline silicon layer 7 is removed. Sometimes. On the other hand, if a silicon nitride film is provided around the second polycrystalline silicon layer for this purpose, this silicon nitride film is provided between the first polycrystalline silicon layer and the second polycrystalline silicon layer. Surface irregularities occur. Further, the capacitor between the first and second polycrystalline silicon layers is not constant in each part.

本発明の目的は第1および第2の多結晶シリコン層を有
する半導体集積回路装置において、この第1および第2
の多結晶シリコン層が各部分において一定の間隔を有し
、かつ各部分間にお(・て一定のキャパシターを有する
半導体集積回路装置を提供することである。
An object of the present invention is to provide a semiconductor integrated circuit device having first and second polycrystalline silicon layers.
An object of the present invention is to provide a semiconductor integrated circuit device in which a polycrystalline silicon layer has a constant interval in each part and a constant capacitor between each part.

本発明の特徴は、半導体基板上に選択的に設けられた第
1の多結晶シリコン層と、該第1の多結晶シリコン層上
に絶縁層を介して選択的に設けられた第2の多結晶シリ
コン層とを有する半導体集積回路装置にお(・て、前記
絶縁層としてシリコン酸化膜と該シリコン酸化膜上に設
けられかつ前記第2の多結晶シリコン層の実質的全底面
下に設けられたシリコン窒化膜とを含む半導体集積回路
装置にある。
The present invention is characterized by a first polycrystalline silicon layer selectively provided on a semiconductor substrate, and a second polycrystalline silicon layer selectively provided on the first polycrystalline silicon layer with an insulating layer interposed therebetween. In a semiconductor integrated circuit device having a crystalline silicon layer, the insulating layer includes a silicon oxide film, and the insulating layer is provided on the silicon oxide film and is provided under substantially the entire bottom surface of the second polycrystalline silicon layer. A semiconductor integrated circuit device includes a silicon nitride film.

このように本発明では第1の多結晶シリコン層上のWJ
2の多結晶シリコン層の実質的全底面下にはシリコン窒
化膜が設けられて(・るから、両層間は各部分において
凹凸のない一定間隔となり好ましい多層構造が得られ、
各部分において一定のキャパシターを有するからこの層
を配縁とする場合に各配線の立体交差する部分でのキャ
パシターは一定の値となっているから、ICが所定の値
に設計しやすく、かつ両層間にはどの部分にお(・ても
多層絶縁膜が存在するから単膜の場合に起りえるピンホ
ールによる両層間の絶縁破壊も起りにくくなる。
In this way, in the present invention, the WJ on the first polycrystalline silicon layer
Since a silicon nitride film is provided under substantially the entire bottom surface of the polycrystalline silicon layer No. 2, a preferable multilayer structure is obtained, with constant intervals between the two layers without unevenness in each part.
Since each part has a certain capacitor, when this layer is used as a wiring, the capacitor at the part where each wiring crosses three-dimensionally has a certain value, so it is easy to design the IC to a predetermined value, and both Since a multilayer insulating film is present in any part between the layers, dielectric breakdown between the two layers due to pinholes, which would occur in the case of a single film, is less likely to occur.

次に、本発明を実施例により説明する。Next, the present invention will be explained by examples.

第2図乃至第6図は本発明の方法を3層Nチャンネルシ
リコンゲートM08型集積回路装置に実施した場合の工
程断面図である。
2 to 6 are process cross-sectional views when the method of the present invention is applied to a three-layer N-channel silicon gate M08 type integrated circuit device.

P型シリコン基板11の表面に厚さ約1μmの酸化膜を
設けた後、通常の写真食刻法によりトラ     1ン
ジスタ等の活性領域以外の領域のフィールド酸化膜12
を残す(第2図)。
After forming an oxide film with a thickness of about 1 μm on the surface of the P-type silicon substrate 11, a field oxide film 12 is formed in areas other than active areas such as transistors by ordinary photolithography.
(Figure 2).

続いて厚さ約100OAのゲート酸化膜13を形成した
後、厚さ約500OAの第1の多結晶シリコン層を気相
成長等で形成し、トランジスタのゲート電極部14、配
線部14等を残す様に第1の多結晶シリコン層をエツチ
ングする(第3図)。
Subsequently, after forming a gate oxide film 13 with a thickness of about 100 OA, a first polycrystalline silicon layer with a thickness of about 500 OA is formed by vapor phase growth, etc., leaving the gate electrode part 14, wiring part 14, etc. of the transistor. The first polycrystalline silicon layer is etched as shown in FIG.

続いて、基板11の拡散層を形成する部分のゲート酸化
膜13をエツチング除去した後、基板11と第1の多結
晶シリコン層14にリンを100Orで拡散して基板1
1にN型領域15を形成すると共に多結晶シリコン層1
4をN型に、またフィールド酸化膜12をリンガラスに
変える。再びM&化により厚さ約500 OAの酸化シ
リコン膜16を設け、その上に保獲として厚さ数百Aの
窒化シリコン膜17を被着する(第4図)。
Subsequently, after removing the gate oxide film 13 in the portion of the substrate 11 where the diffusion layer is to be formed by etching, phosphorus is diffused at 100 Or into the substrate 11 and the first polycrystalline silicon layer 14 to form the substrate 1.
An N-type region 15 is formed in the polycrystalline silicon layer 1.
4 is changed to N type, and the field oxide film 12 is changed to phosphorus glass. A silicon oxide film 16 with a thickness of about 500 OA is provided again by M& process, and a silicon nitride film 17 with a thickness of several hundred Å is deposited thereon as a preservative (FIG. 4).

次に厚さ約500OAの第2の多結晶シリコン層18を
形成し、この層18を写真食刻法を用い弗酸−硝酸系溶
液で工、チングしてパターンを形成する。窒化シリコン
膜17は弗酸−硝酸系エツチング液に侵されないからそ
の下の酸化シリコン膜16を保瞳する。続いて、第2の
多結晶シリコン層18と9化シリコン膜17にリンを拡
散する。
Next, a second polycrystalline silicon layer 18 having a thickness of about 500 OA is formed, and this layer 18 is etched using a hydrofluoric acid-nitric acid solution using a photolithography method to form a pattern. Since the silicon nitride film 17 is not attacked by the hydrofluoric acid-nitric acid type etching solution, it protects the underlying silicon oxide film 16. Subsequently, phosphorus is diffused into the second polycrystalline silicon layer 18 and the silicon 9ide film 17.

リン拡散により窒化シリコン族17の露出部はリンガラ
ス19に変質する。従って窒化シリコン膜17を除去す
る工程は不要である(第5図)。
The exposed portion of the silicon nitride group 17 changes into phosphorus glass 19 due to phosphorus diffusion. Therefore, the step of removing the silicon nitride film 17 is unnecessary (FIG. 5).

再び熱酸化により酸化シリコン膜20を設け、写真食刻
法により開孔し、アfiyiニウム配、i[1121を
設けることにより3NIINチャンネルMO8型集積回
路装置が完成する(第6図)。
A silicon oxide film 20 is formed again by thermal oxidation, holes are formed by photolithography, and a 3NIIN channel MO8 type integrated circuit device is completed (FIG. 6).

さらにこの実施例によれば段差による断線及び短絡、あ
る(・は寄生MO8FETの発生のな(・多層配線の半
導体集積回路が得られるのでその効果は大きい。
Furthermore, according to this embodiment, there are no disconnections or short circuits due to steps, and no parasitic MO8FET is generated (*), since a semiconductor integrated circuit with multilayer wiring can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

fla1図は従来の多層配線の半導体集積回路装置の1
例の断面図、第2囚乃至第6図は本発明の実施例の3層
NチャンネルシリコンゲートMO8型集積回路装置の製
造工程を示す断面図である。 1.11・・・・・・P型シリコン基板、2.12・・
・・・・フィールド酸化膜、3,13・・・・・・ゲー
ト酸化膜、第3 図 第4 図 1 め3 図 // 第 乙2
The fla1 diagram is one of a conventional multilayer wiring semiconductor integrated circuit device.
FIGS. 2 to 6 are cross-sectional views showing the manufacturing process of a three-layer N-channel silicon gate MO8 type integrated circuit device according to an embodiment of the present invention. 1.11...P-type silicon substrate, 2.12...
...Field oxide film, 3,13...Gate oxide film, Fig. 3 Fig. 4 Fig. 1 Fig. 3 // Fig. Otsu 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に選択的に設けられた第1の多結晶シリコ
ン層と、該第1の多結晶シリコン層上に絶縁層を介して
選択的に設けられた第2の多結晶シリコン層とを有する
半導体集積回路装置において、前記絶に層としてシリコ
ン酸化膜と該シリコン酸化膜上に設けられかつ前記第2
の多結晶シリコン層の実質的全底面下に設けられたシリ
コン像化膜とを含むことを特徴とする半導体集積回路装
置。
A first polycrystalline silicon layer selectively provided on a semiconductor substrate, and a second polycrystalline silicon layer selectively provided on the first polycrystalline silicon layer with an insulating layer interposed therebetween. In the semiconductor integrated circuit device, the layer includes a silicon oxide film and the second layer provided on the silicon oxide film.
a silicon imaging film provided under substantially the entire bottom surface of a polycrystalline silicon layer.
JP7121483A 1983-04-22 1983-04-22 Semiconductor integrated circuit device Pending JPS58194356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121483A JPS58194356A (en) 1983-04-22 1983-04-22 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121483A JPS58194356A (en) 1983-04-22 1983-04-22 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10330576A Division JPS5329088A (en) 1976-08-30 1976-08-30 Production of semiconductor integrated circuit device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23405483A Division JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS58194356A true JPS58194356A (en) 1983-11-12

Family

ID=13454198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121483A Pending JPS58194356A (en) 1983-04-22 1983-04-22 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58194356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198149A1 (en) * 1985-02-06 1986-10-22 Reimbold & Strick GmbH & Co. KG Method of producing a metallic-ceramic conductor and application of the method
EP0198150A1 (en) * 1985-02-06 1986-10-22 Reimbold & Strick GmbH & Co. KG Ceramic compositions and their application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198149A1 (en) * 1985-02-06 1986-10-22 Reimbold & Strick GmbH & Co. KG Method of producing a metallic-ceramic conductor and application of the method
EP0198150A1 (en) * 1985-02-06 1986-10-22 Reimbold & Strick GmbH & Co. KG Ceramic compositions and their application

Similar Documents

Publication Publication Date Title
JPH04348077A (en) thin film transistor
JPS58194356A (en) Semiconductor integrated circuit device
JPS5951153B2 (en) Manufacturing method of semiconductor device
KR960006339B1 (en) Manufacturing Method of Semiconductor Device
JP2809172B2 (en) Semiconductor device
JPS6161539B2 (en)
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JPS59130445A (en) Manufacture of semiconductor integrated circuit device
JPH05326841A (en) Manufacture of semiconductor device
JPS5823745B2 (en) MOS
JPS5828737B2 (en) semiconductor equipment
JPS60785B2 (en) Manufacturing method of MOS type semiconductor device
JPS6113383B2 (en)
JPS62112359A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6116551A (en) semiconductor equipment
JPS5835363B2 (en) Manufacturing method for semiconductor devices
JPS6148778B2 (en)
JPH0287621A (en) Manufacture of semiconductor device
JPH03238846A (en) Multilayer wiring type semiconductor
JPH0554700B2 (en)
JPH04275431A (en) Semiconductor device and its manufacturing method
JPS60240141A (en) Manufacture of semiconductor device
JPH02251144A (en) Manufacture of semiconductor device
JPS60249361A (en) Semiconductor device and its manufacturing method