[go: up one dir, main page]

JPS58193109A - Method for coarsely crushing water-containing high molecular weight water-soluble polymers - Google Patents

Method for coarsely crushing water-containing high molecular weight water-soluble polymers

Info

Publication number
JPS58193109A
JPS58193109A JP7622082A JP7622082A JPS58193109A JP S58193109 A JPS58193109 A JP S58193109A JP 7622082 A JP7622082 A JP 7622082A JP 7622082 A JP7622082 A JP 7622082A JP S58193109 A JPS58193109 A JP S58193109A
Authority
JP
Japan
Prior art keywords
screen
stage
water
crushing
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7622082A
Other languages
Japanese (ja)
Inventor
Kyoji Yamada
恭司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7622082A priority Critical patent/JPS58193109A/en
Publication of JPS58193109A publication Critical patent/JPS58193109A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Disintegrating Or Milling (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 冒分子量水溶性重合体の粗砕処理方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for crushing a water-soluble polymer having a high molecular weight.

水溶液重合法によって得られるアクリルアマイド,アク
リル酸(塩)等の含水高分子量水溶性重合体(以下、重
合反応体と略称する。)は通常、乾燥処理に有利な小粒
体状へ粗砕処理し、乾燥。
Water-containing high molecular weight water-soluble polymers (hereinafter referred to as polymerization reactants) such as acrylamide and acrylic acid (salts) obtained by aqueous solution polymerization are usually crushed into small particles that are advantageous for drying. , dry.

粉砕等の製品化工程を経て輸送や、保管に便利な乾燥粉
末製品にされ、紙力増強剤.高分子凝集剤。
Through product manufacturing processes such as pulverization, it is made into a dry powder product that is convenient for transportation and storage, and is used as a paper strength enhancer. Polymer flocculant.

増粘剤.石油回収用薬剤.電解精練用薬剤等の各分野に
広く利用されている。
Thickener. Oil recovery agent. It is widely used in various fields such as electrolytic refining chemicals.

ところで、かかる重合反応体の物理的性状は、主として
出発重合原料体(水溶液)のモノマー濃度によって支配
される。例えばモノマー濃度10重量%以下では粘性を
もつ水溶液であるが、モノマー濃度の増加と共に、次第
に粘稠性を増し、25重量%近傍においては軟体状に、
更に30重量%以上では完全にゴム状弾性固体となる。
By the way, the physical properties of such polymerization reactants are mainly controlled by the monomer concentration of the starting polymerization raw material (aqueous solution). For example, when the monomer concentration is 10% by weight or less, it is a viscous aqueous solution, but as the monomer concentration increases, it gradually becomes more viscous, and when it is around 25% by weight, it becomes soft.
Further, if the amount is 30% by weight or more, it becomes a completely rubber-like elastic solid.

従って製品化コスト・特に乾燥コストの点で出来るだけ
高モノマー濃度から出発したゴム状弾性固体状の重合反
応体を得る方が有利である。しかし、ゴム状弾性固体状
の重合反応体と云え°ども、含水高分子量水溶性重合体
特有の他物質及び自身相互間の付着性をもつが故に、通
常のゴム状弾性固体として扱えず、その製品化工程、特
に粗砕工程に困難な問題を含んでいる。
Therefore, in terms of production costs, particularly drying costs, it is advantageous to obtain a polymerization reactant in the form of a rubber-like elastic solid starting from a monomer concentration as high as possible. However, although the polymerization reactant is in the form of a rubber-like elastic solid, it cannot be treated as a normal rubber-like elastic solid because it has adhesive properties between itself and other substances that are unique to water-containing high molecular weight water-soluble polymers. The product production process, especially the crushing process, involves difficult problems.

即ち、従来、かかる粗砕工程としては、ゴム状弾性固体
の工業的大量粗砕処理用として唯一適用出来るところの
、添付第1図に示す如きカッティングミルを使用し粗砕
する方法が最も一般的である。
That is, conventionally, the most common method for such a crushing process is to use a cutting mill as shown in attached Figure 1, which is the only method applicable to industrial large-scale crushing of rubber-like elastic solids. It is.

この方法は、第1図より明らかなように、ケーシング(
0)に囲まれた粗砕通路内にその人口(11より重合反
応体、即ち、粗砕原体を送入し、代表的な5枚刃の回転
刃(3)と、該回転刃(3)に対向し、通路内に設けら
れた代表的な2枚刃のケースの固定刃(4)を含む粗砕
室(5)で前記粗砕原体に対し粗砕処理を行ない、下部
の処理粒体が通過する多数の孔をもつスクリーン(6)
ヲ通して下方出口(2)より送出することによって実施
される。なお1図中(7)は飛散防止部材を示す。
As is clear from Fig. 1, this method uses a casing (
A polymerization reactant, that is, a coarse crushing material is fed from the population (11) into a coarse crushing passage surrounded by a typical five-blade rotary blade (3) and the rotary blade (3). ), the coarse crushing material is subjected to coarse crushing processing in a crushing chamber (5) containing a typical two-blade case fixed blade (4) provided in the passage, and the lower part is processed. Screen with many holes through which particles pass (6)
This is carried out by sending the liquid through the lower outlet (2). Note that (7) in Figure 1 indicates a scattering prevention member.

ところが、この方法によると、カッティングミル内部に
著しい付着や、詰まシを発生し、処理量を低く抑制しな
い限り、乾燥に有利な小粒体状へ処理することができな
いという難点がある。
However, this method has the drawback that significant adhesion and clogging occur inside the cutting mill, and unless the throughput is kept low, it cannot be processed into small particles that are advantageous for drying.

即ち、上記従来の粗砕方法は乾燥速度の点で小粒体状の
粗砕粒体とする方法であり、スクリーンの孔径を5〜6
Wφとして処理量を極めて低く抑制して1段で処理する
粗砕方法である。もし、スクリーン孔径音大きくすると
、処理能力は増加するが、処理粒体の形状が乾燥速度の
点で不利な粗粒となる。そして、又、5〜6■φのスク
リーンの孔径のままフィード量を増加させると、短時間
引続いて処理することができなくなる。
That is, the conventional coarse crushing method described above is a method of producing coarsely crushed particles in the form of small particles in terms of drying speed, and the pore size of the screen is 5 to 6.
This is a coarse crushing method in which the throughput is kept extremely low as Wφ and the process is performed in one stage. If the screen pore size is increased, the processing capacity will increase, but the shape of the treated granules will become coarse, which is disadvantageous in terms of drying speed. Furthermore, if the feed rate is increased while the screen pore diameter is 5 to 6 .phi., continuous processing will not be possible for a short period of time.

従って、フィード速度を低く抑制して小粒体状とするこ
の方法は、工業的規模においては多数の粗砕機を必要と
することになり著しく不利である。
Therefore, this method of suppressing the feed rate to a low level to form small particles is extremely disadvantageous on an industrial scale because it requires a large number of crushers.

そこで一方、これに対抗し、他の工業的解決法の1つと
1−で、重合反応体の物質的性状をモノマー濃度を下げ
、エスクトルーダー等で処理できる程度の軟体状とする
方法があるが、この方法は、重合′反応体の含水量が高
く、乾燥の脱水コストの点で不利ケ免れず、又処理能力
の点でも充分とは云い難い。
On the other hand, to counter this, there is a method to reduce the monomer concentration of the polymerization reactant and make it soft enough to be treated with an extruder etc., which is one of the other industrial solutions. However, this method is disadvantageous in terms of drying and dehydration costs due to the high water content of the polymerization reactant, and also cannot be said to be sufficient in terms of processing capacity.

そこで、本発明者は、叙上の如き問題に着目しその改善
を図るべく鋭意検討を行ない、その結果、付着性がある
高士ツマー濃度から出発した含水量が相当に少ないゴム
状弾性固体の本重合反応体であっても、粗砕処理手段の
改良により充分、これを乾燥有利な小粒体状へ大量に粗
砕し得ることを見出し本発明方法に到達するに至った。
Therefore, the present inventor focused on the above-mentioned problems and conducted intensive studies to improve them, and as a result, the present inventor developed a rubber-like elastic solid with a considerably low water content, starting from the adhesive Takashi Tsumar concentration. The present inventors have discovered that even polymerization reactants can be sufficiently crushed into small particles in large quantities, which are advantageous for drying, by improving the crushing treatment means, and have arrived at the method of the present invention.

即ち、本発明の特徴とするところは、カッティングミル
を使用して前記本重合反応体の粗砕を行なうにあたり、
上下2段に2台のカッティングミルを連結配置し、上段
のスクリーン孔径よりも下段のスクリーン孔径を小さく
、夫々所要の孔径として各段で逐次、小粒化作用を行な
わせると共に下段の処理粒体の出口より吸引通風するこ
とにより処理粒体の流れと同一方向の気流の流れを各段
スクリーンの孔へ起し、粗砕室を換気冷却し、これらの
相乗作用によって安定して小粒体状へ粗砕処理する方法
である。
That is, the present invention is characterized in that when the main polymerization reactant is roughly crushed using a cutting mill,
Two cutting mills are connected and arranged in upper and lower stages, and the lower screen hole diameter is made smaller than the upper screen hole diameter, and each stage sequentially performs a particle-reducing action as the required hole diameter, and also reduces the size of the treated granules in the lower stage. By suctioning and ventilating from the outlet, an air flow in the same direction as the flow of the treated granules is generated through the holes in each stage of the screen, the crushing chamber is ventilated and cooled, and the synergistic effect of these processes stably coarsens the particles into small particles. This is a method of crushing.

以下、添付図面にもとづいて、本発明粗砕方法の具体的
実施の態様を詳しく説明する。
Hereinafter, specific embodiments of the crushing method of the present invention will be described in detail based on the accompanying drawings.

第2図は、カッティングミルを用いた本発明粗砕方法の
説明図であり、図中、(局は上段、即ち1段目のカッテ
ィングミルゲ示し、(B)は下段、即ち2段目のそれを
示す。
FIG. 2 is an explanatory diagram of the coarse crushing method of the present invention using a cutting mill. Show it.

しかして、この図中、上段、即ち1段目のカッティング
ミル(Nに関し、(llf1重合反応体、即ち粗砕原体
の入口で、その矢印により入口方向と共に吸引通風気流
の流れ方向を示し、又、<2fは前記1段目の処理粒体
の流れ方向と共に気流の流れ方向會示し、(3)は代表
的な5枚刃の場合の回転刃を、(4)は2枚刃の場合の
固定刃を示し、(5)は粗砕室を、(6)は1段目が処
理粒体即ち粗粒体が通過する多数の孔をもつスクリーン
を示す。一方、図中(B)に関し、(31’、 (4f
、 (5r、 (6)’Icツレぞしz 段目(7)f
31 、 (4)。
Therefore, in this figure, regarding the upper stage, that is, the first stage cutting mill (N), (llf1 is the inlet of the polymerization reactant, that is, the coarsely crushed raw material, and the arrow indicates the direction of the inlet and the flow direction of the suction draft airflow, In addition, <2f indicates the flow direction of the airflow as well as the flow direction of the treated granules in the first stage, (3) represents the rotating blade in the case of a typical five-blade case, and (4) represents the rotary blade in the case of two blades. (5) shows the crushing chamber, and (6) shows the screen with many holes through which the processed granules, that is, the coarse granules, pass through in the first stage.On the other hand, regarding (B) in the figure, , (31', (4f
, (5r, (6)'Ic Tsurezoshiz Step (7)f
31, (4).

(51,(61に相当し、(2)は2段目の処理粒体即
ち小粒体の出口でその矢示により出口方向を示すと共に
粗砕室からの気流の出口方向を示し、(8)は吸引通風
装置への気流の排気方向を示す〇 そして、本発明における1段目のスクリーンの孔径は1
5〜25++III好1しくは18〜22■である。
(corresponds to 51, (61), (2) is the outlet of the second-stage processed granules, that is, the small granules, and its arrow indicates the exit direction, as well as the exit direction of the airflow from the crushing chamber, (8) indicates the exhaust direction of the airflow to the suction ventilation device〇And the pore diameter of the first stage screen in the present invention is 1
5 to 25++III, preferably 18 to 22■.

図中、入口(1)よシ厚み10〜80m、巾50〜30
0m+長さ50”3001111類似寸法の処理原体、
即ち重合反応体が粗砕通路内にフィードされると、回転
刃との衝突により該原体は回転刃回転方向へ跳ね飛ばさ
れ、図中の粗砕室(5)の内壁や他の粒子、さらには回
転刃(3)との再衝突などを繰り返しつつ下流へ移動し
、図中の固定刃(4)と回転刃(3)との切断作用で粗
砕される。この場合、粗砕され粗粒となった粒子の形状
が図中のスクリーン(6)の孔径よりも大きいものはさ
らに循環を続はスクリーンの孔を通過する迄これ金繰り
返す。一方、スクリーンの孔径よりも小さい形状の粗粒
は回転刃(3)との衝突でうけた慣性力とスクリーンの
孔を処理粒体と同一方向に通過する吸引通風の気流の搬
送力とでスクリーン孔を容易に通過することができる。
In the figure, the thickness from the entrance (1) is 10 to 80 m, and the width is 50 to 30 m.
0m + length 50” 3001111 Processing material with similar dimensions,
That is, when the polymerization reactant is fed into the crushing passage, the raw material is thrown off in the direction of rotation of the rotary blade due to collision with the rotary blade, and the raw material is blown away by the inner wall of the crushing chamber (5) in the figure, other particles, Furthermore, it moves downstream while repeatedly colliding with the rotating blade (3), and is crushed by the cutting action of the fixed blade (4) and the rotating blade (3) in the figure. In this case, if the coarsely crushed particles have a shape larger than the pore diameter of the screen (6) in the figure, the circulation is repeated until they pass through the pores of the screen. On the other hand, coarse particles with a shape smaller than the pore diameter of the screen are screened by the inertial force received by the collision with the rotating blade (3) and the conveying force of the airflow of the suction draft that passes through the pores of the screen in the same direction as the treated particles. Can easily pass through holes.

ただしスクリーンの孔径よりも小さい形状の粗粒でも1
回の循環でスクリーン孔へ遭遇することなくさらに循環
を続けるものもある。従って繰り返し切断作用をうける
ためある程度の細粒が発生するが、前述の吸引通風を行
わない場合よシも極めて少い。スクリーン孔径を小さく
する程処理粒体の形状は小粒状化するが、スクリーンを
通過出来る形状になる迄の切断作用を何回もうけること
となり従って循環量が増加し衝突や切断作用に伴う熱の
発生量が増大することとなる。ただし1段目はスクリー
ンの孔径が比較的大きく粗粒状の処理粒体にとどま′る
ため発生熱量は少くさらに吸引通風による粗砕室内の換
気、冷却作用もあって品温上昇は軽微である。
However, even coarse particles with a shape smaller than the screen pore diameter
Some particles continue to circulate without encountering the screen hole. Therefore, a certain amount of fine particles are generated due to the repeated cutting action, but the amount of fine particles is extremely small compared to when the above-mentioned suction ventilation is not performed. As the screen hole diameter becomes smaller, the shape of the treated particles becomes smaller, but the cutting action must be repeated several times to achieve a shape that can pass through the screen, which increases the amount of circulation and generates heat due to collisions and cutting actions. The amount will increase. However, in the first stage, the pore size of the screen is relatively large and the processed particles remain in the coarse granule state, so the amount of heat generated is small, and there is also ventilation and cooling in the crushing chamber due to suction ventilation, so the rise in product temperature is slight.

もし、1段目のスクリーンの孔径f 15 w以下にす
ると処理能力は著しく低下する〇 又25m以上にすると過大な粗大形状の処理粒体となり
過剰の負荷を2段目へ与え(ることとなって処理能力の
著しい低下をきたす。従って2段目への好適な処理状態
を与え、かつ1段目で安定処理を実現するには1段目の
スクリーンの孔径を18〜22姻とするゐが好ましい。
If the pore diameter of the first stage screen is less than f 15 w, the processing capacity will be significantly reduced; if it is more than 25 m, the treated particles will become too coarse and an excessive load will be applied to the second stage. Therefore, in order to provide suitable processing conditions to the second stage and achieve stable processing in the first stage, the pore diameter of the first stage screen should be 18 to 22mm. preferable.

又、吸引通風を行わない場合、特に夏場の高温高湿時に
おいては、結露容易な雰囲気条件と品温上昇の増大が重
なり、粗砕室内壁への結露、細粒の付着等、好ましくな
い現象が発生するものの1段目においてはスクリーンの
孔径が大きく処理粒体が粗粒状にとどまっていることか
ら処理能力へ影響を与える迄のトラブルには至らない。
In addition, if suction ventilation is not used, especially in high temperature and high humidity in the summer, the atmospheric conditions that facilitate condensation and the increase in product temperature combine to cause undesirable phenomena such as dew condensation and adhesion of fine particles to the walls of the crushing chamber. Although this occurs, in the first stage, the pore size of the screen is large and the treated particles remain in the form of coarse particles, so problems that do not affect the processing capacity do not occur.

次に本発明における2段目のスクリーンの孔径は7〜1
5鰭、更に好ましくは8〜12■とするのが良好である
。2段目の処理原体は図中矢印方向(2fで示すごとく
1段目より落下し2段目の粗砕通路にフィードされ、前
述1段目と同様の機構で粗砕されるが、処理粒体の形状
を乾燥処理の点で有利な小粒体状にするためにスクリー
ンの孔径を1段目より小さくする必要がある。
Next, the pore diameter of the second stage screen in the present invention is 7 to 1
It is best to have 5 fins, more preferably 8 to 12 fins. The raw material to be treated in the second stage falls from the first stage in the direction of the arrow (2f in the figure) and is fed to the coarse crushing passage in the second stage, where it is coarsely crushed by the same mechanism as the first stage described above. In order to make the granules into small granules, which are advantageous in terms of drying, it is necessary to make the pore size of the screen smaller than that of the first stage.

たタシ、スクリーンの孔径1’y■以下の過小孔径とし
た場合、処理原体のフィード速度を抑制しないで処理を
行うと粗砕室内壁への細粒の付着やスクリーン孔への細
粒の目詰りなど好ましくない現象が現れはじめ時間経過
と共に品温上昇も顕著となり、遂には処理不能に陥るこ
とが多い。
If the pore size of the screen is too small and the feed rate of the raw material is not controlled, fine particles may adhere to the wall of the crushing chamber or the fine particles may enter the screen holes. Undesirable phenomena such as clogging begin to appear, and as time passes, the temperature of the product increases significantly, and in many cases it eventually becomes impossible to process.

特に夏場の高温高湿時においては粗砕室内壁へ結露現象
を併発し短時間で処理不能に陥る。さらにこの場合、吸
引通風を中止して実施すると極めて短時間のうちに激し
く同様の現象が発生し、たちまち処理不能に陥る。しか
もこのとき、粗砕室内へ著しく水溶性の劣化した捏練状
の団子が発生することもあり、品質の面でも致命傷に至
らしめる。
Particularly during high temperature and high humidity in the summer, dew condensation occurs on the walls of the crushing chamber, and the process becomes impossible in a short period of time. Furthermore, in this case, if suction ventilation is stopped and carried out, a similar phenomenon occurs violently within a very short time, and the process immediately becomes impossible. Moreover, at this time, kneaded dumplings with significantly deteriorated water solubility may be generated in the crushing chamber, which is fatal in terms of quality.

かかる現象は処理粒体の小粒化と共に粒体lヶ当りの回
転刃よりうける慣性力が減少し、慣性力に基く粒子相互
間、粗砕室内壁、スクリーン孔粒子通路面に対する分離
力が低下する反面、粒子の単位表面積は増加し付着力が
相対的に増大するという基本的理由による他、実際には
これに加えてスクリーンの孔へ気流を起し処理粒体の搬
送力を助長し、粗砕室を換気し、粒子の品温上昇を抑制
し、結露を防止する効果のある吸引通風をすることや、
循環量が異常に増大し、切断や衝突頻度が増加し、熱発
生量が上昇し、これが蓄積し、品温が異常上昇し、結露
発生へ結びつく過少孔径のスクリーンを誤って採用する
ことによって、前述付着力を圧倒的優位に至らしめた結
果によるものである。
This phenomenon is caused by the reduction of the inertial force exerted by the rotary blade per 1 granular particle as the treated granules become smaller, and the separation force based on the inertial force between the particles, the inner wall of the crushing chamber, and the particle passage surface of the screen hole decreases. On the other hand, in addition to the basic reason that the unit surface area of the particles increases and the adhesion force increases relatively, in addition to this, air currents are generated into the holes of the screen to promote the conveying force of the treated particles, causing roughness. Ventilate the crushing room, suppress the rise in particle temperature, and use suction ventilation to prevent dew condensation.
By incorrectly adopting a screen with a small pore size, the amount of circulation increases abnormally, the frequency of cuts and collisions increases, the amount of heat generated increases, and this accumulates, causing abnormally high product temperatures and condensation. This is due to the overwhelmingly superior adhesive force mentioned above.

又、スクリーンの孔径k 15 mm以上とすることは
、2段目での粗砕効果をなくすることがあってもわずか
にとどまってしまい乾燥速度の点で有利な2〜4−w+
径の小粒体状の処理粒体ケ得ることが出来なくなる。
In addition, if the hole diameter of the screen is k15 mm or more, even if the coarse crushing effect in the second stage is eliminated, it will only be slight, which is advantageous in terms of drying speed.
It becomes impossible to obtain treated granules with small diameters.

以上のことから2段目のスクリーンの孔径は1〜151
1m安定して大量処理を行うには8〜12m+とするこ
とが好ましく、結露を防止し粒体の流れを円滑に行わせ
るためには吸引通風を必要とするものである。
Based on the above, the pore diameter of the second stage screen is 1 to 151.
In order to stably perform large-scale processing of 1 m, the length is preferably 8 to 12 m+, and suction ventilation is required to prevent dew condensation and ensure smooth flow of granules.

かくして値上の上下2段のカッティングミル(、A)(
B)により、夫々、粗砕作用が行なわれ、1段目。
Thus, the upper and lower two stages of cutting mills (, A) (
B) performs the coarse crushing action, respectively, in the first stage.

2段目の各スクリーンを通過して所定の粗砕工程が完了
するが、この間、下段のスクリーン(6fを通して吸引
通風が行なわれることから粗砕室(5)内は換気冷却が
なされ、前記粗砕作用を円滑に、かつ有効に進めること
ができる。
The predetermined coarse crushing process is completed after passing through each screen in the second stage, but during this time, the inside of the coarse crushing chamber (5) is ventilated and cooled due to suction ventilation being carried out through the lower stage screen (6f). The crushing action can proceed smoothly and effectively.

なお、上記説明は上下2段にカッティングミルケ配置し
た場合であるが、更に必要に応じカッティングミルの連
結数を増加せしめることも可能である。
Although the above description is based on the case where the cutting mills are arranged in two stages, upper and lower, it is also possible to increase the number of connected cutting mills if necessary.

この場合にはその配置位置に応じスクリーンの孔径を設
定することは勿論である。
In this case, it goes without saying that the hole diameter of the screen should be determined depending on the position of the screen.

このようにして本発明粗砕方法によれば高モノマー濃度
から出発したゴム状弾性固体状の重合反応体に対しても
大量に小粒体状へ粗砕することが“でき、製品化コスト
ヲ有利にすると共に、1段目のスクリーンの孔径を、2
段目のそれに比し大きく、処理能力の低下を来たさない
ようにし、かつ下段のスクリーンを通して吸引通風し気
流の流れを処理粒体の流れ方向としているので粗砕室内
の換気、冷却が充分で、同室内における品温上昇もなく
、更に室内壁への結露、細粒の付着や、スクリーン孔へ
の付着、目詰まシ等も発生することもなく、含水高分子
量水溶性重合体の粗砕方法として頗る工業上、有利な方
法である。
In this way, according to the crushing method of the present invention, it is possible to coarsely crush a rubber-like elastic solid polymer reactant starting from a high monomer concentration into small particles in large quantities, and the production cost can be advantageously reduced. At the same time, the hole diameter of the first stage screen is set to 2.
It is larger than that of the second stage, so as not to reduce the processing capacity, and because the air is sucked and ventilated through the screen in the lower stage, and the air flow is in the direction of the flow of the processed granules, there is sufficient ventilation and cooling in the crushing chamber. Therefore, there is no rise in product temperature in the same room, and there is no occurrence of dew condensation on the indoor walls, adhesion of fine particles, adhesion to the screen holes, or clogging, and the roughness of the water-containing high molecular weight water-soluble polymer This is an industrially advantageous method for crushing.

次に本発明方法?実施例により説明する。Next, the method of the present invention? This will be explained using an example.

しかし本発明方法は前述の通りであシ、その要旨を逸脱
しない限り、以下の実施例に制約されるものではない。
However, the method of the present invention is as described above, and is not limited to the following embodiments as long as it does not depart from the gist thereof.

(実施例) 気fA34℃において、回転刃直径320m+、同先端
周速10〜20r/8の市販カッティングミル2台を第
2図の如く上下2段に連結し、上段・即ち1段目のカッ
ティングミルに孔径20■のスクリーン孔用い、下段即
ち、2段目のカッティングミルに孔径10mのスクリー
ンを用い、2段目の処理粒体出口のスクリーン孔を通し
て1段目、2段目f 60 m/Hの風量で吸引通風し
つつ七ツマー濃度40重量%から出発した厚み30■、
巾3QOmm、長さ300++a+の重合反応体を毎時
400’9/aのフィード速度で約1時間処理して2〜
411m+の小粒体状の処理粒体を得た。
(Example) At a temperature of 34°C, two commercially available cutting mills with a rotary blade diameter of 320 m+ and a circumferential speed of the same tip of 10 to 20 r/8 were connected in upper and lower stages as shown in Fig. 2, and the upper stage, that is, the first stage cutting A screen hole with a hole diameter of 20 mm is used in the mill, a screen with a hole diameter of 10 m is used in the lower stage, that is, the second stage cutting mill, and a screen hole at the outlet of the treated granules in the second stage is passed through the first stage and second stage f 60 m/ The thickness was 30cm, starting from a seven-layer concentration of 40% by weight while suctioning and ventilating with an air volume of H.
A polymerization reactant with a width of 3QOmm and a length of 300++a+ was treated at a feed rate of 400'9/a/hour for about 1 hour to produce 2~
Treated granules in the form of small particles of 411m+ were obtained.

この間、スクリーンへの付着、目詰まりや、駆動モータ
ーの電流の大巾な変化もなく、安定処理ができた。又、
処理完了後、スクリーンや粗砕室内部を点検したところ
、目詰まりや付着は殆ど認められなかった。そして得た
処理粒体の品質、即ち、水溶性は良好であった。
During this time, stable processing was achieved with no adhesion to the screen, no clogging, and no major changes in the drive motor current. or,
When the screen and the inside of the crushing chamber were inspected after the treatment was completed, almost no clogging or adhesion was observed. The quality of the obtained treated granules, ie, water solubility, was good.

−方−前記と同じカッティングミルで、スクリーンの孔
径10IlIIのものを用い、同じ重合反応体で毎時4
00 ’/Hのフィード速度で処理したが約20分経過
後、スクリーンの目詰まりが発生し、粗砕を中止せざる
を得なかった。
-Method- Using the same cutting mill as above, using a screen with a pore size of 10IlII, and using the same polymerization reactant,
Although processing was carried out at a feed rate of 00'/H, the screen became clogged after approximately 20 minutes, and the coarse crushing had to be discontinued.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1台のカッティングミルを用いた従来法の説明
図、第2図は本発明方法を実施するカッティングミル配
置の1例を示す説明図である。 (A)・・・1段目カッティングミル。 (B)・・・2段目カッティングミル。 (0)・・・ケーシング。 (1)・・・入口、(2)・・・出口。 13+ +31’・・・回転刃、(4)(4)′・・・
固定刃。 (51(5r・・・粗砕室、  (6) +61’・・
・スクリーン。 (71(71’・・・飛散防止部材、 (8)ζ・・気
流の排気方向。
FIG. 1 is an explanatory diagram of a conventional method using one cutting mill, and FIG. 2 is an explanatory diagram showing an example of the cutting mill arrangement for carrying out the method of the present invention. (A)...1st stage cutting mill. (B)...Second stage cutting mill. (0)...Casing. (1)...Entrance, (2)...Exit. 13+ +31'... Rotating blade, (4) (4)'...
Fixed blade. (51 (5r... coarse crushing chamber, (6) +61'...
·screen. (71 (71'... scattering prevention member, (8)ζ... airflow exhaust direction.

Claims (1)

【特許請求の範囲】[Claims] l カッティングミルを使用した含水高分子量水溶性重
合体の粗砕方法において、2台のカッティングミルを連
続した通路内に、上下2段に連結配置し、上段のカッテ
ィングミルのスクリーン孔径よりも下段のカッティング
ミルのスクリーン孔径音生さく、前者を110N23.
後者をマ〜15Iとすると共に、下段の処理粒体出口よ
シ下段スクリーンを通して吸引通風し、処理粒体の流れ
と同一方向の流れを通路内各段スクリーンに起して粗砕
処理することを特徴とする含水高分子量水溶性重合体の
粗砕方法。
l In a method of coarsely crushing a water-containing high molecular weight water-soluble polymer using a cutting mill, two cutting mills are connected and arranged in two stages, upper and lower, in a continuous passage, and the screen pore diameter of the lower stage is larger than the screen pore diameter of the upper stage cutting mill. The screen hole diameter of the cutting mill is 110N23.
The latter is set to Ma ~ 15I, and at the same time suction ventilation is carried out from the outlet of the treated granules in the lower stage through the lower stage screen, and a flow in the same direction as the flow of the treated granules is generated at each stage of the screen in the passage for coarse crushing. A method for coarsely crushing water-containing high molecular weight water-soluble polymers.
JP7622082A 1982-05-06 1982-05-06 Method for coarsely crushing water-containing high molecular weight water-soluble polymers Pending JPS58193109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7622082A JPS58193109A (en) 1982-05-06 1982-05-06 Method for coarsely crushing water-containing high molecular weight water-soluble polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7622082A JPS58193109A (en) 1982-05-06 1982-05-06 Method for coarsely crushing water-containing high molecular weight water-soluble polymers

Publications (1)

Publication Number Publication Date
JPS58193109A true JPS58193109A (en) 1983-11-10

Family

ID=13599093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7622082A Pending JPS58193109A (en) 1982-05-06 1982-05-06 Method for coarsely crushing water-containing high molecular weight water-soluble polymers

Country Status (1)

Country Link
JP (1) JPS58193109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110511A (en) * 1984-11-06 1986-05-28 Dai Ichi Kogyo Seiyaku Co Ltd Granulation of water-soluble polymer gel
JPH11188725A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water absorbable resin
WO2008131477A1 (en) * 2007-04-27 2008-11-06 Fibrecycle Pty Ltd Particle reduction device
CN111604124A (en) * 2020-06-12 2020-09-01 深圳市伊乐农贸有限公司 Effectual maize grinder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110511A (en) * 1984-11-06 1986-05-28 Dai Ichi Kogyo Seiyaku Co Ltd Granulation of water-soluble polymer gel
JPH032042B2 (en) * 1984-11-06 1991-01-14 Dai Ichi Kogyo Seiyaku Co Ltd
JPH11188725A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water absorbable resin
WO2008131477A1 (en) * 2007-04-27 2008-11-06 Fibrecycle Pty Ltd Particle reduction device
US8267337B2 (en) 2007-04-27 2012-09-18 Fibrecycle Pty Ltd. Particle reduction device
CN111604124A (en) * 2020-06-12 2020-09-01 深圳市伊乐农贸有限公司 Effectual maize grinder

Similar Documents

Publication Publication Date Title
EP1127895B1 (en) Process for producing powdery water soluble cellulose derivatives
EP2429790B1 (en) Process for the anti-sticking treatment of polymer pellets
JP2010537014A (en) Method for producing low-hydrolyzable polyester granules made of high-viscosity polyester melt, and apparatus for producing the polyester granules
JPH11292919A (en) Production of water-absorbing resin
CN103140337A (en) Method for increasing the molecular weight using the residual heat of polyester granulate
JPS58193109A (en) Method for coarsely crushing water-containing high molecular weight water-soluble polymers
EP0387711B1 (en) Continuous preparation process of polytetrafluoroethylene wet powder
JPH06107800A (en) Production of granular hydrous gel-like polymer and water-absorbing resin
CA2444608A1 (en) Ammonium glyphosate compositions and process for their preparation
JP4685769B2 (en) Post treatment for polymer pellets
JP2002126561A (en) Shredding device
JP4546764B2 (en) Calcium fluoride manufacturing method and manufacturing apparatus
KR100984614B1 (en) Recovery method of the polymer
JPH0139689B2 (en)
JP3146371B2 (en) Coagulation reaction device
JPH0512371B2 (en)
JP2009292984A (en) Method for treating polyparaphenylene terephthalamide polymer concentrated sulfuric acid solution
CN106588797A (en) Method for preparing melamine cyanuric urate flame retardant with ball-milling method
US5977295A (en) Continuous process for preparing polytetrafluoroethylene wet powder
CN211419593U (en) Device for slowing down soft caking of anhydrous sodium sulphate after drying and production system
JPH0616819A (en) Manufacturing method of polycarbonate powder
US20250091252A1 (en) Apparatus to improve the hydrodynamics in an underwater pelletizer and system thereof
JP2006335905A (en) Manufacturing method of pelletized nonionic alkylene oxide-based resin
JP2992079B2 (en) Aromatic polycarbonate resin powder and method for producing the same
JPH07268107A (en) Method for producing polycarbonate resin powder