[go: up one dir, main page]

JPS58191980A - Measuring device of plasma current - Google Patents

Measuring device of plasma current

Info

Publication number
JPS58191980A
JPS58191980A JP57077109A JP7710982A JPS58191980A JP S58191980 A JPS58191980 A JP S58191980A JP 57077109 A JP57077109 A JP 57077109A JP 7710982 A JP7710982 A JP 7710982A JP S58191980 A JPS58191980 A JP S58191980A
Authority
JP
Japan
Prior art keywords
light
optical
plasma current
fiber cable
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57077109A
Other languages
Japanese (ja)
Inventor
Teruo Murakami
村上 輝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57077109A priority Critical patent/JPS58191980A/en
Publication of JPS58191980A publication Critical patent/JPS58191980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To make an integrator and an optical telemeter part unnecessary and improve the precision of measurement, by utilizing the optical Farady effect to connect directly an optical fiber cable to a vacuum vessel. CONSTITUTION:The light emitted from a polarizer 12 has the plane of vibration changed by an angle theta because of the optical Farady effect due to a magnetic field phi applied to the coil-shaped part of an optical fiber cable 13. The light from a light emitting element 11 is a kind of electromagnetic wave and has a plane of vibration; and since the optical fiber cable 13 to which vibrating waves passing only at a certain angle are transmitted by the polarizer 12 is coil-shaped in a vacuum vessel 1, a magnetic field is generated when a current due to a plasma current is flowed, and the angle of the plane of vibration of light is affected. This angle theta is expressed by thetaalphaKH when the intensity of the magnetic field is denoted as H and K is a constant, and the angle theta is determined by the position of the plasma. The optical signal whose plane of vibration is shifted at the angle theta is inputted to an analyzer 14, and the light of only horizontal components is taken out, and its optically attenuated light level is detected by a photodetector 15 and is inputted to a recorder 16, thereby measuring the pertinent plasma current.

Description

【発明の詳細な説明】 この発明は、プラズマ電流計測装置に関するものであり
、もう少し詳しくいうと、トカマク形真空容器内のプラ
ズマ電流を計測するためのプラズマ電流計測装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma current measuring device, and more specifically, to a plasma current measuring device for measuring plasma current in a tokamak-type vacuum vessel.

従来、この種の装置として真空容器内のプラズマ電流に
よって発生する磁気の変化を検出するものがあり、これ
を第1図によって説明すると、プラズマをとじ込めるた
めの真空容器lにプラズマ電流を検出するためのコイル
2aを有する導体プルーブλを配役、導出し、この導体
プループコに。
Conventionally, there is a device of this type that detects changes in magnetism caused by plasma current in a vacuum container, and this can be explained with reference to Figure 1. A conductor probe λ having a coil 2a for the purpose is cast and derived, and this conductor probe λ is connected to the conductor probe λ.

導体プルーブλで検出した微分信号を積分する積分器3
、さらに、アナログ信号を周波敬変換するとともに電気
信号を光信号に変換する光送信器q。
Integrator 3 that integrates the differential signal detected by the conductor probe λ
, furthermore, an optical transmitter q that converts an analog signal into a frequency converter and converts an electrical signal into an optical signal.

真空容器室とilj制御空間を接続する光フアイバケー
ブルSおよび光信号を電気信号に変換するとともに周波
数を有する信号を直流信号に変換する光受信器6を接続
する。光受信器乙の出力信号は記録計7に入力され、記
録器7による波形観測で真空容器/内のプラズマ電流が
記録される。光送信器光ファイバケーブルS、光受信器
6は、真空容器/から記録器7までの外部サージから影
響を受けないようにした光テレメータ部を構成する。か
かる構成により、真空容器/内のプラズマ電流によって
発生する磁束変化で、真空容器/内に配置さねたコイル
2&に5磁束変化時にのみ起電力が発生する、この電気
信号は、磁束変化時にのみ発生するので、積分器3によ
りアナログ信号として取出される。ところが、真空容器
/から制御室へのケーブル部は、外来サージ、ノイズ信
号が出ており、正確な測定を期するには、光送信器q、
光ファイバケーブルSおよび光受信器6で構成する光−
rレノ−2部が必要となる。
An optical fiber cable S connecting the vacuum container chamber and the ilj control space is connected to an optical receiver 6 that converts optical signals into electrical signals and converts signals having a frequency into DC signals. The output signal of the optical receiver B is input to the recorder 7, and the plasma current inside the vacuum vessel is recorded by waveform observation by the recorder 7. The optical transmitter optical fiber cable S and the optical receiver 6 constitute an optical telemeter section that is not affected by external surges from the vacuum container/to the recorder 7. With this configuration, an electromotive force is generated in the coil 2 arranged in the vacuum vessel only when the magnetic flux changes due to a magnetic flux change generated by the plasma current inside the vacuum vessel.This electric signal is generated only when the magnetic flux changes. Since the signal is generated, the integrator 3 extracts it as an analog signal. However, the cable section from the vacuum vessel/to the control room generates external surges and noise signals, and in order to ensure accurate measurements, it is necessary to use the optical transmitter q,
Optical fiber composed of optical fiber cable S and optical receiver 6
2 parts of rReno are required.

従来の装置4は以上のように構成されていたので。The conventional device 4 was configured as described above.

外来のサージ、ノイズ対策のための光テレメータ部およ
び積分器を真空容器の近傍に配設しなげねばならず、こ
ねに伴って、設置スペース、電源供給、保守の安全性の
ため、計測用の箱を設置する必要が帆っだ。1だ コイ
ルから記録計までに光テレメータ部などの誤差発生機器
が介在しており、測定精度の面でも問題があった。
The optical telemeter unit and integrator must be installed near the vacuum container to prevent external surges and noise. I need to set up a box. 1. There was an error-generating device such as an optical telemeter between the coil and the recorder, which caused problems in terms of measurement accuracy.

この発明は1以上のような従来のものにおける問題を解
消しようとするもので、真空容器内に光フアイバケーブ
ルを挿入し、光ファラデ効果を利用することにより高精
度の光・山気変換によるプラズマ電流計測装置を提供す
ることを目的とするものである。
This invention is an attempt to solve the above problems in the conventional method, and by inserting an optical fiber cable into a vacuum container and utilizing the optical Faraday effect, it is possible to generate plasma by high-precision light-to-air conversion. The object is to provide a current measuring device.

以下、この発明の一実施例を図面について説明する。発
光素子//からの光を一定方向の振動面のみ通す偏光子
/2を備え、偏光子/2を経た光を光フ”rイガケーブ
ル13で真空容器/内へ導く。
An embodiment of the present invention will be described below with reference to the drawings. It is equipped with a polarizer/2 that allows light from the light emitting element// to pass through only the vibration plane in a certain direction, and the light that has passed through the polarizer/2 is guided into the vacuum container// by an optical fiber cable 13.

光フアイバケーブル/3は真空容器l内でコイル状に形
成されており、真空容器/から出て一定方向の振動面の
み光を通す検光子/ダに光結合している8受光素子/S
は検光子/&からの光信号を電気信号に変換して記録計
76に入力する。
The optical fiber cable /3 is formed in a coil shape inside the vacuum vessel /, and the optical fiber cable /3 is optically coupled to the analyzer /S which exits from the vacuum vessel / and passes light only on the vibration plane in a certain direction.
converts the optical signal from the analyzer /& into an electrical signal and inputs it to the recorder 76.

つぎに、第3図を用いて動作を説明する。図において、
偏光子/コから出た光は、光フアイバケーブル/3のコ
イル状部にかかる磁界φにより光   ・ファラデ効果
で振動面が角θだけ変化していることを示している。そ
こで、発光素子//からの光は一種の電磁波であり、振
動面をもっているので。
Next, the operation will be explained using FIG. In the figure,
The light emitted from the polarizer/c shows that the vibration plane changes by an angle θ due to the optical Faraday effect due to the magnetic field φ applied to the coiled part of the optical fiber cable/3. Therefore, the light from the light emitting element // is a type of electromagnetic wave and has a vibration surface.

偏光子lユで一定の角度のみ通過する振動波を光ファイ
バケーブル/3に送出する。光フアイバケーブル/3は
真空容器/内でコイル状になっているので、プラズマ流
による電流が流ねると磁界を発生し、光の振動面の角度
に影響を与える。この角度θは、Hな磁界の強さ、kを
常数として、o”kHで表わさね プラズマの位置によ
り角度θが決まる。このようにして振動面が角度θだけ
chた光信号を検光子lqに入力し、水平成分のみの光
を増り出し、その光減衰した光レベルを受光素子/Sで
検出して記録計76に入力すれば。
A vibration wave that passes only at a certain angle is sent to the optical fiber cable 3 using a polarizer. Since the optical fiber cable /3 is coiled inside the vacuum container /, when a current due to the plasma flow flows, a magnetic field is generated, which affects the angle of the light vibration plane. This angle θ is expressed as o''kH, where the strength of the magnetic field is H, and k is a constant.The angle θ is determined by the position of the plasma.In this way, the optical signal whose vibration surface is at an angle θ is detected by the analyzer lq. , increase the light of only the horizontal component, detect the attenuated light level with the light receiving element/S, and input it to the recorder 76.

当該プラズマ電流を計測することができる。The plasma current can be measured.

なお、手配の実施例では真空容器内のプラズマ電流t流
を検出したのであるが、真空容器内のプラズマ位置の検
出に供することもでき、同様の効果が得らhる。
In the present embodiment, the plasma current t flow inside the vacuum container was detected, but it can also be used to detect the plasma position inside the vacuum container, and the same effect can be obtained.

JU 上Jべたように、この発明は、光ファラデ効果を
利用I7、光フアイバケーブルを直接的に真空8器に結
合したので、従来の積分器、光テレメータ部が不要とな
り、精度が高い土に装置が安価となる効果が、ある。
JU As mentioned above, this invention utilizes the optical Faraday effect and connects the optical fiber cable directly to the vacuum 8 device, eliminating the need for the conventional integrator and optical telemeter section, resulting in high accuracy. This has the effect of making the device cheaper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の概略構成図、第2図はこの発明の
一実施例の概略構成図、第3図は同l二<動作紛明図で
ある。 /・・真空容器 ii・・発光素子、7.2・・偏光子
、/3・・光フアイバケーブル /Q・・検光子、is
・・受光素子、/6・・記録計、なお1図中、同一符号
は同一または相当部分を示す。 代理人  葛  野  信  −
FIG. 1 is a schematic block diagram of a conventional apparatus, FIG. 2 is a schematic block diagram of an embodiment of the present invention, and FIG. 3 is a diagram illustrating the operation of the same. /...Vacuum container ii...Light emitting element, 7.2...Polarizer, /3...Optical fiber cable /Q...Analyzer, is
. . . Light receiving element, /6 . . Recorder. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 (1)  発光素子と偏光子からなる発光部と、検光子
と受光素子からなる受光部と、プラズマ電流が士 発生する真空容器内を通って前記偏光がと前記検光子を
光結合する光フアイバケーブルと、前記真空界2;内に
あって前記プラズマ電流に伴う磁界のファラデ効果によ
って通過光が偏光される前記光フアイバケーブルのコイ
ル状部を備えてなることを特徴とするプラズマ電流計測
装置。 (,2)  コイル状部における偏光による光減衰量を
検知してプラズマ電流を計測する特許請求の範囲第1項
記載のプラズマ電流計測装置。 (3)  プラズマ位置を検出する特許請求の範囲第1
項記載のプラズマ電流計測装置。
[Scope of Claims] (1) A light-emitting section consisting of a light-emitting element and a polarizer, a light-receiving section consisting of an analyzer and a light-receiving element, and the polarized light passing through a vacuum container in which a plasma current is generated and the analyzer. and a coiled portion of the optical fiber cable, which is located within the vacuum field 2 and whose passing light is polarized by the Faraday effect of the magnetic field accompanying the plasma current. Plasma current measuring device. (, 2) The plasma current measuring device according to claim 1, which measures the plasma current by detecting the amount of optical attenuation due to polarization in the coiled portion. (3) Claim 1 for detecting plasma position
Plasma current measuring device as described in section.
JP57077109A 1982-05-06 1982-05-06 Measuring device of plasma current Pending JPS58191980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077109A JPS58191980A (en) 1982-05-06 1982-05-06 Measuring device of plasma current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077109A JPS58191980A (en) 1982-05-06 1982-05-06 Measuring device of plasma current

Publications (1)

Publication Number Publication Date
JPS58191980A true JPS58191980A (en) 1983-11-09

Family

ID=13624610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077109A Pending JPS58191980A (en) 1982-05-06 1982-05-06 Measuring device of plasma current

Country Status (1)

Country Link
JP (1) JPS58191980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850431B2 (en) 2016-12-16 2020-12-01 Shibaura Machine Co., Ltd. Conveyance device and conveyance head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850431B2 (en) 2016-12-16 2020-12-01 Shibaura Machine Co., Ltd. Conveyance device and conveyance head

Similar Documents

Publication Publication Date Title
US4348587A (en) Fiber optic transducer for measuring current or magnetic field
CN105629033B (en) A kind of device and method that conductor current is measured using magneto-optic memory technique
US4956607A (en) Method and apparatus for optically measuring electric current and/or magnetic field
CN111721993A (en) High-sensitivity miniaturized current detection system
CN111721990A (en) Miniaturized optical fiber current sensor and information processing system
CN105866506B (en) A kind of device and method that conductor current is measured using magneto-optic memory technique
JPS6356924B2 (en)
CN111721992B (en) Optical fiber sensing system for measuring current intensity of three-phase high-voltage conductor
JPS58191980A (en) Measuring device of plasma current
CN106093732A (en) Optical fiber direction sensor for high voltage electric equipment Partial Discharge Detection
JP2958796B2 (en) Zero-phase current measurement sensor
JP3166987B2 (en) Current sensor
JPS61270683A (en) Light applied measuring instrument
JPS60203821A (en) Optical fiber vibrator
JPS5938663A (en) Current measurement device using optical fiber
SU995034A1 (en) Device for measuring pulse magnetic field strength
JPS6333646B2 (en)
JPH07306095A (en) Polarization analysis evaluation method of polarization modulated optical signal
JPS58214803A (en) Photo-magnetic probe for measuring plasma position
JPH0743392A (en) Lightning current measuring method
SU1462214A1 (en) Device for checking change of air clearance of synchronous electric machine
SU1007015A1 (en) Flow parameter electromagnetic converter
JPH05142265A (en) Device for measuring current
SU1262392A1 (en) Magnetooptical method for measuring current and device for effecting same
JPH0231171A (en) Photocurrent/magnetic field sensor