JPS58191543A - One-cored bidirectional optical communication system using same wavelength - Google Patents
One-cored bidirectional optical communication system using same wavelengthInfo
- Publication number
- JPS58191543A JPS58191543A JP57073835A JP7383582A JPS58191543A JP S58191543 A JPS58191543 A JP S58191543A JP 57073835 A JP57073835 A JP 57073835A JP 7383582 A JP7383582 A JP 7383582A JP S58191543 A JPS58191543 A JP S58191543A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- fiber
- optical
- section
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2589—Bidirectional transmission
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は同−波長一芯双方向光通信方式に関する。従来
、−芯の光ファイバを用いて双方向通信を行なう場合、
次のような方式の通信システムが用いられている。第1
図に示すのは同−波長一芯双方向光通信方式で、地点A
からBへの光信号λ1AとBからAへの光信号λIBと
に同一波長の光を使用している。光ファイバ1に接続さ
れる双方向性モジュール(入出力装置)2a。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a same-wavelength single-core bidirectional optical communication system. Conventionally, when performing bidirectional communication using a negative-core optical fiber,
The following types of communication systems are used. 1st
The figure shows a same-wavelength single-core bidirectional optical communication system, with point A
Light of the same wavelength is used for the optical signal λ1A from B to A and the optical signal λIB from B to A. A bidirectional module (input/output device) 2a connected to the optical fiber 1.
2bでは、ハーフミラ−やY分岐などのカップラーを用
いて光路を2つ作り、一方の光路からファイバ1に伝送
する光信号を挿入し、他の光路からファイバ1を伝送さ
れて来た光信号を取り出すようになっている。また第2
図に示すのは波長多重双方向光通信方式と称されるもの
で、地点AからBへの光信号λIAとBからAへの光信
号λ2Bとは別々の波長の光が用いられている。In 2b, two optical paths are created using a coupler such as a half mirror or a Y branch, and the optical signal to be transmitted to fiber 1 is inserted from one optical path, and the optical signal transmitted through fiber 1 from the other optical path is inserted. It is designed to be taken out. Also the second
The system shown in the figure is called a wavelength multiplexing bidirectional optical communication system, in which the optical signal λIA from point A to B and the optical signal λ2B from B to A use lights of different wavelengths.
この場合にも光ファイバ3に接続される双方向性モジュ
ール4a、4bにはハーフミラ−やY分岐などが備えら
れる他、他方の地点から伝送されて来た光信号を選択的
に分離して取出す光分波器が必要とされている。In this case as well, the bidirectional modules 4a and 4b connected to the optical fiber 3 are equipped with a half mirror, a Y branch, etc., and selectively separate and extract the optical signal transmitted from the other point. An optical demultiplexer is needed.
これらの通信方式では使用する光の波長が一つか二つか
の違いがあるが、いずれにしろ光信号の挿入および取出
しに別々の光路を必要とするためカップラーや光分波器
が必要とされ、また当然のことながら発光部と受光部と
が別々に設けられている。そのため双方向モジュールの
小型化が困難なばかシでなく高価なものとなる欠点があ
った。These communication systems differ in whether they use one or two wavelengths of light, but in either case, separate optical paths are required for inserting and extracting optical signals, so couplers and optical demultiplexers are required. Further, as a matter of course, the light emitting section and the light receiving section are provided separately. Therefore, the bidirectional module has the drawback that it is difficult to miniaturize it, and it becomes expensive.
本発明はかかる従来の難点に鑑みなされたもので、その
特徴とするところは小さな円形の発光部の周囲に同心円
状に受光部を形成して、受光部、発光部を一体化した点
にある。The present invention has been made in view of such conventional difficulties, and its feature is that the light receiving part is formed concentrically around a small circular light emitting part, and the light receiving part and the light emitting part are integrated. .
以下図面に基づき本発明を実施例につき詳細に説明する
。The present invention will be described in detail below with reference to the drawings.
方式
本発明の同−波長一芯双方向光通瀦ri急=テッ5は、
第3図に示すように通信地点A、Bf:連絡する一芯の
光ファイバ1oと該ファイバの端末に配設される双方向
性モジュール11a 、 iib 、!:で構成されて
いる。The method of the present invention for bidirectional optical communication with the same wavelength and one core is as follows:
As shown in FIG. 3, communication points A, Bf: a single optical fiber 1o for communication and bidirectional modules 11a, iib, ! installed at the terminals of the fiber. : Consists of.
双方向性モジュールiia 、 llbは、第5図に示
すように電気信号を光信号に変換してファイバ10に挿
入する発光部12と、ファイバ1゜から出射される光信
号を電気信号に変換して取出す受光部13とが絶縁用の
空域14介して同心円状に形成された受発光部基板15
を備えている。As shown in FIG. 5, the bidirectional modules IIA and ILB include a light emitting unit 12 that converts an electrical signal into an optical signal and inserts it into the fiber 10, and a light emitting unit 12 that converts an optical signal emitted from the fiber 1° into an electrical signal. A light receiving/emitting part substrate 15 is formed concentrically with a light receiving part 13 to be taken out through an insulating air space 14.
It is equipped with
基板150発光部12はLED(発光ダイオード)或い
はLD (レーザダイオード)から成り、また受光部1
3はPIN−PD(PINホトダイオ−ド)或いはAP
D(アバランシェホトダイオード)から成り、例えば第
6図のように一体化した構造をしている。ここで21は
N型のシリコン基板で、この上に形成されたP層が受光
部13となシ、また中央の金蒸着層22を介して形成さ
れたGaAtAs層23を含む層が発光部12となって
いる。The light emitting section 12 of the substrate 150 consists of an LED (light emitting diode) or an LD (laser diode), and the light receiving section 1
3 is PIN-PD (PIN photodiode) or AP
D (avalanche photodiode), and has an integrated structure as shown in FIG. 6, for example. Here, reference numeral 21 denotes an N-type silicon substrate, the P layer formed thereon serves as the light-receiving section 13, and the layer including the GaAtAs layer 23 formed through the gold vapor deposited layer 22 in the center serves as the light-emitting section 13. It becomes.
また受発光部基板15には発光部12および受光部13
の駆動回路など必要な電子回路18が形成されており、
該回路18を介して電気信号eA(eB)が発光部12
に供給され、受光部13から電気信号eB(eA)
が取出される。この電子回路16はハイブリッドIC化
して発光部12゜受光部13と一体形成することができ
る。Further, the light emitting/receiving portion substrate 15 includes a light emitting portion 12 and a light receiving portion 13.
A necessary electronic circuit 18 such as a drive circuit is formed,
The electric signal eA (eB) is transmitted to the light emitting unit 12 via the circuit 18.
The electric signal eB (eA) is supplied from the light receiving section 13 to
is taken out. This electronic circuit 16 can be formed into a hybrid IC and integrally formed with the light emitting section 12 and the light receiving section 13.
この発光部12は第4図に示すように、ファイバ10の
コア10aの径aよりも充分に小さい円形に形成される
。また受光部13は発光部12の周囲に空域14を残し
てコア外径aのほぼ2倍の外径Bを有する環状に形成さ
れる。発光部12と受光部13とは空域14によって絶
縁されている。そしてこれら発光部および受光部はファ
イバ10の開口数NAをXとしたとき、ファイバ10の
光軸16に垂直に切出された端面17からD = a/
2Xであられされる距離りのところに、光軸16の延長
上に発光部12の中心が位置するように平行配置される
。As shown in FIG. 4, this light emitting portion 12 is formed into a circular shape that is sufficiently smaller than the diameter a of the core 10a of the fiber 10. Further, the light receiving section 13 is formed into an annular shape having an outer diameter B that is approximately twice the core outer diameter a, leaving an air space 14 around the light emitting section 12. The light emitting section 12 and the light receiving section 13 are insulated by an air space 14. When the numerical aperture NA of the fiber 10 is set to
The light emitting parts 12 are arranged in parallel so that the center of the light emitting part 12 is located on an extension of the optical axis 16 at a distance of 2X.
ここで発光部12の中心から出てファイバ端面17のコ
ア面17aの端部に入射する光λがフとなる。この開口
数Xは、例えば石英ガラスの光ファイバで0.2.多成
分系ガラスの光ファイバで0.3というように小さいの
で、式■からとなる。従ってD = a/2Xの距離に
配置されたコア径aよりも充分に小さい円形の発光部1
2から出る光のうち、ファイバ端面17のコア面17a
に入射する光は全て結合されてコア10aを伝搬する。Here, the light λ that comes out from the center of the light emitting section 12 and enters the end of the core surface 17a of the fiber end face 17 becomes F. This numerical aperture X is, for example, 0.2 for a silica glass optical fiber. Since the value is as small as 0.3 for an optical fiber made of multi-component glass, the equation (2) is obtained. Therefore, the circular light emitting part 1 that is sufficiently smaller than the core diameter a is arranged at a distance of D = a/2X.
Of the light emitted from 2, the core surface 17a of the fiber end surface 17
All the light incident on the core 10a is combined and propagated through the core 10a.
一方、コア面17aの踊部から出射される光をλ′とす
ると、これはコア面の法線に対してθmaxで出射され
るから1
、’、 B = 2a ・・・・
・・・・・・・・・・・■となる。従ってファイバ10
を伝搬して来た光は、Dの距離に配置されたコア4径a
の2倍の外径を■する環状の受光部13によりほぼ完全
に受光されて取出される。On the other hand, if the light emitted from the dance part of the core surface 17a is λ', it is emitted at θmax with respect to the normal to the core surface, so 1,', B = 2a...
・・・・・・・・・・・・■. Therefore fiber 10
The light that has propagated through the core 4, which is located at a distance of D, has a diameter of a.
The light is almost completely received and extracted by the annular light-receiving section 13, which has an outer diameter twice as large as the outside diameter.
このようにファイバ端面17からD = a/2Xの距
離のところにコア径aよりも充分に小さい円形の発光部
12と外径が2aの環状受光部13とを同心円状に配置
することにより、光信号のファイバへの入出力を高い効
率で行なえ、また発光部と受光部とで別々になった双方
向モジュールを一体化することができるようになる。In this way, by arranging the circular light emitting part 12, which is sufficiently smaller than the core diameter a, and the annular light receiving part 13, which has an outer diameter of 2a, concentrically at a distance of D = a/2X from the fiber end face 17, It becomes possible to input and output optical signals to and from a fiber with high efficiency, and to integrate separate bidirectional modules with a light emitting section and a light receiving section.
第5図は双方向性モジュール11a (Ilb)を示し
たもので、受発光部基板15を収納した筐体のレセプタ
クル18を通してファイバ10の端部を発光部12およ
び受光部13に対置させ、ファイバ10に取付けられた
プラグ19をレセプタクル18の外周に螺合してファイ
バ10をモジュール11a(11b)に装着している。FIG. 5 shows the bidirectional module 11a (Ilb), in which the end of the fiber 10 is placed opposite the light emitting part 12 and the light receiving part 13 through the receptacle 18 of the casing housing the light emitting/receiving part board 15, and the fiber is A plug 19 attached to the fiber 10 is screwed onto the outer periphery of the receptacle 18, and the fiber 10 is attached to the module 11a (11b).
ファイバ端部と発光部12.受光部13とはエポキシ等
の透明樹脂20で直接結合する。Fiber end and light emitting section 12. It is directly connected to the light receiving section 13 using a transparent resin 20 such as epoxy.
双方向モジュールをこのような構造にすることにより、
ファイバ10の端部に取付けてファイバ端部17と基板
150発光部12および受光部13とを容易に所定の関
係に配置できる。By structuring the bidirectional module like this,
By attaching it to the end of the fiber 10, the fiber end 17, the substrate 150, the light emitting section 12, and the light receiving section 13 can be easily arranged in a predetermined relationship.
以上説明したように本発明では、光ファイバのコア径に
対して充分小さな円形に発光部を形成し、この発光部の
周囲に同心円状に所定の外径を有する受光部を形成して
受光部2発光部を一体化すると共にこれをファイバ端面
に対し一定の位置関係で配置して光信号の送受信をさせ
るようにしたので、光カップラを要することなく結合効
率の良い同−波長双方同通信が行なえる。また双方向性
モジューイレを1セツトで実現できるため、小型、軽量
、低コストに々りまた、光コイ・フタも簡略化できる。As explained above, in the present invention, a light emitting part is formed in a circular shape sufficiently small with respect to the core diameter of the optical fiber, and a light receiving part having a predetermined outer diameter is formed concentrically around this light emitting part. By integrating the two light-emitting parts and placing them in a fixed positional relationship with respect to the fiber end face, we are able to transmit and receive optical signals, making it possible to simultaneously communicate with both the same wavelength and the same wavelength with good coupling efficiency without the need for an optical coupler. I can do it. Furthermore, since a bidirectional module can be realized in one set, it is small, lightweight, and low cost, and the optical coil/lid can also be simplified.
第1〜2図は従来の一芯双方向光通信方式を説明するだ
めの説明図、第3図は本発明の同−波長一芯双方向光通
信方式を説明するだめの説明図、第4図(a) 、 (
b)はそれぞれ本発明で用いられる光フアイバ端部と受
発光部基板との位置関係を示す斜視図および断面図、第
5図は双方向性モジュールに光ファイバを接続するとこ
ろを示す説明図、第6図は受発光部を示す断面図である
。
io・=光ファイバ、10a・・・コア、113 、1
1b・・双方向性モジュール、12・・・発光部、13
・・・受光部、14・・・絶縁用空域、15・・・受発
光部基板、16・・・光軸、17・・・光ファイバ端部
、17a・・・光フアイバ端面のコア面、a・・コア径
、X・・・開口数、B・・・受光部の外径、D・・・光
フアイバ端部と受光部2発光部の距離、θmax ・
・・光ファイバの最大受光角度。
代理人 弁理士 守 谷 −雄1 and 2 are explanatory diagrams for explaining the conventional single-core bidirectional optical communication system, FIG. 3 is an explanatory diagram for explaining the same-wavelength single-core bidirectional optical communication system of the present invention, and FIG. Figure (a), (
b) is a perspective view and a sectional view showing the positional relationship between the end of the optical fiber and the light receiving/emitting unit substrate used in the present invention, and FIG. 5 is an explanatory view showing how the optical fiber is connected to the bidirectional module; FIG. 6 is a sectional view showing the light receiving and emitting section. io・=optical fiber, 10a...core, 113, 1
1b...Bidirectional module, 12...Light emitting part, 13
. . . Light receiving portion, 14 . a...Core diameter,
...Maximum acceptance angle of optical fiber. Agent Patent Attorney Moritani -O
Claims (1)
の信号の送受を同一波長の光信号で行なわせる同−波長
一芯双方向光通信方式において、前記光ファイバはコア
vkm、開ロ数Xの光ファイバから成ると共にその両端
の肩面は光軸に対して垂直に露出され、ま九#ファイバ
の両端に配設される双方向性モジュールにはコア径aよ
シ充分に小さい径の円形の発光部および該発光部の周囲
に絶縁の丸めの空域を残して形成された外径がコア径a
のほぼ2倍の環状の受光部とが備えられ、かつこれら発
光部および受光部は前記光ファイバの端面に対してはは
a/2Xなる距離に中心を一致させて平行配置されてい
ることを特徴とする同−波長一芯双方向光通信方式。In a same-wavelength single-core bidirectional optical communication system in which two communication points are connected by an optical fiber and signals are sent and received between the points using optical signals of the same wavelength, the optical fiber has a core Vkm, an open wavelength Consisting of several X optical fibers, the shoulder surfaces at both ends are exposed perpendicular to the optical axis, and the bidirectional module installed at both ends of the X fibers has a diameter sufficiently smaller than the core diameter a. The outer diameter of the circular light emitting part and the outer diameter of the circular light emitting part leaving an insulating round air space around the light emitting part is the core diameter a.
The light emitting part and the light receiving part are arranged parallel to each other with their centers aligned at a distance of a/2X with respect to the end surface of the optical fiber. Features a same-wavelength, single-core bidirectional optical communication system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57073835A JPS58191543A (en) | 1982-04-30 | 1982-04-30 | One-cored bidirectional optical communication system using same wavelength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57073835A JPS58191543A (en) | 1982-04-30 | 1982-04-30 | One-cored bidirectional optical communication system using same wavelength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58191543A true JPS58191543A (en) | 1983-11-08 |
Family
ID=13529590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57073835A Pending JPS58191543A (en) | 1982-04-30 | 1982-04-30 | One-cored bidirectional optical communication system using same wavelength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58191543A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6157760A (en) * | 1998-03-26 | 2000-12-05 | Sharp Kabushiki Kaisha | Two-way optical communication device and two-way optical communication apparatus |
US7386213B2 (en) | 2004-10-29 | 2008-06-10 | Fuji Xerox Co., Ltd. | Bidirectional communication optical waveguide and manufacturing method thereof |
-
1982
- 1982-04-30 JP JP57073835A patent/JPS58191543A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6157760A (en) * | 1998-03-26 | 2000-12-05 | Sharp Kabushiki Kaisha | Two-way optical communication device and two-way optical communication apparatus |
US7386213B2 (en) | 2004-10-29 | 2008-06-10 | Fuji Xerox Co., Ltd. | Bidirectional communication optical waveguide and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10454586B2 (en) | Integrated transceiver with lightpipe coupler | |
JP3937911B2 (en) | Optical transceiver module and optical communication system using the same | |
US4904036A (en) | Subassemblies for optoelectronic hybrid integrated circuits | |
US5625733A (en) | Arrangement for interconnecting an optical fiber to an optical component | |
US6236669B1 (en) | LD/PD module and LED/PD module | |
JPH07104146A (en) | Production of optical parts | |
WO2004074896A1 (en) | Optical module | |
CN103278894A (en) | Coupling assembly, optical fiber array module using coupling assembly and optical transceiver engine module using coupling assembly | |
US20030223701A1 (en) | Ferrule part and optical communications module | |
US6786651B2 (en) | Optical interconnect structure, system and transceiver including the structure, and method of forming the same | |
JP2003156665A (en) | Optical transmission / reception module and optical transmission / reception device using the same | |
JP2004191396A (en) | Optical transmitter-receiver | |
JP3890999B2 (en) | Optical transmission module | |
JP2004085756A (en) | Optical transceiver module | |
US20250219350A1 (en) | Optical system-in-package, and optical module and optical transceiver using same | |
JPS58191543A (en) | One-cored bidirectional optical communication system using same wavelength | |
JP2006010891A (en) | Optical coupling device and mounting structure thereof | |
JPS619610A (en) | Module for bidirectional optical communication | |
JP3941531B2 (en) | Optical receiver module | |
US6894770B2 (en) | Inspection apparatus for optical transmission device | |
CN1598633B (en) | Alignment post for optical subassemblies | |
KR20030094466A (en) | Optical Module with Multiport | |
JP2003185888A (en) | Optical communication module | |
JP2001154048A (en) | Bidirectional optical module | |
CA1309157C (en) | Subassemblies for optoelectronic hybrid integrated circuits |