JPS58190058A - Method for manufacturing thin film field effect transistors - Google Patents
Method for manufacturing thin film field effect transistorsInfo
- Publication number
- JPS58190058A JPS58190058A JP57072419A JP7241982A JPS58190058A JP S58190058 A JPS58190058 A JP S58190058A JP 57072419 A JP57072419 A JP 57072419A JP 7241982 A JP7241982 A JP 7241982A JP S58190058 A JPS58190058 A JP S58190058A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electrode
- source
- field effect
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000010409 thin film Substances 0.000 title claims description 14
- 230000005669 field effect Effects 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000004065 semiconductor Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 6
- 239000010408 film Substances 0.000 claims description 53
- 239000004020 conductor Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 230000007261 regionalization Effects 0.000 abstract 1
- 230000003071 parasitic effect Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101100366935 Caenorhabditis elegans sto-2 gene Proteins 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- -1 S I z C1~X Chemical class 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、アモルファシリコン等の半導体膜を用いた薄
膜電界効果トランジスタの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a thin film field effect transistor using a semiconductor film such as amorphous silicon.
が注目されている。特に、上記半導体薄膜が低温で形成
できるため、薄膜半導体装置を構成するだめの基板が特
に限定されず、又、従来の露光技術、エツチング技術等
のパターン形成法もそのまま使用でき大面積基板への集
積化も可能であるなどの利点を有するため、目的に応じ
て、多種多様の構造の半導体装置が実現できる。これら
の半導体薄膜を用いた半導体装置の機能全十分に発揮す
るために、同一基板内にスイッチング素子や能動回路素
子としてTF’Tを設けることが多い。これにより、半
導体薄膜を用いた半導体装置の機能的な集積化も可能と
なり、その応用は極めて広くなる。is attracting attention. In particular, since the semiconductor thin film described above can be formed at low temperatures, there are no particular restrictions on the substrate that constitutes the thin film semiconductor device, and conventional pattern forming methods such as exposure technology and etching technology can be used as is, making it possible to form large-area substrates. Since it has advantages such as being able to be integrated, semiconductor devices with a wide variety of structures can be realized depending on the purpose. In order to fully utilize the functions of semiconductor devices using these semiconductor thin films, TF'Ts are often provided as switching elements or active circuit elements within the same substrate. This makes it possible to functionally integrate semiconductor devices using semiconductor thin films, and its applications become extremely wide-ranging.
第1図〜第3図は従来のTPTの基本構造を概略的に示
す図である。これらの図において、1は絶縁性基板、2
はa−81または多結晶シリコy (Po1y −St
)等の半導体膜、3はデート絶縁膜、4はr−ト電極
、5,6はそれぞれソース・ドレイン電極であり、7.
8は良好なオーミックコンタクトを得るための不純物ド
ープ半導体膜である。第1図および第2図のものけ半導
体膜2の同じ面側にr−)電極とソース電極5およびド
レイン電極6が設けられ、第3図のものは半導体薄膜2
の下面側にデート電極4、上面側にソース電極5および
ドレイン電極6が設けられている。これらのTPTは単
結晶シリコンを用いたいわゆるMOS FETと類似の
電気的特性を示すが、MOS FgTとの動作原理の根
本的な違いは、トランジスタのチャンネルのしゃ新条件
が、MOS FETではPN接合の逆方向特性を利用す
るのに対し、TPTでは半導体薄膜2の高抵抗を利用す
る点である。チャンネルの導通状態は共に、電界効果に
よる半導体表面の反転あるいはキャリア蓄積を利用する
。従って、これらのTPTを構成するためには、半導体
薄膜2の非導通状態での抵抗がチャンネル形成時の抵抗
に比べ十分高いことが必要である。なお、基板1が導電
性材料を出発基板とするときは、その表面に絶縁膜を設
けて絶縁性基板として用いる。1 to 3 are diagrams schematically showing the basic structure of a conventional TPT. In these figures, 1 is an insulating substrate, 2
is a-81 or polycrystalline silicon y (Poly-St
), 3 is a date insulating film, 4 is an r-to electrode, 5 and 6 are source and drain electrodes, and 7.
8 is an impurity-doped semiconductor film for obtaining good ohmic contact. An r-) electrode, a source electrode 5, and a drain electrode 6 are provided on the same side of the mononoke semiconductor film 2 in FIGS. 1 and 2, and the semiconductor thin film 2 in FIG.
A date electrode 4 is provided on the lower surface side, and a source electrode 5 and a drain electrode 6 are provided on the upper surface side. These TPTs exhibit electrical characteristics similar to so-called MOS FETs using single-crystal silicon, but the fundamental difference in operating principle from MOS FgTs is that the transistor channel renewal conditions are different from the PN junction in MOS FETs. In contrast, TPT utilizes the high resistance of the semiconductor thin film 2. Both channel conduction states utilize inversion or carrier accumulation on the semiconductor surface due to field effects. Therefore, in order to construct these TPTs, it is necessary that the resistance of the semiconductor thin film 2 in the non-conducting state be sufficiently higher than the resistance when the channel is formed. Note that when the substrate 1 is made of a conductive material as a starting substrate, an insulating film is provided on its surface and used as an insulating substrate.
さて、これらのTFTはa −St又はPo1y −S
t等の半導体膜を用いるため単結晶半導体に比べ、キャ
リヤとなる電子や正孔の移動度が低くなる。Now, these TFTs are a-St or Poly-S
Since a semiconductor film such as T is used, the mobility of electrons and holes serving as carriers is lower than that of a single crystal semiconductor.
特にa −81ではその低下が顕著である。このため、
結晶牛導体材料を用いたMOS FETに比べ、TPT
の動作周波数の限界はかなり低くなってしまう。また、
このようなTPTを基板上に複数個集積化した場合には
、その動作速度は、上記動作周波数の限界よりも一般に
かなり遅くなる。In particular, the decrease is remarkable for a-81. For this reason,
Compared to MOS FET using crystal conductor material, TPT
The operating frequency limit is quite low. Also,
When a plurality of such TPTs are integrated on a substrate, the operating speed thereof is generally much slower than the above-mentioned operating frequency limit.
これは、主に配線やトランジスタ構造に基づく寄生容量
のだめの時間遅れが原因となる。TPTでは、絶縁体の
基板を使用できるため、配線と基板間の寄生容量をさけ
ることは容易であるが、第1図〜第3図に示す従来の構
造では、ソース・ケ゛−ト間あるいはドレイン・ダート
間の電極の重なりによる寄生容量の影響が大きい。一般
に、寄生容量ヲ有するTF’T i含む回路の動作速度
を上げるためには、TPTのON状態における抵抗を下
げればよいが、このためにはTPTの電流路の幅(チャ
ンネル幅)を大きくする必要がある。This is mainly caused by a time delay due to parasitic capacitance based on wiring and transistor structure. In TPT, an insulating substrate can be used, so it is easy to avoid parasitic capacitance between the wiring and the substrate. However, in the conventional structure shown in Figs.・The influence of parasitic capacitance due to the overlap of electrodes between darts is large. Generally, in order to increase the operating speed of a circuit including a TF'Ti that has parasitic capacitance, it is sufficient to lower the resistance in the ON state of the TPT, but to do this, the width of the current path (channel width) of the TPT must be increased. There is a need.
この場合従来構造のTPTでは、寄生容量もチャンネル
幅に比例して増えるため、本質的な動作速度の向上とは
ならない。In this case, in the conventional TPT structure, the parasitic capacitance also increases in proportion to the channel width, so that the operating speed is not essentially improved.
本発明は上記の点に鑑み、ケ“−ト電極とソース・ドレ
インとを自己整合させてTPT回路の動作速度の向上を
図り、素子の微細化と高集積化を可能とするTPTの製
造方法を提供するものである。In view of the above points, the present invention aims to improve the operating speed of the TPT circuit by self-aligning the gate electrode and the source/drain, and provides a TPT manufacturing method that enables miniaturization and high integration of the device. It provides:
5−
〔発明の概要〕
本発明においては、まず絶縁性基板上に半導体膜を堆積
し、その表面を絶縁膜でおおってその上にケ゛−ト電極
を形成する。そしてこのダート電極をマスクとして前記
絶縁膜をエツチングしてソースおよびドレイン領域の半
導体膜表面を露出させる。この後、r−ト電極のエツジ
で段切れが生ずるような厚さの導体膜を被着してケ゛−
ト電極に自己整合されたソースおよびドレインのコンタ
クト電極を形成する。なお、ソースおよびドレインのコ
ンタクト電極は必要な領域にのみ残すべくパターニング
する。この・平ターニングはソースおよびドレインの取
出し電極を配設した後に、またはその前に行うことがで
きる。5- [Summary of the Invention] In the present invention, a semiconductor film is first deposited on an insulating substrate, its surface is covered with an insulating film, and a gate electrode is formed thereon. Using this dirt electrode as a mask, the insulating film is etched to expose the surface of the semiconductor film in the source and drain regions. After this, a conductive film is applied to the case so that a break occurs at the edge of the r-toe electrode.
Form source and drain contact electrodes that are self-aligned with the gate electrode. Note that the source and drain contact electrodes are patterned so as to remain only in necessary regions. This flat turning can be performed after or before providing the source and drain extraction electrodes.
〔発明の効果〕
従って、本発明によれば、デートに自己整合されたソー
ス・ドレインが形成できるために、ダート電極とソース
・ドレイン電極の間の寄生容量が小さく、高速動作が可
能となるだけでな6一
く、TPT回路の微細化・高集積化を図ることができる
。[Effects of the Invention] Therefore, according to the present invention, since a source/drain that is self-aligned to the date can be formed, the parasitic capacitance between the dirt electrode and the source/drain electrode is small, and high-speed operation is possible. Moreover, the TPT circuit can be miniaturized and highly integrated.
以下、本発明の実施例を、第4図(a)〜(、)を用い
て説明する。まずガラス基板1ノ上に厚さ1500Xの
アンド−プロ−3i膜12を5IH4のグロー放電によ
り堆積し、この上にプラズマCVr)よりケ“−ト絶縁
膜となる厚さ3000Xの酸化シリコン膜13を堆積し
、次に100QXのCr / Au膜を蒸着した後に・
!ターン形成してケ゛−ト電極I4を形成する(a)。Examples of the present invention will be described below with reference to FIGS. 4(a) to 4(,). First, an AND-PRO-3i film 12 with a thickness of 1500X is deposited on a glass substrate 1 by glow discharge of 5IH4, and then a silicon oxide film 13 with a thickness of 3000X, which will become a keto insulating film, is deposited on this by plasma CVr). After depositing Cr/Au film of 100QX,
! Turns are formed to form the gate electrode I4 (a).
次に、このダート電極14を含む領域に開口をもつレノ
ストパターンを形成してフッ化アンモニウムにより酸化
シリコン膜13をエツチング除去しソース・ドレイン領
域のa −St膜12を露出させる(b)。この際、C
c/Au膜はフッ化アンモニウムに対して侵されにくい
のでこの下の酸化シリコン膜は残る。次に、Pドープa
−Sl膜を1000Xの厚さに堆積し、ダート電極1
4のエツジでの段切れを利用してデート電極14に自己
整合されたソースおよびドレインのコンタクト電極1s
I 、152に形成しくc)、不要な部分のPドープa
−81膜をエツチング除去する(d)。最後にMo /
At膜を50膜02蒸着しこれ全ハターン形成してソ
ース・1”レインおよびダートの各取出し電極16.〜
163を形成する(、)。Next, a Lennost pattern having an opening is formed in the region including the dirt electrode 14, and the silicon oxide film 13 is removed by etching with ammonium fluoride to expose the a-St film 12 in the source/drain region (b). At this time, C
Since the c/Au film is not easily attacked by ammonium fluoride, the underlying silicon oxide film remains. Next, P-doped a
- Deposit the Sl film to a thickness of 1000X and use the dirt electrode 1
The source and drain contact electrodes 1s are self-aligned to the date electrode 14 using the step break at the edge of 4.
I, 152 c), P doping in unnecessary parts a
-81 film is removed by etching (d). Finally Mo/
Deposit 50 At films and form a pattern on all of them to form source, 1" rain and dirt extraction electrodes 16.
Form 163 (,).
本実施例によればソース・ドレイン電極とケ9−ト電極
間の重なυを零とすることができるため、これら電極間
の寄生容量を最少にし、TPT回路の動作速度を著しく
向上することができる。According to this embodiment, since the overlap υ between the source/drain electrode and the gate electrode can be made zero, the parasitic capacitance between these electrodes can be minimized and the operating speed of the TPT circuit can be significantly improved. I can do it.
また、ソース・ドレインのコンタクト電極は不純物添加
a −81膜の段切れにより容易にダート電極に自己整
合させることができ、従ってTPT回路の素子の微細化
、高集積化を図ることができる。In addition, the source/drain contact electrodes can be easily self-aligned with the dirt electrodes by cutting the impurity-doped a-81 film, thereby making it possible to miniaturize and highly integrate the elements of the TPT circuit.
なお、本発明は上記実施例に限定されない。Note that the present invention is not limited to the above embodiments.
例えば、a−81膜12に代って、Go+GexS11
−X。For example, instead of the a-81 film 12, Go+GexS11
-X.
S I z C1〜X等の化合物であってもよく、更に
、高い比抵抗を有するCd8 、 Cd’s 、 Zn
S 、 Zn5e等の半導体膜や、Poty −St等
の多結晶膜でろってもよい。又、これらの半導体膜の形
成法は、ス・母ツタ、蒸着、熱分解法などいかなる方法
でもよい。又y−ト電極は導電材料でsす、かつゲート
絶縁膜を除去する際にマスクとして利用できるものであ
れば何でも良い。r−ト絶縁膜もS to2に限らず8
13N4等でも良い。It may be a compound such as S I z C1~X, and furthermore, Cd8, Cd's, Zn having a high specific resistance.
A semiconductor film such as S, Zn5e, etc., or a polycrystalline film such as Poty-St may be used. Further, the method for forming these semiconductor films may be any method such as suction, vapor deposition, or thermal decomposition. Further, the Y-to-electrode may be made of any conductive material as long as it can be used as a mask when removing the gate insulating film. The r-to insulating film is not limited to Sto2, but also 8
13N4 etc. may also be used.
不純物ドープ龜−・81膜の、fターニングはソース・
ドレインおよびケ0−トの取出し電極配線の前に限らず
、後に行なっても良い。またソースおよびドレインのコ
ンタクト電極材料として、不純物ドープミー81膜の他
、金属膜など他の導体膜を用いることができる。更に、
素子を形成する* −81膜には堆積後、素子領域にの
み残すように・母ターニングしてもよく、その場合には
最終構造は第4図(e)に対して第5図のようになる。The f-turning of the impurity-doped film 81 is caused by the source
It may be performed not only before but also after the drain and gate lead electrode wiring. In addition to the impurity-doped Me-81 film, other conductive films such as metal films can be used as the source and drain contact electrode materials. Furthermore,
After deposition, the *-81 film that forms the device may be turned so that it remains only in the device region. In that case, the final structure will be as shown in FIG. 5 compared to FIG. 4(e). Become.
第1図〜第3図は従来構造のTPTの断面図、第4図(
a)〜(a)は本発明の一実施例のTPTの製造工程を
示す断面図、第5図は他の実施例による9−
TPTの断面図である。
11・・ガラス、12・・・アンドープa −Si膜、
、13・・酸化シリコン膜(絶縁膜)、14・・・デー
ト電極(Cr/Au膜)、151.152−=ソース・
ドレインコンタクト電極(Pドーf a −Si膜)、
lJ、16B ・・取出し電極(Mo / At膜)。
出願人代理人 弁理士 鈴 江 武 彦10−
第4図
If2震
If!31i’F
(C)Figures 1 to 3 are cross-sectional views of TPT with conventional structure, and Figure 4 (
a) to (a) are cross-sectional views showing the manufacturing process of a TPT according to one embodiment of the present invention, and FIG. 5 is a cross-sectional view of a 9-TPT according to another embodiment. 11...Glass, 12...Undoped a-Si film,
, 13...Silicon oxide film (insulating film), 14...Date electrode (Cr/Au film), 151.152-=source.
Drain contact electrode (P-dofa-Si film),
lJ, 16B... Extraction electrode (Mo/At film). Applicant's agent Patent attorney Takehiko Suzue 10- Figure 4 If 2 earthquake If! 31i'F (C)
Claims (4)
半導体膜の表面を絶縁膜でおおってその上にy−上電極
を形成する工程と、このy −上電極をマスクとして前
記絶縁膜をエツチングしてソースおよびドレイン領域の
半導体膜表面を露出させる工程と、この後前記r−ト電
極のエツジで段切れを生じる厚さに導体膜を被着してソ
ースおよびドレインのコンタクト電極を形成する工程と
を備えたことを特徴とする薄膜電界効果トランジスタの
製造方法。(1) A process of depositing a semiconductor film on an insulating substrate, a process of covering the surface of this semiconductor film with an insulating film and forming a y-upper electrode thereon, and using this y-upper electrode as a mask to insulate the semiconductor film. A step of etching the film to expose the surface of the semiconductor film in the source and drain regions, and then depositing a conductive film to a thickness that creates a break at the edge of the r-to-electrode to form the source and drain contact electrodes. 1. A method of manufacturing a thin film field effect transistor, comprising a step of forming a thin film field effect transistor.
である特許請求の範囲第1項記載の薄膜電界効果トラン
ジスタの製造方法。(2) The method for manufacturing a thin film field effect transistor according to claim 1, wherein the semiconductor film is amorphous silicon or polycrystalline silicon.
膜である特許請求の範囲第1項記載の薄膜電界効果トラ
ンジスタの製造方法。(3) The method for manufacturing a thin film field effect transistor according to claim 1, wherein the conductor film is a semiconductor film or a metal film doped with impurities.
特許請求の範囲第1項記載の薄膜電界効果トランジスタ
の製造方法。(4) The method for manufacturing a thin film field effect transistor according to claim 1, wherein the thickness of the conductive film is 1/2 or less of that of the insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57072419A JPS58190058A (en) | 1982-04-28 | 1982-04-28 | Method for manufacturing thin film field effect transistors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57072419A JPS58190058A (en) | 1982-04-28 | 1982-04-28 | Method for manufacturing thin film field effect transistors |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58190058A true JPS58190058A (en) | 1983-11-05 |
Family
ID=13488740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57072419A Pending JPS58190058A (en) | 1982-04-28 | 1982-04-28 | Method for manufacturing thin film field effect transistors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58190058A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61136272A (en) * | 1984-12-07 | 1986-06-24 | Matsushita Electric Ind Co Ltd | Manufacturing method of thin film transistor |
JPH01231375A (en) * | 1988-03-11 | 1989-09-14 | Casio Comput Co Ltd | thin film transistor |
US4885258A (en) * | 1985-12-26 | 1989-12-05 | Canon Kabushiki Kaisha | Method for making a thin film transistor using a concentric inlet feeding system |
-
1982
- 1982-04-28 JP JP57072419A patent/JPS58190058A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61136272A (en) * | 1984-12-07 | 1986-06-24 | Matsushita Electric Ind Co Ltd | Manufacturing method of thin film transistor |
US4885258A (en) * | 1985-12-26 | 1989-12-05 | Canon Kabushiki Kaisha | Method for making a thin film transistor using a concentric inlet feeding system |
JPH01231375A (en) * | 1988-03-11 | 1989-09-14 | Casio Comput Co Ltd | thin film transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4942441A (en) | Thin film semiconductor device and method of manufacturing the same | |
US5053347A (en) | Amorphous silicon thin film transistor with a depletion gate | |
US4997779A (en) | Method of making asymmetrical gate field effect transistor | |
US3996656A (en) | Normally off Schottky barrier field effect transistor and method of fabrication | |
JPS6313379A (en) | Semiconductor device and manufacture thereof | |
US5422287A (en) | Thin film transistor and process for producing the same | |
KR100272272B1 (en) | Thin film transistor and method of manufacturing same | |
JPH059941B2 (en) | ||
JPH0546106B2 (en) | ||
JPS58190058A (en) | Method for manufacturing thin film field effect transistors | |
JP3420301B2 (en) | Method for manufacturing thin film transistor | |
JPH0322064B2 (en) | ||
JPS5833872A (en) | Manufacture of thin film field effect transistor | |
JPH04240733A (en) | Manufacturing method of thin film transistor | |
JP2645663B2 (en) | Thin film semiconductor device and method of manufacturing the same | |
JPS5818966A (en) | Method for manufacturing thin film field effect transistors | |
JPS61154172A (en) | Manufacturing method of semiconductor device | |
JPH059940B2 (en) | ||
JPS60192368A (en) | Amorphous silicon semiconductor device and its manufacturing method | |
JPH02189935A (en) | Manufacture of thin-film transistor | |
KR100318532B1 (en) | Amorphous Silicon Thin Film Transistor and Manufacturing Method | |
KR100217140B1 (en) | Method of manufacturing thin film transistor | |
JP2796655B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3167445B2 (en) | Method for manufacturing thin film transistor | |
JPS62265764A (en) | Method for manufacturing thin film field effect transistors |