JPS58189551A - Pretreatment of hydrogen peroxide electrode - Google Patents
Pretreatment of hydrogen peroxide electrodeInfo
- Publication number
- JPS58189551A JPS58189551A JP7238082A JP7238082A JPS58189551A JP S58189551 A JPS58189551 A JP S58189551A JP 7238082 A JP7238082 A JP 7238082A JP 7238082 A JP7238082 A JP 7238082A JP S58189551 A JPS58189551 A JP S58189551A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- hydrogen peroxide
- electrode surface
- pretreatment method
- pretreatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/404—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
- G01N27/4045—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、固定化酵素膜を用いる酵素電極の一種である
過酸化水素電極(過酸化水素検出用隔膜被覆電極)の活
性が長期使用に伴ない劣化するため、これを改善し長期
間安定で、かつ応答性の高い電極を得るための表面処理
法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is aimed at solving the problem that the activity of a hydrogen peroxide electrode (diaphragm-coated electrode for detecting hydrogen peroxide), which is a type of enzyme electrode using an immobilized enzyme membrane, deteriorates with long-term use. This paper relates to a surface treatment method for improving electrodes that are stable for a long period of time and have high responsiveness.
酵素電極は#累と電極とを一体化したものであり、選択
的、迅速、正確等の長所を有するため、臨床化学分析、
環境分析などの分針で広く用いられている。酵素電極を
構成する電極としての過酸化水素電極は、酵素の触媒作
用により生成した過酸化水素を白金などを用いたアノー
ドで酸化し、その酸化電流値から特定成分を定量する目
的で使用されている。この種の電極は一般に高感度およ
び高寿命であることが望まれる。Enzyme electrodes are integrated with electrodes and have the advantages of being selective, rapid, and accurate, making them suitable for clinical chemical analysis,
Widely used as a minute hand for environmental analysis, etc. The hydrogen peroxide electrode that constitutes the enzyme electrode is used to oxidize hydrogen peroxide produced by the catalytic action of an enzyme with an anode made of platinum, etc., and quantify specific components from the oxidation current value. There is. It is generally desired that this type of electrode has high sensitivity and long life.
過酸化水素の濃度の計測法としては、白金をアノード、
銀をカソードとして使用し、両電極間に一定電圧を印加
しつつ電解電流を測定し、検量線法あるいは校正法によ
り、過酸化水素を決定するものが多い。白金極の電位を
鍜接に対して0.6v以上印加することにより、電解電
流は過酸化水素の拡散律速となる。この計測法による過
酸化水素電極は長期間の使用に伴い、電極の活性低下が
認められる場合が多い。活性度の低下は精変の低下と検
出限界能の悪化をもたらす。劣化が着しい場合は校IE
法を適用できなくなる。To measure the concentration of hydrogen peroxide, platinum is used as an anode,
Most methods use silver as a cathode, measure electrolytic current while applying a constant voltage between both electrodes, and determine hydrogen peroxide by a calibration curve method or calibration method. By applying a potential of 0.6 V or more to the platinum electrode relative to the contact, the electrolytic current becomes rate-limited by the diffusion of hydrogen peroxide. Hydrogen peroxide electrodes based on this measurement method often show a decrease in electrode activity after long-term use. A decrease in activity leads to a decrease in conversion and a deterioration in detection limit capability. If the deterioration is severe, please use the school IE.
The law becomes inapplicable.
本発明は、上述の欠点を除去し、より高感度で安定な過
酸化水素電極とするための電極表面処理法を提供するこ
とを目的とする。An object of the present invention is to provide an electrode surface treatment method that eliminates the above-mentioned drawbacks and provides a more sensitive and stable hydrogen peroxide electrode.
活性度の劣化は、白金極には常に一定の電位が印加され
ているので、長期間の使用に伴い白金γノード表面に白
金酸化物が生成したり、反応液中に溶存している有機物
、無機物が吸着したりするためと考えられている。この
発明者らはこの点に着目し、過酸化水素電極の活性度の
低下を小さくし、長期安定な電極を提供するための表面
処理法を見い出した。Because a constant potential is always applied to the platinum electrode, deterioration of activity may occur due to the formation of platinum oxide on the surface of the platinum γ node with long-term use, organic matter dissolved in the reaction solution, etc. This is thought to be due to the adsorption of inorganic substances. The inventors focused on this point and discovered a surface treatment method for reducing the decrease in activity of the hydrogen peroxide electrode and providing a long-term stable electrode.
次に本発明の実施例を図面lこ基づいて騨細に説明する
。Next, embodiments of the present invention will be described in detail with reference to the drawings.
対象とする過酸化水素電極はts1図に示されている。The hydrogen peroxide electrode of interest is shown in the ts1 diagram.
第1図において、1はアノードとしての白金電極、2は
電極支持絶縁体、3はカソードとしての銀電極である。In FIG. 1, 1 is a platinum electrode as an anode, 2 is an electrode supporting insulator, and 3 is a silver electrode as a cathode.
白金電極1は銀電極3の中心部に設けられている。4お
よび5はそれぞれ白金電極1および銀電極3から導出さ
れたリード線である。このように構成された過酸化水素
電極は、酵素電極として使用される。なお、7は0−リ
ングである。この第1A図に示した酵素電極は図示して
いない測定セル部に固定され、白金電極1と銀電極3と
の間に0.6〜O,S Vの範囲の一定電圧が印加され
る。The platinum electrode 1 is provided at the center of the silver electrode 3. 4 and 5 are lead wires led out from the platinum electrode 1 and the silver electrode 3, respectively. The hydrogen peroxide electrode configured in this manner is used as an enzyme electrode. Note that 7 is a 0-ring. The enzyme electrode shown in FIG. 1A is fixed to a measurement cell (not shown), and a constant voltage in the range of 0.6 to 0.5 volts is applied between the platinum electrode 1 and the silver electrode 3.
過酸化水素電極の前処理法のフローチャートを第2図に
示す。まず、第1図に示すように成層した電極の表面を
粗いエメリーペーパー(+ 300〜400程&)で粗
削りし、細かいエメリーペーパー(#1200〜150
0程度)で仕上げを行なう(研磨工程11)0次の工程
の超音波洗浄は表面に付着したエメl) −バー バー
の粒子、ゴミ等を落すための操作である(超音波洗浄工
程12)。また表面の有機物等を除去するため重曹によ
り充分脱脂を行なう(脱脂工程13)。さらに超音波洗
浄を行ない(超音波洗浄工程14)、硝酸に電極表面を
浸し、他金属粉末等を溶解し取り除く(酸処理工程15
)。A flowchart of the pretreatment method for the hydrogen peroxide electrode is shown in FIG. First, as shown in Figure 1, roughen the surface of the layered electrode with coarse emery paper (approximately
(About 0) (polishing process 11) The ultrasonic cleaning in the next process is an operation to remove particles, dirt, etc. from the surface (ultrasonic cleaning process 12). . Further, in order to remove organic substances on the surface, sufficient degreasing is performed using baking soda (degreasing step 13). Further, ultrasonic cleaning is performed (ultrasonic cleaning step 14), and the electrode surface is immersed in nitric acid to dissolve and remove other metal powders (acid treatment step 15).
).
また長期使用により生成する酸化物等の影響を低減する
ため電極を燐酸塩緩衝液(pH8,5)に浸し、0.6
〜0.8vの一定電圧を閉力n L 、エージングを行
なう(エージング工程16)。これにより電極感度は長
期の使用に渡り安定し、高寿命が得られる。In addition, in order to reduce the effects of oxides etc. generated during long-term use, the electrodes were immersed in a phosphate buffer (pH 8.5).
Aging is performed using a constant voltage of ~0.8V as the closing force nL (aging step 16). This stabilizes the electrode sensitivity over long periods of use, resulting in a long life.
本発明につき第1図に示した型の過酸化水素電極を用い
た場合の実験結果を示し説明する・第3図は前処理を行
った過酸化水素電極を透過性膜(たとえば多孔質の高分
子膜)とともに反応セル部に装着し、ポーラログラフ法
により過酸化水素溶液を測定した実験結果である。@3
図に示すように、前処理を行うことにより、過酸化水素
溶液に対し良好な直線性が得られた。また、電流−電圧
変換器を用いて同様な測定を行った結果、第4図に示す
ように、過酸化水素溶液溶液についても優れた直線性が
得られた。The present invention will be explained by showing experimental results using a hydrogen peroxide electrode of the type shown in Fig. These are the results of an experiment in which a hydrogen peroxide solution was measured using a polarographic method by attaching it to a reaction cell together with a molecular membrane. @3
As shown in the figure, by performing the pretreatment, good linearity with respect to the hydrogen peroxide solution was obtained. Furthermore, as a result of similar measurements performed using a current-voltage converter, as shown in FIG. 4, excellent linearity was also obtained for the hydrogen peroxide solution.
第5図は、過酸化水素溶液を反応セル部に注入したとき
の応答性を示すものである。第5図のように、前処理を
行った電極は林本林へへ過酸化、水□素濃度に対し応答
が極めて早く、90チ応答時間(。FIG. 5 shows the response when a hydrogen peroxide solution was injected into the reaction cell section. As shown in Figure 5, the pretreated electrode has an extremely fast response to peroxidation and hydrogen concentration, with a response time of 90 cm.
定常値の90チ僅に達する時間)は注入後5秒以内であ
る。Iた第6図は電極に固定化酵素(グルコースオキシ
ターゼ)![を装着した場合(第1A図の酵素電極)の
グルコース溶液に対する応答性である。固定化酵素膜を
装着した場合でも、いずれのグルコース濃度(500m
g/dt、 300mIL/dt、 100mg/dj
)について応答は非常に早く、9〇一応答時間は10
秒以内である。これに対し、第7図1こ前処理(重曹脱
脂)をしない電極のグルコース溶液(500mg/cl
/、 、 300 mg/dz 、 100 mg/d
j )に対する応答性を示す。第6図と第7図との比較
から、重曹脱脂を行うことにより、固定化酵素膜を装着
した場合でも、成好な応答性が得られることがわかる。The time to reach the steady state value of just over 90 inches is within 5 seconds after injection. Figure 6 shows an enzyme (glucose oxidase) immobilized on the electrode! This is the response to a glucose solution when [ is attached (enzyme electrode shown in FIG. 1A). Even when an immobilized enzyme membrane is installed, any glucose concentration (500 m
g/dt, 300mIL/dt, 100mg/dj
) response is very fast, 901 response time is 10
Within seconds. In contrast, the glucose solution (500 mg/cl) of the electrode without pretreatment (baking soda degreasing) in Figure 7
/, , 300 mg/dz, 100 mg/d
j). A comparison between FIG. 6 and FIG. 7 shows that by performing baking soda degreasing, good responsiveness can be obtained even when an immobilized enzyme membrane is attached.
第8図は本発明による前処理を行った過酸化水素電極の
活性度の安定性を示したものである。固定化グルコース
オキシターゼ膜を装着した状態でグルコース溶液150
mg/dLにて測定を行い、3遍間以上にわたる安定
性が得られた。才た固定化酵素膜を交換することにより
初期値が再現された。エージング処理を行わない場合に
は、初期に劣化が大きく3日間で初期値の約1/4〜1
/2となることがあり、エージングを行うことにより高
感質で長期間安定な過酸化水素電極を得ることができる
。FIG. 8 shows the stability of the activity of the hydrogen peroxide electrode pretreated according to the present invention. Glucose solution 150% with the immobilized glucose oxidase membrane attached
Measurement was carried out in mg/dL, and stability over 3 cycles or more was obtained. Initial values were reproduced by replacing the old immobilized enzyme membrane. If no aging treatment is performed, there will be a large degree of deterioration in the initial stage, and within 3 days the initial value will decrease to about 1/4 to 1
/2, and by aging a hydrogen peroxide electrode that is highly sensitive and stable for a long period of time can be obtained.
本発明方法を実施することにより、#素電極用過酸化水
素電極の活性度が安定化するため、過酸化水素電極およ
び固定化酵素膜の交換の回数を減少させることができる
。このことは過酸化水素電極、固定化酵素膜の有効利用
ができることを意味する0更には酸化電流と残余電流の
比が過酸化水素電極の活性度の安定化と共に安定するた
め、より正確な基質及び過酸化水素の定量が可能となる
。By carrying out the method of the present invention, the activity of the hydrogen peroxide electrode for the # element electrode is stabilized, so the number of times the hydrogen peroxide electrode and the immobilized enzyme membrane are replaced can be reduced. This means that the hydrogen peroxide electrode and the immobilized enzyme membrane can be used effectively.Furthermore, the ratio of oxidation current to residual current stabilizes as the activity of the hydrogen peroxide electrode stabilizes, allowing for more accurate substrate detection. and hydrogen peroxide can be quantified.
過酸化水素検出用隔膜被覆電極は臨床化学分析。The diaphragm-coated electrode for hydrogen peroxide detection is used for clinical chemistry analysis.
環境分析には広く利用されているが、今度は有機化学分
析、化学プロセス制御の分野にもその発展が期待できる
。本発明方法は他の物質(例えば金。Although it is widely used for environmental analysis, we can expect its development in the fields of organic chemical analysis and chemical process control. The method of the invention also applies to other materials such as gold.
パラジウム)の電極にも適用できる。また、酸化物電極
に対しても同様である。It can also be applied to electrodes made of palladium. The same applies to oxide electrodes.
以上に説明したように、本発明による過酸化水素電極の
前処理方法は、過酸化水素電極の電極表面を研磨する研
磨工程と、前記電極表面に付着している汚れを幕とす超
音波洗浄工程と、前記電極表面に付着している有機物等
を除去して脱脂を行なう脱脂工程と、前記電極表面に付
着している金属粉末等を除去する酸処理工程と、前記電
極の活性度の安定化を図るエージング工程とを有するこ
とによって、より高感度で安定な過酸化水素電極を提供
することができる。As explained above, the pretreatment method for a hydrogen peroxide electrode according to the present invention includes a polishing step of polishing the electrode surface of the hydrogen peroxide electrode, and an ultrasonic cleaning process to remove dirt adhering to the electrode surface. a degreasing step to remove organic matter etc. adhering to the electrode surface, an acid treatment step to remove metal powder etc. adhering to the electrode surface, and stabilization of the activity of the electrode. By including an aging step for increasing the temperature, a more sensitive and stable hydrogen peroxide electrode can be provided.
なお、第2図のフローチャートにおいて、脱脂工程は酸
処理行程の後に行なってもよい。In addition, in the flowchart of FIG. 2, the degreasing step may be performed after the acid treatment step.
第1図は過酸化水素電極の概略断面図、纂1人図は酵素
電極の概略断面図、#I2図は本発明による前処理方法
のフローチャート、第3図ないし第8図は本発明方法の
効果を説明するための実験結果を示す特性図である。
1・・・白金電極、2・・・絶縁体、3・・・銀電極、
5・・・固定化#素膜。
;r1 目
7zl!l
ず 3 同
meイjy)cfta CPPM)
f 4 図
過貢グイと7に素J慶 CPPM)
bm
O20ω @ l勿 /60
萌 間 〔秒〕
f 6 図
0 3θ 6θ V
時 間 〔8−〕
f 7m21
将 関 〔秒−〕Figure 1 is a schematic cross-sectional view of a hydrogen peroxide electrode, the general figure is a schematic cross-sectional view of an enzyme electrode, Figure #I2 is a flowchart of the pretreatment method of the present invention, and Figures 3 to 8 are FIG. 3 is a characteristic diagram showing experimental results for explaining effects. 1... Platinum electrode, 2... Insulator, 3... Silver electrode,
5... Immobilized #membrane. ;r1 7zl! l zu 3 same me i jy) cfta CPPM) f 4 Fig. 0 3θ 6θ V time 〔8-〕 f 7m21 Sho Seki [Second-]
Claims (1)
前記電極表面に付着している汚わを落とす超音波先浄工
程さ、前記電極表面に付着している有機物等を除去して
脱脂を行なう脱脂工程と、前配電極表面に付着している
金属粉末等を除去する酸処理工程と、前記電極の活性度
の安定化を図るエージング工程とを有することを特徴と
する過酸極と、アノードとして前記銀電極の中心部に絶
縁して設けられた白金電極とから成ることを1IIl徴
とする過酸化水素電極の前処理方法。 3)特許請求の範囲第1項またはwc2項記載の前処理
方法において、研磨工程は、電極表面を粗いエメリーペ
ーパーで粗削りし、次に細かいエメリーペーパーで仕上
げを行なうことより成ることを特徴とする過酸化水素電
極の611処理方法。 4)%詐請求の範囲第1項ないし第3項のいずれかの項
記載の前処理方法において、脱脂工程は、重曹を用いて
行なわれることを%像とする過酸化水素電極の前処理方
法。 5)特許請求の範囲第1項ないし第4項のいずれかの項
記載の前処理方法において、酸処理工程は、硝酸に電極
表面を浸して行なわれることを特徴とする過酸化水素電
極の前処理方法。 6)特許請求の範囲第1項ないし第5項のいずれかの項
記載の前処理方法において、エージング工程は、電極を
燐酸塩緩繭液に浸し、電極に所定の電圧を印加して行な
われることを特徴とする過酸化水素電極の前処理方法。[Claims] 1) a polishing step of polishing the electrode surface of the hydrogen peroxide electrode;
An ultrasonic pre-cleaning process to remove dirt adhering to the electrode surface, a degreasing process to remove organic matter etc. adhering to the electrode surface and degreasing, and metal adhering to the pre-electrode surface. A peracid electrode characterized by comprising an acid treatment step for removing powder etc. and an aging step for stabilizing the activity of the electrode, and an anode provided insulated at the center of the silver electrode. A pretreatment method for a hydrogen peroxide electrode comprising a platinum electrode. 3) In the pretreatment method described in claim 1 or wc2, the polishing step is characterized by roughening the electrode surface with coarse emery paper and then finishing with fine emery paper. 611 treatment method for hydrogen peroxide electrode. 4) Percentage Fraud In the pretreatment method described in any one of claims 1 to 3, the degreasing step is performed using baking soda. . 5) In the pretreatment method according to any one of claims 1 to 4, the acid treatment step is performed by immersing the electrode surface in nitric acid. Processing method. 6) In the pretreatment method according to any one of claims 1 to 5, the aging step is performed by immersing the electrode in a phosphate slow cocoon solution and applying a predetermined voltage to the electrode. A method for pretreating a hydrogen peroxide electrode, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7238082A JPS58189551A (en) | 1982-04-28 | 1982-04-28 | Pretreatment of hydrogen peroxide electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7238082A JPS58189551A (en) | 1982-04-28 | 1982-04-28 | Pretreatment of hydrogen peroxide electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58189551A true JPS58189551A (en) | 1983-11-05 |
JPH0337703B2 JPH0337703B2 (en) | 1991-06-06 |
Family
ID=13487624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7238082A Granted JPS58189551A (en) | 1982-04-28 | 1982-04-28 | Pretreatment of hydrogen peroxide electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58189551A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63312618A (en) * | 1987-06-16 | 1988-12-21 | Showa Denko Kk | Manufacture of solid-state electrolytic capacitor |
US4935105A (en) * | 1987-02-24 | 1990-06-19 | Imperial Chemical Industries Plc | Methods of operating enzyme electrode sensors |
-
1982
- 1982-04-28 JP JP7238082A patent/JPS58189551A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935105A (en) * | 1987-02-24 | 1990-06-19 | Imperial Chemical Industries Plc | Methods of operating enzyme electrode sensors |
JPS63312618A (en) * | 1987-06-16 | 1988-12-21 | Showa Denko Kk | Manufacture of solid-state electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0337703B2 (en) | 1991-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Berduque et al. | Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions | |
Zoski et al. | How long does it take a microelectrode to reach a voltammetric steady state? | |
Chamsi et al. | Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode | |
Zen et al. | Voltammetric determination of dopamine in the presence of ascorbic acid at a chemically modified electrode | |
Zen et al. | Voltammetric determination of serotonin in human blood using a chemically modified electrode | |
JPH07101215B2 (en) | Analytical method using biofunctional substance-immobilized electrode | |
Kuhn et al. | Microring electrode/optical waveguide: electrochemical characterization and application to electrogenerated chemiluminescence | |
Cho et al. | Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment | |
Hsueh et al. | Fast-scan voltammetry in aqueous solutions at carbon fiber ultramicroelectrodes with on-line iR compensation | |
Chen et al. | Pulse voltammetry in single cells using platinum microelectrodes | |
Ikariyama et al. | Surface control of platinized platinum as a transducer matrix for micro-enzyme electrodes | |
Wang et al. | Evaluation of differential-pulse anodic stripping voltammetry at mercury-coated carbon fiber electrodes. Comparison to analogous measurements at rotating disk electrodes | |
Nagy et al. | Effect of surface-active agents on amperometric NADH measurements with chemically modified electrodes | |
Fan et al. | Iodide modified silver electrode and its application to the electroanalysis of hemoglobin | |
Ikariyama et al. | High performance micro-enzyme sensor using platinized microelectrode. | |
JPH0715450B2 (en) | Electrochemical measuring cell for measuring ammonia or hydrazine in gaseous or liquid measuring samples | |
Sun et al. | Electrocatalytic oxidation of carbohydrates at a molecular deposition film electrode based on water-soluble cobalt phthalocyanine and its application to flow-through detection | |
WO2010095630A1 (en) | Electrochemical quantification method for hydrogen peroxide | |
JPS58189551A (en) | Pretreatment of hydrogen peroxide electrode | |
JPH04279854A (en) | Platinum coated carbon fiber electrode and enzymatic film sensor using same | |
Casero et al. | Electrocatalytic Oxidation of Nitric Oxide at 6, 17‐Diferrocenyl‐dibenzo [b, i] 5, 9, 14, 18‐tetraaza [14] annulen]‐nickel (II) Modifed Electrodes | |
Wu et al. | Covalent immobilization of glucose oxidase onto graphitic electrodes | |
Awad et al. | Nickel oxide nanoparticles modified gold electrode for fractional determination of dopamine and ascorbic acid | |
Asadpour-Zeynali et al. | Electrocatalytic determination of isoniazid by a glassy carbon electrode modified with poly (Eriochrome Black T) | |
Eftekhari | Silver-selective electrode based on a direct modified electrode silver hexacyanoferrate (II) film |