JPS5818821B2 - PSK signal carrier synchronization method - Google Patents
PSK signal carrier synchronization methodInfo
- Publication number
- JPS5818821B2 JPS5818821B2 JP54044527A JP4452779A JPS5818821B2 JP S5818821 B2 JPS5818821 B2 JP S5818821B2 JP 54044527 A JP54044527 A JP 54044527A JP 4452779 A JP4452779 A JP 4452779A JP S5818821 B2 JPS5818821 B2 JP S5818821B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- section
- psk
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000010355 oscillation Effects 0.000 claims description 57
- 238000001514 detection method Methods 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 9
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- 230000010363 phase shift Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/227—Demodulator circuits; Receiver circuits using coherent demodulation
- H04L27/2275—Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
【発明の詳細な説明】
1 本発明の技術分野
本発明はPSK(フェーズシフトキーイング)信号の受
信機側の復調回路に於ける搬送波の同期方式に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION 1. Technical Field of the Invention The present invention relates to a carrier wave synchronization method in a demodulation circuit on the receiver side of a PSK (phase shift keying) signal.
2 本発明の技術分野の背景
無線方式によって、例えば計測データ等を伝送するため
の無線テレメータ等に於ては、従来から信号の変調形式
としてFM変調、FM−FM多重変調及びS S −P
M変調等が使用されている。2. Background of the technical field of the present invention In wireless telemeters and the like for transmitting measurement data and the like using wireless systems, signal modulation formats have traditionally been FM modulation, FM-FM multiplex modulation, and SS-P.
M modulation etc. are used.
ところが近年、テレメータの観測精度の向上の要求から
計測データのデジタル化が促進され、これに伴い伝送さ
れる信号もPCM化され、その信号の変調形式もPCM
−PSK変調方式が実施されるに至っている。However, in recent years, the digitization of measurement data has been promoted due to the demand for improved observation accuracy of telemeters, and with this, the transmitted signals have also become PCM, and the modulation format of the signals has also changed to PCM.
-PSK modulation has come into practice.
一方、電波需要が急速に増大しつつある現在、電波の周
波数帯域の有効利用が緊急の課題となっており、デジタ
ル信号を無線で伝送する技術に於てはこの課題からも周
波数の占有帯域幅の狭いPCM−PS−に変調方式が有
力視されてきている。On the other hand, as the demand for radio waves is rapidly increasing, the effective use of radio frequency bands has become an urgent issue, and this issue has also led to an increase in the occupied frequency bandwidth. A modulation method is being considered as a promising method for narrow PCM-PS-.
3 PCM−PSK変調方式の一般的事項搬送波を直
接PCM信号でPSK変調すると、側帯波が生ずると同
時に搬送波はなくなる。3 General matters of PCM-PSK modulation system When a carrier wave is directly PSK modulated with a PCM signal, sidebands are generated and at the same time the carrier wave disappears.
比較的少容量のP −CM信号、例えば10キロピント
/秒(K B I T /5ec)のP’CM信号で5
00MHzの搬送波を例えば4相PSK変調した場合、
側帯波は搬送波を中心としてその両側1.25KHzあ
たりから上記PCM信号に応じて発生している。5 with a relatively small capacity P-CM signal, for example, a P'CM signal of 10 kilofocus/second (KBIT/5ec).
For example, when a 00MHz carrier wave is modulated by 4-phase PSK,
Sideband waves are generated from around 1.25 KHz on both sides of the carrier wave in response to the PCM signal.
一方、送信周波数(搬送波の周波数)の周波数安定度は
、一般的には1×10−5〜lXl0−6程度であり、
上記したように搬送波の周波数が500MHzの場合、
送信階梯における周波数のドリフトは5K)(Z〜0.
5KHzとなる。On the other hand, the frequency stability of the transmission frequency (carrier frequency) is generally about 1×10-5 to lXl0-6,
As mentioned above, if the carrier frequency is 500MHz,
The frequency drift in the transmission ladder is 5K) (Z~0.
It becomes 5KHz.
又、受信側において、スーパーヘテロダイン方式)無線
受信機を使用した場合、そのローカル発振部の周波数安
定度も同様、lXl0 ’〜lXl0−6程度であり
、受信階梯における周波数のドリフトは5KHz〜0.
5KHzとなり、送信、受信を総合した周波数のドリフ
トはl0KHz〜IKHzとなる。Furthermore, when a superheterodyne wireless receiver is used on the receiving side, the frequency stability of its local oscillator is also on the order of lXl0' to lXl0-6, and the frequency drift in the receiving ladder is 5KHz to 0.
5 KHz, and the total frequency drift of transmission and reception is 10 KHz to IKHz.
4 従来技術の説明
第1図A、Bは、従来のPCM−PSK信号の送信機及
び受信機の一般的な構成を1177図で示したものであ
る。4 Description of Prior Art FIGS. 1A and 1B are diagrams 1177 showing the general configuration of a conventional PCM-PSK signal transmitter and receiver.
送信機の構成を示した第1図Aに於て、1は第1の送信
ローカル発振部、2はPSK変調部、3は第2の送信ロ
ーカル発振部、4は周波数混合部(アップコンバータ)
、5は送信空中線である。In FIG. 1A showing the configuration of a transmitter, 1 is a first transmission local oscillation section, 2 is a PSK modulation section, 3 is a second transmission local oscillation section, and 4 is a frequency mixing section (up converter).
, 5 is a transmitting antenna.
受信機の構成を示した第1図Bに於て、6は受信空中線
、7は第1のローカル発振部、8は第1の周波数混合部
、9は第2のローカル発振部、10は第2の周波数混合
部、11はPSK信号復調部である。In FIG. 1B showing the configuration of the receiver, 6 is a receiving antenna, 7 is a first local oscillation section, 8 is a first frequency mixing section, 9 is a second local oscillation section, and 10 is a first local oscillation section. 2 is a frequency mixing section, and 11 is a PSK signal demodulating section.
PCM符号化された計測データはNRZ信号形式で送信
機のPSK変調部2に入力される。The PCM-encoded measurement data is input to the PSK modulator 2 of the transmitter in the NRZ signal format.
このPSK変調部2には第1の送信ローカル発振部1か
ら計測データによってPSK変調を受ける信号が入力さ
れており、当該PSK変調部2からは上記計測データに
よってPSK変調された信号、すなわち上記計測データ
を含有するPSK信号が周波数混合部4に送出される。A signal subjected to PSK modulation based on the measurement data is input from the first transmission local oscillator 1 to this PSK modulation unit 2, and from the PSK modulation unit 2, a signal PSK modulated using the measurement data, that is, the signal A PSK signal containing data is sent to the frequency mixer 4.
周波数混合部4には第2のローカル発振部から上記PS
K信号を無線伝送するために必要な周波数までに上げる
ための信号が入力されており、上記PSK信号は当該周
波数混合部4で高い周波数の信号に変換されたのち、送
信空中線5から送信される。The frequency mixing unit 4 receives the above-mentioned PS from the second local oscillation unit.
A signal for increasing the frequency required for wireless transmission of the K signal is input, and the PSK signal is converted into a high frequency signal by the frequency mixing section 4 and then transmitted from the transmitting antenna 5. .
受信機側では送信機から送信された無線周波数のPSK
信号を受信空中線6で受信し、このPSK信号は、第1
の周波数混合部8で第1のローカル発振部7から送出さ
れる信号に基いて第1の中間周波信号IIFに変換され
、更に第2の周波数混合部10で第2のローカル発振部
9から送出される信号に基いて第2の中間周波信号2I
Fに変換されたのち、P’S K信号復調部11に入力
され復調される。On the receiver side, the PSK of the radio frequency transmitted from the transmitter
The signal is received by the receiving antenna 6, and this PSK signal is
The frequency mixer 8 converts the signal sent from the first local oscillator 7 into a first intermediate frequency signal IIF, and the second frequency mixer 10 sends it out from the second local oscillator 9. a second intermediate frequency signal 2I based on the signal
After being converted into F, the signal is input to the P'SK signal demodulator 11 and demodulated.
そして上記第2の中間周波信号2IFは例えば搬送波の
周波数を500MHzとすると前記3,3項で述べた1
0KHz〜IKHzの周波数のドリフトを受けている。If the carrier wave frequency is 500 MHz, the second intermediate frequency signal 2IF is 1 as described in Sections 3 and 3 above.
It is subject to frequency drift from 0KHz to IKHz.
また、前記したようにPSK変調の階梯に於いては搬送
波がなくなっているため受信機側に於いてはPSK信号
の復調にあたって搬送波を再生する必要が生ずる。Further, as mentioned above, in the PSK modulation step, there is no carrier wave, so it becomes necessary to regenerate the carrier wave on the receiver side when demodulating the PSK signal.
そしてこの搬送波の再生はPSK信号信号部調部11な
われる。This carrier wave is then reproduced by the PSK signal signal section 11.
次に上記PSK信号復調部11について説明する。Next, the PSK signal demodulation section 11 will be explained.
送信機側から送られてくるPSK信号は送信機に入力さ
れるデータによって位相変化を受けており、PSK信号
信号部調部11相検波回路を有していて、この位相検波
回路によって上記PSK信号の位相変化を検波し、PS
K信号の位相に応じて+、−に変化する出力を送出する
。The PSK signal sent from the transmitter side undergoes a phase change depending on the data input to the transmitter, and the PSK signal part 11 has a phase detection circuit, and this phase detection circuit detects the PSK signal. Detects the phase change of PS
It sends out an output that changes + or - depending on the phase of the K signal.
この位相変化を検波する位相検波作用には位相変化の基
準とする基準位相信号を必要とするが、この基準位相信
号は送信機側でPSK変調を受けた信号、すなわち搬送
波と一致していなければならず、当該基準位相信号とし
て使用するために前記したように受信機側に於て搬送波
の再生を必要とする。The phase detection function that detects this phase change requires a reference phase signal that is used as a reference for the phase change, but this reference phase signal must match the signal that has undergone PSK modulation on the transmitter side, that is, the carrier wave. However, in order to use it as the reference phase signal, it is necessary to regenerate the carrier wave on the receiver side as described above.
この基準位相信号としての搬送波の再生は送信機側から
送られた搬送波のないPSK信号の側帯波に基いて行な
われる。Regeneration of the carrier wave as the reference phase signal is performed based on the sideband wave of the PSK signal without carrier wave sent from the transmitter side.
この搬送波の再生回路を以下、搬送波再生回路という。This carrier wave regeneration circuit is hereinafter referred to as a carrier wave regeneration circuit.
搬送波再生回路は通常PLL(フェーズロックループ)
回路を使用して構成される。The carrier wave regeneration circuit is usually PLL (phase locked loop)
Constructed using circuits.
PLL回路は一般にVCO(電圧制御発振器)、位相検
波回路及びループフィルター回路等から成っており、V
COの出力信号の位相と受信信号すなわちPSK信号の
位相差を位相検波回路で検出し、その検出出力をループ
フィルター回路を通してvCOに帰還することによりV
COの出力信号の位相を受信信号の位相に同期させるよ
う制御する回路である。A PLL circuit generally consists of a VCO (voltage controlled oscillator), a phase detection circuit, a loop filter circuit, etc.
V
This is a circuit that controls the phase of the output signal of the CO to be synchronized with the phase of the received signal.
従ってこのPLL回路では受信信号周波数の変化にVC
Oの発振周波数が追従する。Therefore, in this PLL circuit, the VC
The oscillation frequency of O follows.
すなわちVCOの周波数変化の範囲は、送信機側から送
られ、受信機で受信される受信信号の周波数の変化の範
囲内となる。That is, the range of the frequency change of the VCO is within the range of the frequency change of the received signal sent from the transmitter side and received by the receiver.
先に掲げた例では受信信号すなわち搬送波再生回路に入
力される信号の周波数の変化分(ドリフト)はl0KH
z〜IKHzであり、又、PSK信号の側帯波はIKH
z〜数KHzの周波数成分を含んでおり、上記受信信号
の周波数の変化範囲とPSK信号の側帯波の周波数範囲
が重なって存在する。In the example given above, the frequency change (drift) of the received signal, that is, the signal input to the carrier wave regeneration circuit, is l0KH.
z ~ IKHz, and the sideband of the PSK signal is IKH
z to several KHz, and the frequency change range of the received signal and the frequency range of the sideband of the PSK signal overlap.
今、受信機が動作していて入力信号、すなわち送信機側
からの送信信号がないと、VCOの発振周波数は入力信
号の周波数変化範囲内のどの周波数であるかは定まって
いない。Now, when the receiver is operating and there is no input signal, that is, a transmission signal from the transmitter side, it is not determined which frequency the oscillation frequency of the VCO is within the frequency change range of the input signal.
したがって上記したように受信信号の周波数の変化範囲
とPSK信号の側帯波の周波数範囲とが重なって存在す
ることにより、PLL回路に入力信号が入力されると、
その時点で当該PLL回路は受信した入力信号の側帯波
の1つに同期してしまう事態が生ずる。Therefore, as described above, since the frequency change range of the received signal and the frequency range of the sideband of the PSK signal overlap, when the input signal is input to the PLL circuit,
At that point, a situation arises in which the PLL circuit becomes synchronized to one of the sidebands of the received input signal.
このことは受信側に於て搬送波再生回路により再生され
る信号の周波数は入力信号の側帯波の1つの周波数とな
り(いわゆるフォースロック)、再生されるべき正しい
周波数の搬送波は再生されず、一度この誤った同期が行
なわれると、PSK信号の検波及びこの検波による受信
側での入力データの再生は不正確なものとなる。This means that on the receiving side, the frequency of the signal regenerated by the carrier regeneration circuit becomes the frequency of one of the sidebands of the input signal (so-called force lock), and the carrier wave of the correct frequency to be regenerated is not regenerated. If incorrect synchronization is performed, the detection of the PSK signal and the reproduction of input data at the receiving end due to this detection will be inaccurate.
5 従来技術の問題点
以上に述べたように送信機あるいは受信機に使用されて
いるローカル発振回路の周波数安定度による周波数の変
化範囲とPSK変調によって生ずる側帯波の周波数範囲
とが重なっている場合、PSK信号の検波再生に於て、
その基準信号である搬送波の再生が行なわれない危険が
あり、この危険を避けるためには送信機の搬送波周波数
の安定度及び受信機のローカル周波数の安定度を良くし
、受信信号の周波数ドリフトがPSK信号の側帯波の周
波数範囲内に入らな。5 Problems with the Prior Art As mentioned above, when the range of frequency changes due to the frequency stability of the local oscillation circuit used in the transmitter or receiver overlaps the frequency range of sideband waves generated by PSK modulation. , in detecting and reproducing PSK signals,
There is a risk that the carrier wave, which is the reference signal, will not be regenerated. To avoid this risk, improve the stability of the carrier wave frequency of the transmitter and the local frequency of the receiver, and reduce the frequency drift of the received signal. Do not fall within the frequency range of the sidebands of the PSK signal.
いようにする必要があり、前記の例では上記周波数の安
定度を2桁以上改善する必要がある。In the above example, it is necessary to improve the stability of the frequency by more than two orders of magnitude.
このように周波数の安定度を改善することは送信機及び
受信機自体を非常に高価にするばかりでなく、周波数の
高安定化のために送信機及び。Improving frequency stability in this way not only makes the transmitter and receiver themselves very expensive, but also increases the cost of the transmitter and receiver due to high frequency stability.
受信機で消費される電力は極めて多くなる。The power consumed by the receiver becomes extremely large.
6 本発明の目的
本発明は以上に述べた従来技術の問題点に鑑みなされた
もので、その目的とするところは、受信機及び送信機に
特別に安定度のよい発振間。6. Purpose of the Invention The present invention was made in view of the problems of the prior art described above, and its object is to provide a receiver and a transmitter with a particularly stable oscillation interval.
路を必要とせず、通常の安定度の発振回路を用いても受
信機に於て送信波すなわちデータによってPSK変調を
受けた信号を受信した時、いつでも正規な搬送波の再生
を可能とし、もってデータの復調を正しく行なうことが
できるPSK信号の搬送波同期方式を得ることを目的と
する。Even if an oscillation circuit with normal stability is used without the need for a carrier wave, when the receiver receives a signal that has been PSK modulated by the transmitted wave, that is, data, it is possible to regenerate the normal carrier wave at any time, thereby making it possible to reproduce the data. An object of the present invention is to obtain a carrier wave synchronization method for PSK signals that can correctly demodulate PSK signals.
7 本発明の詳細な説明
第2図は本発明の実施例に係るPSK信号受信機の要部
(搬送波の再生回路)を示すブロック図であり、21は
第1の周波数混合部、22はローカル発振部、23は第
2の周波数混合部、24は中間周波増幅部、25は周波
数逓倍部、26は周波数弁別部、27は第1のフィルタ
ー28は第1の位相検波部、29はループフィルター、
30はオア回路部、31は電圧制御発振部VC0,32
は基準信号発振部、33は移相回路部、34は第2の位
相検波部、35は第2のフィルター、36はロック信号
発生部、37はゲート回路部、38はPSK信号復調部
である。7 Detailed Description of the Present Invention FIG. 2 is a block diagram showing the main part (carrier regeneration circuit) of the PSK signal receiver according to the embodiment of the present invention, 21 is a first frequency mixing section, 22 is a local Oscillation section, 23 is a second frequency mixing section, 24 is an intermediate frequency amplification section, 25 is a frequency multiplication section, 26 is a frequency discrimination section, 27 is a first filter 28 is a first phase detection section, 29 is a loop filter ,
30 is an OR circuit section, 31 is a voltage controlled oscillation section VC0, 32
3 is a reference signal oscillation section, 33 is a phase shift circuit section, 34 is a second phase detection section, 35 is a second filter, 36 is a lock signal generation section, 37 is a gate circuit section, and 38 is a PSK signal demodulation section. .
送信機から無線により送信され、搬送波の消失したPS
K信号が受信機側に送られると受信機側では上記PSK
信号がまず第1の周波数混合部21に入力され、ローカ
ル発振部22からの信号に基いて上記PSK信号は第1
中間周波信号1■Fに変換され、更に第2の周波数混合
部23により第2中間周波信号2IFに変換される。PS transmitted wirelessly from a transmitter and whose carrier wave has disappeared
When the K signal is sent to the receiver side, the receiver side converts the above PSK
The signal is first input to the first frequency mixing section 21, and based on the signal from the local oscillation section 22, the PSK signal is converted into the first frequency mixer 21.
It is converted into an intermediate frequency signal 1■F, and further converted into a second intermediate frequency signal 2IF by the second frequency mixing section 23.
第2中間周波信号2IFに変換されたPSK信号は中間
周波増幅部24で増幅された後、周波数逓倍部25に入
力される。The PSK signal converted into the second intermediate frequency signal 2IF is amplified by the intermediate frequency amplification section 24 and then input to the frequency multiplication section 25.
周波数逓倍部25は2相PSK信号に対しては2逓倍、
4相PSK信号に対しては4逓倍又は8逓倍、8相PS
K信号に対して8逓倍が選ばれる等、その逓梧数がPS
K変調の相数によって決定される。The frequency multiplier 25 multiplies the 2-phase PSK signal by 2,
For 4-phase PSK signals, 4 times or 8 times, 8-phase PS
For example, 8 multiplication is selected for the K signal, and the multiplication number is PS.
It is determined by the number of phases of K modulation.
周波数逓倍部25にPSK信号が入力されると、その側
帯波は周波数逓倍部25の上記PSK信号の相数に対応
した逓倍作用によってPSK信号の消失した搬送波の周
波数附近の周波数に変換され、エネルギーが上記搬送波
の近辺に集中される。When the PSK signal is input to the frequency multiplier 25, its sideband wave is converted to a frequency close to the frequency of the carrier wave from which the PSK signal disappeared by the multiplication action of the frequency multiplier 25 corresponding to the phase number of the PSK signal, and the energy is increased. is concentrated near the carrier wave.
周波数逓倍部25から上記作用によって出力された信号
は周波数弁別部26に入力されこの周波数弁別部26は
上記信号の中心周波数(再生されるべき搬送波の周波数
)からのずれに応じた直流信号を出力し、この直流信号
は第1のフィルター27及びオア回路部30を経て電圧
制御発振部31に入力される。The signal output from the frequency multiplier 25 by the above action is input to the frequency discriminator 26, and this frequency discriminator 26 outputs a DC signal according to the deviation of the signal from the center frequency (frequency of the carrier wave to be reproduced). However, this DC signal is input to the voltage controlled oscillation section 31 via the first filter 27 and the OR circuit section 30.
電圧制御発振部31は、その発振周波数が上記動作によ
って入力される直流信号によって制御され、その出力信
号を第2の周波数混合部23に供給する。The voltage-controlled oscillator 31 has its oscillation frequency controlled by the DC signal input through the above operation, and supplies its output signal to the second frequency mixer 23 .
この結果、第2の周波数混合部23から出力される前記
PSK信号の第2中間周波信号2IFの周波数は周波数
弁別部26の中心周波数によって規定され、その中心周
波数の近傍の周波数に制御される。As a result, the frequency of the second intermediate frequency signal 2IF of the PSK signal output from the second frequency mixer 23 is defined by the center frequency of the frequency discriminator 26, and is controlled to a frequency near the center frequency.
この動作で理解されるように当該電圧制御発振部31は
第2中間周波信号2IFのローカル発振部として機能し
ている。As understood from this operation, the voltage controlled oscillation section 31 functions as a local oscillation section of the second intermediate frequency signal 2IF.
上記第2の周波数混合部23から出て中間周波増幅部2
4、周波数逓倍部25、周波数弁別部26、第1のフィ
ルター27、オア回路部30及び電圧制御発振部31を
経て上記第2の周波数混合部23に帰るループは一種の
AFC回路(周波数自動制御回路)を構成している。Outputting from the second frequency mixing section 23, the intermediate frequency amplifying section 2
4. The loop returning to the second frequency mixing section 23 via the frequency multiplier 25, frequency discrimination section 26, first filter 27, OR circuit section 30 and voltage controlled oscillation section 31 is a kind of AFC circuit (frequency automatic control). circuit).
通常のAFC回路と比較して本実施例に於けるAFC回
路はループ内に周波数逓倍部25が挿入されている点が
異っている。The AFC circuit of this embodiment differs from a normal AFC circuit in that a frequency multiplier 25 is inserted in the loop.
すなわち、従来のAFC回路の周波数の制御は周波数の
ずれを中心となる周波数にひき房す動作であるのに対し
て、本実施例におけるAFC回路の周波数の制御は中心
となる周波数を持つ信号、すなわち搬送波は消失してい
るので、中心となるべき周波数の信号(搬送波)を想定
し、その想定した信号の周波数になるように制御する動
作を行なわせる必要から上記したAFC回路が用いられ
る。That is, while the frequency control of the conventional AFC circuit is an operation that reduces the frequency deviation to the center frequency, the frequency control of the AFC circuit in this embodiment is performed using a signal having the center frequency. That is, since the carrier wave has disappeared, the above-mentioned AFC circuit is used because it is necessary to assume a signal (carrier wave) with a frequency that should be the center and perform a control operation so that the frequency of the assumed signal is achieved.
PSK信号は変調するPCM符号等のコードにより搬送
波の位相が変化するため、瞬時に於けるPSK信号の側
帯波は中心周波数である搬送波の周波数の両側に於て等
しいエネルギーを有していない。Since the phase of a carrier wave in a PSK signal changes depending on a modulating code such as a PCM code, the instantaneous sideband waves of the PSK signal do not have equal energy on both sides of the frequency of the carrier wave, which is the center frequency.
また、周波数弁別部26は中心周波数の上下に現われる
側帯波のエネルギーの総和によって決まる電圧を上記中
心周波数からのずれによって生ずる誤差電圧として出力
するので、上記したように搬送波の周波数の両側でエネ
ルギー分布が異なる特性のPSK信号に対しては前記し
たAFC動作によって基準となるべき搬送波の再生は周
波数逓倍部25によってエネルギーが中心周波数の近傍
に集中されてもなお完全には行なわれず、この結果PS
K信号復調部38における復調動作において、当該PS
K信号復調部38の内部のPLL回路がPSK信号の側
帯波の周波数に同期し、誤った復調作用を行う可能性が
ある。In addition, the frequency discriminator 26 outputs a voltage determined by the sum of energy of sidebands appearing above and below the center frequency as an error voltage caused by deviation from the center frequency, so as described above, the energy distribution is distributed on both sides of the carrier wave frequency. For PSK signals with different characteristics, the AFC operation described above does not completely regenerate the reference carrier wave even though the energy is concentrated in the vicinity of the center frequency by the frequency multiplier 25, and as a result, the PSK signal
In the demodulation operation in the K signal demodulation section 38, the PS
There is a possibility that the PLL circuit inside the K signal demodulation section 38 may synchronize with the frequency of the sideband of the PSK signal and perform an erroneous demodulation operation.
この誤った復調作用を防止するため、本発明の実施例で
は上記PSK信号復調部38のPLL回路とは別個のP
LL回路が構成されている。In order to prevent this erroneous demodulation effect, in the embodiment of the present invention, a PLL circuit separate from the PLL circuit of the PSK signal demodulation section 38 is installed.
An LL circuit is configured.
すなわち、第2の周波数混合部23から出て中間周波増
幅部24、周波数逓倍部25、第1の位相検波部28、
ループフィルター29、オア回路部30及び電圧制御発
振部31を経て第2の周波数混合部23に帰るループが
上言αSK信号復調部38内に設けられたものとは別個
に構成されたPLL回路である。That is, from the second frequency mixing section 23, the intermediate frequency amplification section 24, the frequency multiplication section 25, the first phase detection section 28,
The loop returning to the second frequency mixing section 23 via the loop filter 29, the OR circuit section 30, and the voltage controlled oscillation section 31 is a PLL circuit configured separately from that provided in the αSK signal demodulation section 38 mentioned above. be.
前記AFC回路のループによって周波数弁別部26の中
心周波数の近傍の周波数に制御された第2中間周波信号
2IFは第1の位相検波部28から上記PLL回路のル
ープ内に入力される。The second intermediate frequency signal 2IF, which is controlled to have a frequency close to the center frequency of the frequency discriminator 26 by the loop of the AFC circuit, is input from the first phase detector 28 into the loop of the PLL circuit.
ところでPLL回路には同期する周波数の引込み範囲(
以下、プルインレンジという。By the way, the PLL circuit has a synchronized frequency pull-in range (
Hereinafter, it is called a pull-in range.
)があり、上記AFC回路のループによる第2中間周波
信号2IFの周波数の制御は当該周波数が上記プルイン
レンジ内にくるように制御される。), and the frequency of the second intermediate frequency signal 2IF is controlled by the loop of the AFC circuit so that the frequency falls within the pull-in range.
したがってPLL回路のループ内に上記第2中間周波信
号2IFが入力されると、PLL回路のループは同期状
態に入り、上記第2中間周波信号2IFの周波数は移相
回路部33を経て供給される基準信号発振部32からの
信号の周波数に規制された周波数になる。Therefore, when the second intermediate frequency signal 2IF is input into the loop of the PLL circuit, the loop of the PLL circuit enters a synchronous state, and the frequency of the second intermediate frequency signal 2IF is supplied via the phase shift circuit section 33. The frequency is regulated by the frequency of the signal from the reference signal oscillator 32.
すなわち、基準信号発振部32からの信号と周波数逓倍
部25からの信号とが第1の位相検波部28で比較され
、当該第1の位相検波部28から上記2つの信号の位相
差に応じた電圧がループフィルター29とオア回路部3
0を経て電圧制御発振部31に入力され、当該電圧制御
発振部31は上記第1の位相検波部28の出力電圧がな
くなる方向にその発振周波数が制御されるので前記PL
L回路は第2中間周波信号2IFが正しい中心周波数に
制御された時点でそのループに流れる信号の周波数が固
定される。That is, the signal from the reference signal oscillation section 32 and the signal from the frequency multiplication section 25 are compared in the first phase detection section 28, and the signal from the first phase detection section 28 is determined according to the phase difference between the two signals. The voltage is connected to the loop filter 29 and the OR circuit section 3.
0 to the voltage controlled oscillation section 31, and the voltage controlled oscillation section 31 has its oscillation frequency controlled in a direction in which the output voltage of the first phase detection section 28 disappears.
In the L circuit, the frequency of the signal flowing through the loop is fixed when the second intermediate frequency signal 2IF is controlled to the correct center frequency.
このループの位相が固定されることを通常「ロックされ
る」とい・う。When the phase of this loop is fixed, it is usually called "locked."
尚、上記基準信号発振部32は例えば水晶振動子を使用
した発振回路で構成されていて1×10−5〜1×10
−6の周波数安定度で良好な発振信号を送出し、その発
振周波数は第2中間周波信号の周波数×周波数逓倍数、
に設定される。The reference signal oscillation section 32 is composed of an oscillation circuit using, for example, a crystal resonator, and has a frequency of 1 x 10-5 to 1 x 10
It sends out a good oscillation signal with a frequency stability of -6, and the oscillation frequency is the frequency of the second intermediate frequency signal x frequency multiplier.
is set to
以上のようにして第2中間周波信号2IFは中心周波数
であるべき信号を中心としたPSK信号となる。As described above, the second intermediate frequency signal 2IF becomes a PSK signal centered on the signal that should be the center frequency.
PLL回路が上記したように中心周波数にロックされる
と、それを第2の位相検波部34、第2のフィルター3
5及びロック信号発生部36を経た回路で検出し、ロッ
ク信号発生部36から出力される田ンク信号によってゲ
ート回路部37をオンにし、第2中間周波信号2IFを
PSK信号信号部調部38力する。When the PLL circuit is locked to the center frequency as described above, it is detected by the second phase detection section 34 and the second filter 3.
5 and the lock signal generating section 36, the gate circuit section 37 is turned on by the tank signal output from the lock signal generating section 36, and the second intermediate frequency signal 2IF is output to the PSK signal signal section 38. do.
次に、PLL回路が中心周波数にロックされたことを検
出する回路について述べる。Next, a circuit for detecting that the PLL circuit is locked to the center frequency will be described.
第1の位相検波部28に入力される2つの信号、すなわ
ち、周波数逓倍部25からの信号(周波数逓倍された第
2中間周波信号)と基準信号発振部32からの信号の位
相差はPLL回路のループが中心周波数にロックされて
いる状態ではπ/2である。The phase difference between the two signals input to the first phase detection section 28, that is, the signal from the frequency multiplication section 25 (frequency multiplied second intermediate frequency signal) and the signal from the reference signal oscillation section 32, is determined by the PLL circuit. is π/2 when the loop is locked to the center frequency.
したがって、上記PLL回路のループが中心周波数にr
ツクされたことを検出するには上記2つの信号の位相差
がπ/2であることを検出すればよい。Therefore, the loop of the above PLL circuit has a center frequency r
To detect that the signal has been blocked, it is sufficient to detect that the phase difference between the two signals is π/2.
この検出動作は以下のようにして行なわれる。This detection operation is performed as follows.
すなわち、基準信号発振部32の出力信号の位相を移相
回路部33てπ/2だけ移相させたのち(この移相回路
部33によって第1の位相検波部28と第2の位相検波
部34とに供給される信号は互に位相がπ/2だけ異っ
ている。That is, after the phase of the output signal of the reference signal oscillation section 32 is shifted by π/2 by the phase shift circuit section 33 (the phase shift circuit section 33 shifts the phase of the output signal of the reference signal oscillation section 32 by π/2), The signals supplied to 34 and 34 have a phase difference of π/2 from each other.
)第2の位相検波部34に供給し、当該第2の位相検波
部34に入力されるもう一方の信号、すなわち第2中間
周波信号2IFが周波数逓倍部25で逓倍されて入力さ
れる信号の位相が上記移相回路部33を経て基準信号発
振部32から供給された信号の位相に一致したことを当
該第2の位相検波部34で検出する。) The other signal supplied to the second phase detection section 34 and inputted to the second phase detection section 34, that is, the second intermediate frequency signal 2IF, is multiplied by the frequency multiplication section 25 and is inputted. The second phase detection section 34 detects that the phase matches the phase of the signal supplied from the reference signal oscillation section 32 via the phase shift circuit section 33.
第2の位相検波部34に入力される上記2つの信号の位
相が異っている間、すなわち前記PLL回路が中心周波
数にロックされていない間は当該第2の位相検波部34
の出力信号は当該2つの信号の各々の周波数の差のビー
ト状態にあり、第2のフィルター35の出力側には信号
が送出されない。While the phases of the two signals inputted to the second phase detection section 34 are different, that is, while the PLL circuit is not locked to the center frequency, the second phase detection section 34
The output signal is in the beat state of the difference in frequency between the two signals, and no signal is sent to the output side of the second filter 35.
当該2つの信号の位相が一致したとき、すなわち前記P
LL回路が中心周波数にロックされたとき当該第2の位
相検波部34は、ある値の直流電圧を出力する。When the phases of the two signals match, that is, the P
When the LL circuit is locked to the center frequency, the second phase detection section 34 outputs a DC voltage of a certain value.
この直流電圧の出力は第2のフィルター35を通ってロ
ック信号発生部36に供給され、このロック信号発生部
36はゲート回路部37に前記PLL回路のループが中
心周波数にrツクされたことを表わすロック信号を供給
し、これによってゲート回路部37がオンとなり、第2
中間周波信号2IFはこの時点ではじめてPSK信号信
号部調部38力される。The output of this DC voltage is supplied to a lock signal generator 36 through a second filter 35, and this lock signal generator 36 informs the gate circuit 37 that the loop of the PLL circuit has been clocked to the center frequency. This turns on the gate circuit section 37, and the second
At this point, the intermediate frequency signal 2IF is input to the PSK signal section 38 for the first time.
PSK信号信号部調部38内前記したようにPLL回路
が含まれており、このPLL回路に含まれるVCOは通
常水晶発振回路が使用されていて当該VCOの周波数制
御範囲は本発明に係るPLL回路の基本周波数の発振回
路である基準信号発振部32の周波数変動範囲と同等程
度に設定してあり、また、このPSK信号信号部調部3
8内LL回路のプルインレンジは第2中間周波信号2I
Fの中心周波数近辺の帯域帯に設定されている。As mentioned above, the PSK signal signal adjustment unit 38 includes a PLL circuit, and the VCO included in this PLL circuit normally uses a crystal oscillation circuit, and the frequency control range of the VCO is within the PLL circuit according to the present invention. The frequency fluctuation range of the reference signal oscillation section 32, which is an oscillation circuit with the fundamental frequency of
The pull-in range of the LL circuit within 8 is the second intermediate frequency signal 2I.
It is set to a band near the center frequency of F.
以上の実施例の動作説明に基づき本発明を要約すると、
以下のようになる。To summarize the present invention based on the operation explanation of the above embodiments,
It will look like this:
受信機が稼動状態にあり、受信信号の電波が入力される
と、この受信信号の周波数とローカル信号(実施例に照
らして言えば電圧制御発振部31から出力される信号)
の周波数の差の周波数を持つ中間周波信号が作られるが
、この中間周波信号がPSK信号復調部に入力される前
に、まずAFC回路が動作して上記中間周波信号の周波
数がPSK信号復調部への入力信号の中心周波数近辺に
なるように制御される。When the receiver is in operation and a radio wave of a received signal is input, the frequency of this received signal and the local signal (in light of the embodiment, the signal output from the voltage controlled oscillator 31)
An intermediate frequency signal having a frequency that is the difference between the frequencies of is controlled to be near the center frequency of the input signal to.
この動作によってAFC回路の出力誤差電圧は小さくな
る。This operation reduces the output error voltage of the AFC circuit.
上記AFC回路による中間周波信号の周波数制御の結果
、当該中間周波信号の周波数力ψLL回路のプルインレ
ンジまで制御されるとPLL回路は同期状態となり、上
記AFC回路の出力誤差電圧は殆んど零となってオア回
路(実施例ではオア回路部30)により当該PLL回路
のみが動作した状態となって中間周波信号はPLL回路
の基準信号発振部の発振周波数に規制され、当該中間周
波信号はPSK信号復調部の中心周波数内に制御される
。As a result of the frequency control of the intermediate frequency signal by the AFC circuit, when the frequency power of the intermediate frequency signal is controlled to the pull-in range of the ψLL circuit, the PLL circuit enters a synchronous state, and the output error voltage of the AFC circuit becomes almost zero. Then, only the PLL circuit is operated by the OR circuit (OR circuit section 30 in the embodiment), and the intermediate frequency signal is regulated to the oscillation frequency of the reference signal oscillation section of the PLL circuit, and the intermediate frequency signal becomes the PSK signal. Controlled within the center frequency of the demodulator.
このように制御したのち、それを検出してゲートをオン
にし、ここで始めてPSK信号復調部に上記中間周波信
号を入力するようにする。After controlling in this way, it is detected and the gate is turned on, and only then is the intermediate frequency signal inputted to the PSK signal demodulation section.
本発明に於ては、PSK信号の中間周波信号はPSK信
号信号部調部力される前にAFC回路及びPLL回路に
入力されてその周波数が制御されるため、受信機内にお
ける周波数のドリフトは専ら上記PLL回路の基準信号
発振部の周波数のドリフトによる。In the present invention, the intermediate frequency signal of the PSK signal is input to the AFC circuit and the PLL circuit to control its frequency before being output to the PSK signal modulation section, so that the frequency drift within the receiver is exclusively suppressed. This is due to the frequency drift of the reference signal oscillation section of the PLL circuit.
今、受信機内の発振回路の周波数安定度を1xlO’
とし、PSK信号の搬送波の周波数を500MHz、第
1中間周波信号の周波数を10MHz1第2中間周波信
号の周波数を455KHz、4相PSK信号を扱うもの
とし、周波数逓倍を8逓倍するものとして周波数のドリ
フトについて述べる。Now, set the frequency stability of the oscillation circuit in the receiver to 1xlO'
Assume that the frequency of the carrier wave of the PSK signal is 500 MHz, the frequency of the first intermediate frequency signal is 10 MHz, the frequency of the second intermediate frequency signal is 455 KHz, and a 4-phase PSK signal is handled, and the frequency drift is calculated by multiplying the frequency by 8. Let's talk about.
受信機のローカル発振部で一番周波数の高いのは第1段
目のローカル発振部であり、上記具体例ではその周波数
は490MHzである。Among the local oscillation sections of the receiver, the first stage local oscillation section has the highest frequency, and in the above specific example, the frequency is 490 MHz.
従来の装置ではこの第1段目のローカル発振部の発振周
波数のドリフトが装置全体のドリフトとなり、今の場合
、ローカル発振部の周波数安定度はlXl0−’である
ので周波数のドリフトは5KHzとなり、とのドリフト
はかなり大きい。In the conventional device, the drift in the oscillation frequency of the first-stage local oscillation section results in the drift of the entire device.In this case, the frequency stability of the local oscillation section is lXl0-', so the frequency drift is 5KHz. The drift is quite large.
このため従来は′ローカル発振部に通常の水晶発振回路
は使用できず、更に2桁程度周波数安定度を改善した発
振回路を使用する必要がある。For this reason, conventionally, a normal crystal oscillation circuit cannot be used in the local oscillation section, and it is necessary to use an oscillation circuit whose frequency stability has been further improved by about two orders of magnitude.
これに対して本発明では前記したように受信機の周波数
のドリフトはPLL回路に関係する基準信号発振部の周
波数のドリフトに起因する。On the other hand, in the present invention, as described above, the frequency drift of the receiver is caused by the frequency drift of the reference signal oscillator related to the PLL circuit.
上記具体例ではPLL回路に関係する基準信号発振部(
第2図の構成では基準信号発振部32)の発振周波数は
、第2中間周波信号の周波数が455KHz、周波数逓
倍が8逓倍であることにより、3640KH2である。In the above specific example, the reference signal oscillator (
In the configuration of FIG. 2, the oscillation frequency of the reference signal oscillator 32) is 3640 KH2 because the frequency of the second intermediate frequency signal is 455 KHz and the frequency multiplication is 8 times.
従って周波数のドリフトは約36Hzとなり、周波数の
ドリフトが極めて少なく、受信機内の発振回路に於てド
リフトを少なくするための特別の配慮を必要としない。Therefore, the frequency drift is about 36 Hz, which is extremely small, and no special consideration is required to reduce the drift in the oscillation circuit in the receiver.
8 本発明の効果
以上、詳細に説明した如く本発明では中間周波信号をP
SK復調部に入力する前に周波数逓倍回路を有するAF
C回路に入力し、このAFC回路で中心周波数附近の周
波数に制御された中間周波信号を更にPLL回路に入力
することによって上記中間周波信号の周波数を上記PS
K復調部の搬送波同期用PLL回路のプルインレンジ内
に容易に制御できるので、PSK信号の受信機内の発振
回路を特別に安定度のよいものとする必要はなく通常の
水晶発振回路の周波数安定度(1xlO−5〜1xlO
−6)で充分満足でき、またそのだめに消費される電力
も少なくなる。8. Effects of the present invention As explained in detail, in the present invention, the intermediate frequency signal is
AF with frequency multiplier circuit before input to SK demodulator
By inputting the intermediate frequency signal into the C circuit and controlling the frequency near the center frequency by this AFC circuit to the PLL circuit, the frequency of the intermediate frequency signal is changed to the frequency of the above PS.
Since it can be easily controlled within the pull-in range of the PLL circuit for carrier synchronization of the K demodulator, there is no need to make the oscillation circuit in the receiver of the PSK signal particularly stable, and the frequency stability of a normal crystal oscillation circuit can be easily controlled. (1xlO-5~1xlO
-6) is fully satisfactory, and the power consumed is also reduced.
更にPSK送信機に於ても受信機側における安定したP
SK信号の復調作用により受信機と同様、その内部の発
振回路を特別に安定度のよいものとする必要もない等、
本発明はPSK変調方式を使用したデータ等の伝送シス
テムの安定した復調作用及び当該システムの安価な構成
並びに運用の面から極めて顕著なる効果を奏するもので
ある。Furthermore, even in PSK transmitters, stable P on the receiver side
Due to the demodulation effect of the SK signal, there is no need to make the internal oscillation circuit particularly stable, just like in the receiver.
The present invention provides extremely significant effects in terms of stable demodulation of a data transmission system using the PSK modulation method, and in terms of inexpensive configuration and operation of the system.
第1図A、Bは従来のPSK信号の送信機及び受信機の
構成を示すブロック図、第2図は本発明の実施例に係る
PSK信号の受信機の要部を示すブロック図である。FIGS. 1A and 1B are block diagrams showing the configuration of a conventional PSK signal transmitter and receiver, and FIG. 2 is a block diagram showing the main parts of a PSK signal receiver according to an embodiment of the present invention.
Claims (1)
この周波数弁別した出力によって上記中間周波信号のロ
ーカル発振部の発振周波数を制御するAFC回路ループ
と、上記中間周波信号を逓倍した信号と基準信号とを位
相比較し、その位相誤差信号によって上記中間周波信号
のローカル発振部の発振周波数を制御するPLL回路ル
ープを中間周波信号の送出段とPSK信号復調部との間
に配置し、上記PLL回路回路ループカッツク状態った
時点で上記中間周波信号を上記PSK信号復調部に人力
するようにしたことを特徴とするPSK信号の搬送波同
期方式。1 Multiply the intermediate frequency signal of the received signal to discriminate the frequency,
An AFC circuit loop that controls the oscillation frequency of the local oscillation section of the intermediate frequency signal using the frequency-discriminated output, compares the phase of the signal multiplied by the intermediate frequency signal with a reference signal, and uses the phase error signal to generate the intermediate frequency signal. A PLL circuit loop that controls the oscillation frequency of the local oscillation section of the signal is arranged between the intermediate frequency signal sending stage and the PSK signal demodulation section, and when the PLL circuit circuit loop is cut off, the intermediate frequency signal is switched to the PSK signal. A carrier wave synchronization method for PSK signals characterized in that the signal demodulation section is manually operated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54044527A JPS5818821B2 (en) | 1979-04-12 | 1979-04-12 | PSK signal carrier synchronization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54044527A JPS5818821B2 (en) | 1979-04-12 | 1979-04-12 | PSK signal carrier synchronization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55136755A JPS55136755A (en) | 1980-10-24 |
JPS5818821B2 true JPS5818821B2 (en) | 1983-04-14 |
Family
ID=12693982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54044527A Expired JPS5818821B2 (en) | 1979-04-12 | 1979-04-12 | PSK signal carrier synchronization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5818821B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6076422A (en) * | 1983-09-30 | 1985-04-30 | Iseki & Co Ltd | Tractor transmission mechanism |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340426A (en) * | 1986-08-06 | 1988-02-20 | Hitachi Ltd | Timing PLL device |
-
1979
- 1979-04-12 JP JP54044527A patent/JPS5818821B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6076422A (en) * | 1983-09-30 | 1985-04-30 | Iseki & Co Ltd | Tractor transmission mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPS55136755A (en) | 1980-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7071773B2 (en) | Digital phase locked loop | |
JPS6119261A (en) | Frequency converting circuit | |
US5812615A (en) | Apparatus and method for maximizing frequency offset tracking performance in a digital receiver | |
Costas | Synchronous communications | |
JPS5818821B2 (en) | PSK signal carrier synchronization method | |
JP2877177B2 (en) | Receiver for frequency division multiple access communication system | |
EP0293828B1 (en) | Circuit device for demodulating DSB modulated signals and method therefor | |
JP3399059B2 (en) | Switching type demodulation circuit | |
JP2890992B2 (en) | Satellite receiver | |
JPH06216769A (en) | Pll circuit and digital demodulation circuit provided with the same | |
JP3396047B2 (en) | Receiver | |
JPH0464217B2 (en) | ||
JPS6330049A (en) | MSK demodulation circuit | |
JP3410841B2 (en) | Phase modulated wave carrier regeneration circuit | |
JP2650556B2 (en) | Synchronous spread spectrum modulation demodulator | |
JPS6178250A (en) | Circuit for frequency conversion | |
JP2943625B2 (en) | Carrier recovery method | |
JP2650557B2 (en) | Synchronous spread spectrum modulated wave demodulator | |
JPS6236368Y2 (en) | ||
JPH04345328A (en) | Line changeover control circuit | |
JPH04341034A (en) | Demodulation circuit for digital angle modulation signal | |
JPH0715482A (en) | Automatic frequency controller | |
JPH07255016A (en) | Compatible receiver for analog and digital broadcast | |
JPH06105881B2 (en) | Wireless repeater | |
JPH06120992A (en) | Digital modulation wave demodulation circuit |