[go: up one dir, main page]

JPS58186937A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS58186937A
JPS58186937A JP6863682A JP6863682A JPS58186937A JP S58186937 A JPS58186937 A JP S58186937A JP 6863682 A JP6863682 A JP 6863682A JP 6863682 A JP6863682 A JP 6863682A JP S58186937 A JPS58186937 A JP S58186937A
Authority
JP
Japan
Prior art keywords
etching
frequency
etching rate
ion
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6863682A
Other languages
Japanese (ja)
Other versions
JPH0454373B2 (en
Inventor
Shinichi Taji
新一 田地
Takashi Tokuyama
徳山 巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6863682A priority Critical patent/JPS58186937A/en
Publication of JPS58186937A publication Critical patent/JPS58186937A/en
Publication of JPH0454373B2 publication Critical patent/JPH0454373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To change a ratio between ions applied to substrate and to obtain a dry etching method which assures high etching speed and superior in the selectivity by changing a discharge frequency with time. CONSTITUTION:A frequency has been divided on the time sharing basis and the etching has been conducted by periodically changing the frequencies of 13.56MHz and 300kHz. As a result, the etching speed of Si has been improved for about 3-5 times in that of a single frequency. A selection ratio of Si and SiO2 is about 10 and selection ratio of Si and photo resist has been about 3-5. When the etching is carried out with a high frequency, the etching rate of Si is high because a large amount of CF<+3> is contained. However, on the contrary, frequency becomes 100kHz, amount of CF<+> increases and therefore the etching rate is lowered. There is no large change of etching rate in the SiO2 or photo resist. When period and frequency are changed, both etching rate and selectivity change. Therefore it is an effective method for high speed etching.

Description

【発明の詳細な説明】 本発明は、ドライエツチング方法に関する。さらに詳し
くは、高速エツチングと選択性エツチングに好適なイオ
ン比とエネルギーを可変としたエツチング方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry etching method. More specifically, the present invention relates to an etching method in which the ion ratio and energy are variable and suitable for high-speed etching and selective etching.

従来のドライエツチング装置には、IQQkHz位の低
絢波平行平板型プラズマエツチング装置、13.56M
Hzの高周波平行平板型プラズマエツチング装置、円筒
型プラズマエツチング装置、さらに、2.45Gt(z
のマイクロ波プラズマエツチング装置、また、イオン諒
とエツチング室とを分離したイオンビームエツチング装
置などがある。さらに、十〇平板型h=では、ウェハー
を置く台に高周波を印加する刀ソードカップル型と対向
電極から高周波電力を供給するアノードカップル型があ
る。そして、高周波放電平行平板型カソードカップル方
式エツチング表置は通常反応性イオンエツチング衣IM
とも呼ばれ、もつとも便用されている。
Conventional dry etching equipment includes a low-wavelength parallel plate plasma etching equipment of about IQQkHz, 13.56M
Hz high frequency parallel plate plasma etching equipment, cylindrical plasma etching equipment, and 2.45Gt (z
There are microwave plasma etching apparatuses, and ion beam etching apparatuses in which the ion chamber and etching chamber are separated. Furthermore, the 10 flat plate type h= includes a sword couple type in which high frequency is applied to the table on which the wafer is placed and an anode couple type in which high frequency power is supplied from a counter electrode. The high frequency discharge parallel plate cathode couple method etching surface is usually a reactive ion etching coating IM.
It is also called, and is often used conveniently.

従来、以上のようなドライエツチング装置では、#常、
単一)鳩波数(例えば、13.56MH2)で放電を行
ない、エツチングする方式が用いられていた。しかし、
放電周波絨が一定である場合には、プラズマ中のイオン
種間の比率が、入力等を変化させても友らないことが知
られている。
Conventionally, in the dry etching equipment described above, #
A method was used in which discharge was performed at a single wave frequency (for example, 13.56 MH2) and etching was performed. but,
It is known that when the discharge frequency is constant, the ratio between ion species in the plasma does not change even if the input is changed.

したかって、入力か小さい場合、堆積をおこし易いイオ
ンの比率か多くなり、その結果、エツチング速度か低下
し、さらには、エツチングがおこらなくなることがある
。従来、この対策としては選択性を向上させるため、添
加ガスを導入することか必要であった。
Therefore, when the input power is small, the proportion of ions that are likely to cause deposition increases, resulting in a decrease in the etching rate, and furthermore, etching may not occur at all. Conventionally, as a countermeasure for this, it was necessary to introduce an additive gas in order to improve selectivity.

本発明の目的は、以上の点に鑑み、放電周波数を時間的
に変化させる放電方式により、基板に入射するイオン種
間の比率を変化させ、エツチング速度が大きく、かつ、
選択性に優れたドライエツチング方式を提供することに
ある。
In view of the above points, an object of the present invention is to change the ratio of ion species incident on a substrate by a discharge method that changes the discharge frequency over time, and to increase the etching rate.
An object of the present invention is to provide a dry etching method with excellent selectivity.

プラズマ中に発生したイオンの中には、エツチングに有
効なイオンとエツチングをおさえるイオンか存在するこ
とを本発明者らは新たに見出した。
The present inventors have newly discovered that among the ions generated in plasma, there are ions that are effective for etching and ions that suppress etching.

また、その効果が入射するイオンの有するエネルギーに
よることも明らかとなった。これらの結果から、本発明
はイオン比とエネルギーとを変化させることにより、エ
ツチング特性を自在に制御することを可能とし、従来の
ドライエツチング法に比べて性能面で格段の改良をはか
ったものである。
It has also become clear that this effect is due to the energy of the incident ions. From these results, the present invention makes it possible to freely control the etching characteristics by changing the ion ratio and energy, and has achieved a significant improvement in performance compared to the conventional dry etching method. be.

例えば、CF、ガスを放電すると、プラズマ中に5種類
のイオンが発生する。第1図は、CF、プラズマ中の5
種類のイオンについて、Siエツチング率の入射イオン
エネルギー依存性を示したものである。図(alはCP
n (n=0〜4)(7)場合、図(b)はF+の場合
を示す。また、図の縦軸はSiエツチング率質堆堆積 
Deposition )の割合を、正の値はエツチン
グ(Etching )の簀IJ合を示す。同図から、
イオンによる堆積のしやすさは、FからCF3. CF
2. CF、 CとなるにつIして大きくなり、例えば
、Q、5keVのイオンエネルギーでは、F″、 cp
;2 cF;はSlをエツチングし、迎に、cp;c+
は表面への物質堆積がおこる。さらに、同図かられかる
ように、そのイオンエネルギ゛−で、堆積するイオンと
エツチングするイオンとその割合が大きく変る。したか
って、従来の装7のように、ある一定のエネルギー(1
00〜fjO(J eV)の各イオンか入射する場合、
堆積とエツチングとが一定の割合で競合し、全体として
のエツチング速度か決まってくることがわかる。
For example, when CF gas is discharged, five types of ions are generated in the plasma. Figure 1 shows CF, 5 in plasma.
This figure shows the dependence of Si etching rate on incident ion energy for different types of ions. Figure (al is CP
In the case of n (n=0 to 4) (7), Figure (b) shows the case of F+. In addition, the vertical axis of the figure is the Si etching rate deposit.
A positive value indicates the extent of etching. From the same figure,
The ease of deposition by ions ranges from F to CF3. C.F.
2. For example, at an ion energy of Q, 5 keV, F'', cp
;2 cF; etches Sl, and then cp; c+
, material deposition occurs on the surface. Furthermore, as can be seen from the figure, the ratio of depositing ions to etching ions changes greatly depending on the ion energy. Therefore, like the conventional equipment 7, a certain amount of energy (1
When each ion from 00 to fjO (J eV) is incident,
It can be seen that deposition and etching compete at a certain rate and determine the overall etching rate.

放電周波数による入射イオン種の組成比率の変化は、ガ
スをイオン化する電子のエネルギーと密度によると考え
られる。第2図は、100kHz。
It is thought that the change in the composition ratio of the incident ion species due to the discharge frequency is due to the energy and density of the electrons that ionize the gas. Figure 2 is 100kHz.

13.56 MHz、 2.45GHzで、CF4放電
した時に得られたイオン組成比率を示す電図である。周
波数が高くなるとC丙の比率が増加するのに対して、C
F+が減少する。すなわち、高い周波数でエツチングを
するとC所が多いことから81のエツチング速度か大き
く、逆に1oOkHzになるとCF+が増えるのでエツ
チング速度は小さくなる。これに対して、SiO□やホ
トレジストでは、イオン分子中のCか材料中の酸素と結
合してCOやCo2となり、蒸発することから、同じエ
ネルギーのイオンを入射する場合、両者のエツチング速
度に大きな変化がない。したがって、Sl と5i02
.Siとホトレジストとのエツチング速度比を、放電周
波数により変化させうることになる。さらに実際には、
放電周波数により入射イオンのエネルギーも変化する。
It is an electrogram showing the ion composition ratio obtained when CF4 discharge is performed at 13.56 MHz and 2.45 GHz. As the frequency increases, the ratio of C
F+ decreases. That is, when etching is performed at a high frequency, there are many C points, so the etching speed is 81, which is high, and conversely, when the frequency is 100kHz, CF+ increases, so the etching speed becomes low. On the other hand, in SiO□ and photoresist, the C in the ion molecules combines with the oxygen in the material to form CO or Co2, which evaporates. Therefore, when ions with the same energy are incident, the etching rate of both is greatly affected. no change. Therefore, Sl and 5i02
.. This means that the etching rate ratio between Si and photoresist can be changed by changing the discharge frequency. Furthermore, in reality,
The energy of incident ions also changes depending on the discharge frequency.

例えば、2.45 GHzのマイクロ波プラズマエツチ
ングでは10〜20eVであるし、13.56 MHz
の反応性イオンエツチングではlOO〜400 eV 
、そして、100kHzノエツチングでは400〜20
00 eVである。SiO□やホトレジストは、入射イ
オンエネルギーが小さく、200 eV程度では、エツ
チングされにくい。とくに、マイクロ波プラズマエツチ
ングでは、5IO2がエツチングされなくなる。したか
って、放電周波数を小さくすると、イオン組成比率では
CF4か増え、エネルギーが大きくなるように変化し、
Slのエツチング速度がSi O2、ホトレジストに対
して小さくなる。また、逆に周波数を尚(すると、Sl
の方が速くエツチングされるようになる。
For example, in microwave plasma etching at 2.45 GHz, it is 10 to 20 eV, and at 13.56 MHz
For reactive ion etching, lOO ~ 400 eV
, and 400 to 20 for 100kHz noise
00 eV. SiO□ and photoresist have low incident ion energy and are difficult to be etched at about 200 eV. In particular, in microwave plasma etching, 5IO2 is no longer etched. Therefore, when the discharge frequency is decreased, the ion composition ratio increases by CF4, and the energy changes to become larger.
The etching rate of Sl is lower than that of SiO2 and photoresist. In addition, conversely, the frequency can be changed (then, Sl
will be etched faster.

以下に本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

実力出向 ]。Skilled secondment].

第3図は本実施例におけるガスプラズマ発生用に印加し
た電圧の周波数の時間的変化を示したものである。すな
わち、本実施例においては、周波融ヲ時分割して、13
.56 MHzと300kHzを周期的に表化させてエ
ツチングを行なった。その結果、Slのエツチング速度
は、単一周波数の場合の約3〜5倍速くなった。また、
SiとSiO2の選択比、Si/5in2は約10で、
引とホトレジストの選択比、Si/ホトレジストは3〜
5程度であった。ここで、N4期と周波数を変えると、
エツチング速度と選択性か表化する。したがって、本実
施例の方法は、晶速エツチングと選択エツチングに有効
な方法である。
FIG. 3 shows temporal changes in the frequency of the voltage applied for gas plasma generation in this example. That is, in this embodiment, the frequency melting is time-divided into 13
.. Etching was performed by periodically displaying 56 MHz and 300 kHz. As a result, the etching rate of Sl was approximately 3 to 5 times faster than with a single frequency. Also,
The selectivity ratio between Si and SiO2, Si/5in2, is approximately 10,
Selection ratio of Si/photoresist is 3~
It was about 5. Here, if we change the N4 period and frequency,
Etching speed and selectivity are tabulated. Therefore, the method of this embodiment is effective for crystal speed etching and selective etching.

実施例 2゜ 第4図は本実施例における放電周波数(実線)とそれに
伴なうイオンエネルギー(破線)の変化を示す図である
。図示のように、放電周波数を非周期的に変化させて、
13.56MHzの放電から100kHzの放電に短時
間変えると、イオンのエネルギーが、典型的に、は20
0eVから1000eVへと変化し、イオンのスパッタ
リング効果が増え、エツチング残渣を取り除く。また、
イオンエネルギーか大さくなることから、イオンか基板
に対して垂直に入射し、マスク通りの精度のよい加工に
適することになる。さらに、この間にエツチング速度が
速(なることから、13.56MHzだけのエツチング
より深いエツチングを行なうことができる。
Example 2 FIG. 4 is a diagram showing the discharge frequency (solid line) and the accompanying change in ion energy (broken line) in this example. As shown in the figure, by changing the discharge frequency aperiodically,
When changing briefly from a 13.56 MHz discharge to a 100 kHz discharge, the energy of the ions typically increases by 20
The voltage changes from 0 eV to 1000 eV, increasing the ion sputtering effect and removing etching residue. Also,
Since the ion energy is large, the ions are incident perpendicularly to the substrate, making it suitable for precise processing according to the mask. Furthermore, since the etching speed becomes faster during this period, deeper etching can be performed than etching at only 13.56 MHz.

つぎに、放電周波数を第5図に示すように非周期的に変
化させ、SiO□のエツチングを行なった。
Next, the discharge frequency was changed aperiodically as shown in FIG. 5, and SiO□ was etched.

その結果、初期にはイオンエネルギーか大きく、エツチ
ング速度は1000 A/m+n 、後半ではエツチン
グ速度は100A/minとなり、本実施例の方法は、
エツチング初期は高速で、エツチング後半は低速でエツ
チングする場合に有効である。
As a result, the ion energy is high in the early stage and the etching rate is 1000 A/m+n, and in the latter half the etching rate is 100 A/min.
This is effective when etching is performed at high speed in the early stage of etching and at low speed in the latter half of etching.

非周期的と周期的な放電周波数の変化を組み合せれば、
加工精度、選択性の良好なエツチングができる。
By combining aperiodic and periodic discharge frequency changes,
Etching with good processing accuracy and selectivity is possible.

実施例 3゜ 本発明は第6図に示すような振幅変調波を用いても夷規
することかできる。k6図は300kHzの仮に13.
56 MHzの高周波を重ねて時間的に変化させた彼を
示す。プラズマには、画周波数の効果が生じる。そのイ
オン同志の組成比は時間的に周波dK&化させることに
よっても達成することができる。
Embodiment 3 The present invention can also be implemented using an amplitude modulated wave as shown in FIG. The k6 diagram is hypothetically 13. at 300kHz.
It shows him changing over time by overlapping 56 MHz high frequency waves. Plasma has image frequency effects. The composition ratio of ions can also be achieved by temporally changing the frequency to dK&.

以上説明したところから、本発明によれば以下のような
効果かある。
From what has been explained above, the present invention has the following effects.

飼えば、放電周波数を低周波から高周波に連続的に変化
させると、エツチングに関与するイオンのエネルギーは
連続的に1000 eV程度から100eV性度まで変
化することになる。エツチング形状はイオンのエネルギ
ーか高い程、マスク通りにエツチングされることから、
初めにイオンのエツチング効果を大きくした方か、加工
精度の向上に有効である。これと逆に、高周波から低周
波に連続的に変えると、最初にマスク下のエツチングが
生じ、つぎに、マスク通りの形状にエツチングされ、後
工程での膜形成時に段差部をおおいやすくなる効果があ
る。
If the discharge frequency is continuously changed from low frequency to high frequency, the energy of the ions involved in etching will continuously change from about 1000 eV to 100 eV. As for the etching shape, the higher the ion energy, the more it will be etched according to the mask.
It is effective to increase the etching effect of ions first, or to improve processing accuracy. On the other hand, if the frequency is changed continuously from high to low frequency, etching will occur under the mask first, and then etching will take place in the shape of the mask, making it easier to cover the stepped portions during film formation in the later process. There is.

なお、本発明は、周波数可変の人力か必要である。電源
と装置を自動的に整合する回路については、ある周波数
に整合しておき、別の周波数に整合をとらない方法も可
能である。また、違う周波数の電源を複数個以上使うこ
とによっても実現することができる。
Note that the present invention requires manual power to vary the frequency. As for circuits that automatically match power supplies and devices, it is also possible to match one frequency and not match another frequency. This can also be achieved by using multiple or more power supplies with different frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCF’h (n= 0〜4 ) (図(a))
とF+(図(b))のSiエツチング率の入射イオンエ
ネルギー依存性を示す図、第2図は放電周波数を変えた
時のCF4のイオン組成比率を示す電図、第3図〜第6
図は電源入力周波数の時間変化を示す図である。 代理人弁理士 中村純之助 矛2図 十3図 才4図
Figure 1 shows CF'h (n=0~4) (Figure (a))
Figure 2 is an electrogram showing the ion composition ratio of CF4 when the discharge frequency is changed; Figures 3 to 6 are diagrams showing the dependence of Si etching rate on incident ion energy for
The figure is a diagram showing temporal changes in power supply input frequency. Representative Patent Attorney Junnosuke Nakamura 2 figures, 13 figures, 4 figures

Claims (1)

【特許請求の範囲】[Claims] 1、 ガスの高周波放電を用いたドライエツチング方法
において、該放電の周波数を時間的に変化させることに
より、被エツチング材に入射するイオン種間の比率とエ
ネルギーとを時間的に変化させて該被エツチング材のエ
ツチングを行なうことを特徴とするドライエツチング方
法。
1. In a dry etching method using high-frequency gas discharge, by temporally changing the frequency of the discharge, the ratio and energy of ion species incident on the material to be etched are temporally changed. A dry etching method characterized by etching an etching material.
JP6863682A 1982-04-26 1982-04-26 Dry etching method Granted JPS58186937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6863682A JPS58186937A (en) 1982-04-26 1982-04-26 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6863682A JPS58186937A (en) 1982-04-26 1982-04-26 Dry etching method

Publications (2)

Publication Number Publication Date
JPS58186937A true JPS58186937A (en) 1983-11-01
JPH0454373B2 JPH0454373B2 (en) 1992-08-31

Family

ID=13379415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6863682A Granted JPS58186937A (en) 1982-04-26 1982-04-26 Dry etching method

Country Status (1)

Country Link
JP (1) JPS58186937A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079726A (en) * 1983-10-03 1985-05-07 テ−ガル・コ−ポレ−シヨン Plasma reactor device and method
JPS60102743A (en) * 1983-11-09 1985-06-06 Nec Corp Dry etching method
JPS60140726A (en) * 1983-12-27 1985-07-25 Fujitsu Ltd Plasma vapor phase growth equipment
US4579618A (en) * 1984-01-06 1986-04-01 Tegal Corporation Plasma reactor apparatus
US4585516A (en) * 1985-03-04 1986-04-29 Tegal Corporation Variable duty cycle, multiple frequency, plasma reactor
FR2613168A1 (en) * 1985-10-16 1988-09-30 France Etat METHOD AND DEVICE FOR PLASMA ETCHING A MATERIAL
JP2001274099A (en) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983764A (en) * 1972-12-15 1974-08-12
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983764A (en) * 1972-12-15 1974-08-12
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079726A (en) * 1983-10-03 1985-05-07 テ−ガル・コ−ポレ−シヨン Plasma reactor device and method
JPS60102743A (en) * 1983-11-09 1985-06-06 Nec Corp Dry etching method
JPS60140726A (en) * 1983-12-27 1985-07-25 Fujitsu Ltd Plasma vapor phase growth equipment
US4579618A (en) * 1984-01-06 1986-04-01 Tegal Corporation Plasma reactor apparatus
US4585516A (en) * 1985-03-04 1986-04-29 Tegal Corporation Variable duty cycle, multiple frequency, plasma reactor
FR2613168A1 (en) * 1985-10-16 1988-09-30 France Etat METHOD AND DEVICE FOR PLASMA ETCHING A MATERIAL
JP2001274099A (en) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method

Also Published As

Publication number Publication date
JPH0454373B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
KR890004881B1 (en) Plasma treatment method and apparatus
US8337713B2 (en) Methods for RF pulsing of a narrow gap capacitively coupled reactor
JP4714166B2 (en) Substrate plasma processing apparatus and plasma processing method
JP2603217B2 (en) Surface treatment method and surface treatment device
JPS60126832A (en) Dry etching method and device thereof
JP2002503029A (en) Method for reducing mask corrosion during plasma etching
JPS61136229A (en) Dry etching device
KR20160088816A (en) Etching method
US7851367B2 (en) Method for plasma processing a substrate
JP2000156370A (en) Method of plasma processing
JPS58186937A (en) Dry etching method
KR20160088819A (en) Etching method
JP2021521590A (en) Equipment and methods for controlling the ion energy distribution in the process plasma
KR100878467B1 (en) Apparatus for processing of semiconductor wafer
JP3350973B2 (en) Plasma processing method and plasma processing apparatus
JP2569019B2 (en) Etching method and apparatus
JP2851765B2 (en) Plasma generation method and apparatus
JPH02156529A (en) Oxide layer inclined etching method of semiconductor wafer
JP3002033B2 (en) Dry etching method
JP2650626B2 (en) Plasma processing method
JPH0393224A (en) Dry etching
US20250029818A1 (en) Plasma processing method and plasma processing device
JP3492933B2 (en) Etching method for crystalline lens
JPH08165584A (en) Plasma processing method
JPH02138472A (en) Method for cleaning deposited film forming device