[go: up one dir, main page]

JPS58186057A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPS58186057A
JPS58186057A JP6875282A JP6875282A JPS58186057A JP S58186057 A JPS58186057 A JP S58186057A JP 6875282 A JP6875282 A JP 6875282A JP 6875282 A JP6875282 A JP 6875282A JP S58186057 A JPS58186057 A JP S58186057A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
acceleration
acceleration sensor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6875282A
Other languages
Japanese (ja)
Inventor
Shigefumi Masuda
増田 重史
Takakiyo Nakagami
中神 隆清
Takeo Iwama
岩間 武夫
Akira Okamoto
明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6875282A priority Critical patent/JPS58186057A/en
Publication of JPS58186057A publication Critical patent/JPS58186057A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は光ファイバを用いた加速度センサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an acceleration sensor using an optical fiber.

(2)技術の背景 最近、電力系や工業プラントへの応用を目的として、光
フアイバ応用計測装置開発の気運が急激に高まっている
。これは光ファイバの有する無誘導性、絶縁性、安全・
防爆性などの特徴を積極的に利用した計測法であり、光
ファイバをセンサあるいは計測信号の伝送路に用いるこ
とにより、高a界、高電圧、引火爆発性雰囲気などの悪
環境下でも誘導障害、絶縁破壊、短絡、引火爆発などの
危険性がなく高精度の計測が可能である。そして振動、
加速度もその計測対称の−・つである。
(2) Background of the technology Recently, there has been a rapid increase in momentum for the development of optical fiber applied measurement devices for application to power systems and industrial plants. This is due to the non-inductive, insulating, safe and
This is a measurement method that actively utilizes characteristics such as explosion-proofness, and by using optical fibers as the sensor or measurement signal transmission path, induction interference can be avoided even in adverse environments such as high a-fields, high voltages, and flammable and explosive atmospheres. , high precision measurement is possible without the dangers of dielectric breakdown, short circuits, ignition and explosions. and vibration,
Acceleration is also one of the measurement objects.

(3)従来技術と問題点 第1図は従来の光加速度センサの構成を説明するための
図である。同図において、lは光センサ部、2及び2′
は光ファイバ、3は光送信機、4は光受信機をそれぞれ
示している。
(3) Prior Art and Problems FIG. 1 is a diagram for explaining the configuration of a conventional optical acceleration sensor. In the figure, l is the optical sensor section, 2 and 2'
3 represents an optical fiber, 3 represents an optical transmitter, and 4 represents an optical receiver.

光センサ部1は光ファイバ2に接続されたマイクロレン
ズ5、偏光子6、おもり7を有する光弾性素子8.1/
4人板9、検光子10、元ファイバ2′に接続されたマ
イクロレンズ5′が順次配列され、偏光子6と検光子1
0とはその元軸が互に直交するように配置されている。
The optical sensor section 1 includes a photoelastic element 8.1/ having a microlens 5 connected to an optical fiber 2, a polarizer 6, and a weight 7.
A four-person board 9, an analyzer 10, and a microlens 5' connected to the original fiber 2' are arranged in sequence, and a polarizer 6 and an analyzer 1
0 are arranged so that their original axes are orthogonal to each other.

・そして光送信機3からの光はマイクロレンズ5でコリ
メートされたのち偏光子5で直−偏光に変換される。こ
の光は矢印方向の振動に応じて複屈折性を呈する光弾性
素子8を通過して楕円偏光となり、1/4人板9と検光
子10によって光の強度に変換される。この光を光受信
機4で受信すれば振動又は加速度が計測される。
-The light from the optical transmitter 3 is collimated by the microlens 5 and then converted to directly polarized light by the polarizer 5. This light passes through a photoelastic element 8 exhibiting birefringence in response to vibration in the direction of the arrow, becomes elliptically polarized light, and is converted into light intensity by a quarter plate 9 and an analyzer 10. If this light is received by the optical receiver 4, vibration or acceleration can be measured.

このセンサは光弾性素子にLiNb0.又はエポキシ樹
脂等を用いて振動又は加速度を測定することができるが
装置が大がかりと々ジ、また高価となるという欠点があ
る。
This sensor uses a photoelastic element with LiNb0. Alternatively, vibration or acceleration can be measured using an epoxy resin or the like, but this method has the drawback that the device is large-scale and expensive.

(4)発明の目的 本発明は上記従来の欠点に鑑み、小型で且つ安価な元フ
ァイバを用−た加速度センサを提供することを目的とす
るものである。
(4) Purpose of the Invention In view of the above-mentioned drawbacks of the conventional technology, it is an object of the present invention to provide an acceleration sensor using a compact and inexpensive original fiber.

(5)発明の構成 そしてこの目的は本発明によれば、同心円状に2つのコ
アを有する光ファイバを用いて形成した密着巻きのコイ
ルと、該コイルに初圧を加えるばねと、該ばねと前記光
フアイバコイルとの間に挿入された重錘と、上記各部材
を収容する筐体とにより構成され、重錘に加わる加速度
により光ファイバ02つのコア間に生ずる光パワーの移
動を検知して加速度の大きさを測定することを特徴とす
る加速度センサを提供することによって達成される。
(5) Structure and object of the invention According to the present invention, there is provided a closely wound coil formed using an optical fiber having two concentric cores, a spring applying initial pressure to the coil, and a spring that applies an initial pressure to the coil. It is composed of a weight inserted between the optical fiber coil and a casing that houses each of the above members, and detects the movement of optical power generated between the two cores of the optical fiber by the acceleration applied to the weight. This is achieved by providing an acceleration sensor that measures the magnitude of acceleration.

(6)発明の実施例 以下本発明実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明による加速度センサの構造を示す図であ
る。
FIG. 2 is a diagram showing the structure of an acceleration sensor according to the present invention.

同図において、11は同心円状に2つのコアを有する元
ファイバ12を密着巻きしまたコイル、13は重錘、1
3aは重錘13の位置を保っ板ばね、14は光フアイバ
コイルに初圧を与えるばね、15は筐体をそれぞれ示す
In the same figure, reference numeral 11 denotes a coil in which the original fiber 12 having two cores is closely wound concentrically, 13 a weight, 1
3a is a leaf spring that maintains the position of the weight 13, 14 is a spring that applies initial pressure to the optical fiber coil, and 15 is a housing.

光フアイバコイル11とばね14は重錘13を挾んで筐
体15の中に収容されている。なお16は光源、17.
17’は2つのコアより出射する光を別々に受光する光
センサ、18は差動増幅器である。
The optical fiber coil 11 and the spring 14 are housed in a casing 15 with a weight 13 in between. Note that 16 is a light source, and 17.
17' is an optical sensor that separately receives the light emitted from the two cores, and 18 is a differential amplifier.

光ファイバ12は第3図に示す如く2つのコア12m 
、12bを有しており、その屈折率は互に異なるように
している。
The optical fiber 12 has two cores 12m as shown in FIG.
, 12b, and their refractive indexes are made to be different from each other.

第4図は光ファイバ12の屈折率分布を示す図であり1
1は中心のコアより外周のコアの方が屈折率が犬なる場
合、bは外周のコアより中心のコアの方が屈折率が大な
る場合をそれぞれ示している。a図の光ファイバは、加
圧がない場合は光パワーが白ぬき矢印の如く中心のコア
12mに集中しているが、加圧されると光パワーは点線
矢印の如く外周のコア12bへ移動する。b図の光ファ
イバは加圧がない場合は光パワーが白ぬき矢印の如く外
周のコア12bに集中するが、加圧されると元パワーは
点線矢印の如く中心のコア12aへ移動する。
FIG. 4 is a diagram showing the refractive index distribution of the optical fiber 12.
1 indicates a case where the refractive index of the outer core is greater than that of the center core, and b indicates a case where the refractive index of the center core is greater than that of the outer circumference core. In the optical fiber shown in figure a, when no pressure is applied, the optical power is concentrated in the central core 12m as shown by the white arrow, but when pressure is applied, the optical power moves to the outer core 12b as shown by the dotted arrow. do. In the optical fiber shown in Figure b, when no pressure is applied, the optical power is concentrated in the outer core 12b as shown by the white arrow, but when pressure is applied, the original power moves to the central core 12a as shown by the dotted arrow.

本発明の加速度センサは光源16から光ファイバ12に
入射される光パワーがコイル11において、重錘13の
加速度による圧力により2つのコア間f#動するのを、
光セ/す17.17’及び差動増幅器18によって検出
し、加速度の大きさを測定するのである。
The acceleration sensor of the present invention allows the optical power input from the light source 16 to enter the optical fiber 12 to move f# between the two cores in the coil 11 due to the pressure caused by the acceleration of the weight 13.
The acceleration is detected by the optical sensor 17, 17' and the differential amplifier 18, and the magnitude of the acceleration is measured.

この場合コイル11f:形成している元ファイバの長さ
lが長くなるほど第5図に示す卯〈感度は良くなる。こ
のときの光ファイバの損失は1dB、4゜以下であるの
でよほど長くない限り無視できる。
In this case, the coil 11f: The longer the length l of the original fiber being formed, the better the sensitivity (as shown in FIG. 5). The loss of the optical fiber at this time is less than 1 dB and 4 degrees, so it can be ignored unless it is very long.

また同じファイバ中を通った後の光パワーの差を測定す
るのでファイバ伝搬中のノイズの成分は打ち消され、S
/N比が改善される。
Also, since the difference in optical power after passing through the same fiber is measured, the noise component during fiber propagation is canceled out, and the S
/N ratio is improved.

(力 発明の効果 以上、詳細に説明したように本発明の加速度センサば、
同心円状に2つのコアを有する光ファイバを用いて形成
したコイルを検出素子として用いることにより、コンパ
クトに構成され、且つ安価に製造できるといった効果大
なるものである。
(Force) As explained in detail above, the acceleration sensor of the present invention has the following effects:
By using a coil formed using an optical fiber having two concentric cores as a detection element, it is highly effective that it can be constructed compactly and manufactured at low cost.

【図面の簡単な説明】 第1図は光ファイバを用いた従来の加速度センサを説明
するだめの図、第2図は本発明による加速度センサの構
造を示す図、第3図は本発明の加速度センサに用因る光
ファイバの断面図、第4図は本発明の加速度センサに用
いる光ファイバの屈折率分布を示す図、第5図は本発明
の加速度センサの光フアイバ長さと感度との関係を示し
た図である。 図面において、11は光フアイバコイル、12は光ファ
イバ、13は重錘、14はばね、15は筐体、16は光
源、17.17’は光センサ、18は差動増幅器をそれ
ぞれ示す。 特許出願人 富士通株式会社 特許出願代理人 弁理士 宵 木   朗 弁理士西舘和之 弁理士円田幸男 弁理士山口昭之 第1図 莞20 ニー===コ //− 明鷲粍 転        線 @4+慟 井      。 転
[Brief Description of the Drawings] Fig. 1 is a diagram for explaining a conventional acceleration sensor using an optical fiber, Fig. 2 is a diagram showing the structure of an acceleration sensor according to the present invention, and Fig. 3 is a diagram showing the structure of an acceleration sensor according to the present invention. A cross-sectional view of the optical fiber used in the sensor, FIG. 4 is a diagram showing the refractive index distribution of the optical fiber used in the acceleration sensor of the present invention, and FIG. 5 is a diagram showing the relationship between the optical fiber length and sensitivity of the acceleration sensor of the present invention. FIG. In the drawings, 11 is an optical fiber coil, 12 is an optical fiber, 13 is a weight, 14 is a spring, 15 is a housing, 16 is a light source, 17 and 17' are optical sensors, and 18 is a differential amplifier. Patent Applicant Fujitsu Limited Patent Application Agent Patent Attorney Akira Yoiki Patent Attorney Kazuyuki Nishitate Patent Attorney Yukio Enda Patent Attorney Akiyuki Yamaguchi 20th Figure 2 Well. Rotation

Claims (1)

【特許請求の範囲】[Claims] 1、同心円状に2つのコアを有する光ファイバを用いて
形成した密着巻きのコイルと、該コイルに初圧を加える
ばねと、該ばねと前記光フアイバコイルとの間に挿入さ
れた重錘と、上記各部材を収容する1体とにより構成さ
れ、重錘に加わる加速度により光ファイバの2つのコア
間に生ずる光パワーの移動を検知して加速度の大きさを
測定することを1%徴とする加速度センサ。
1. A closely wound coil formed using an optical fiber having two concentric cores, a spring that applies an initial pressure to the coil, and a weight inserted between the spring and the optical fiber coil. , and a body that accommodates each of the above members, and the 1% mark measures the magnitude of the acceleration by detecting the movement of optical power that occurs between the two cores of the optical fiber due to the acceleration applied to the weight. acceleration sensor.
JP6875282A 1982-04-26 1982-04-26 Acceleration sensor Pending JPS58186057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6875282A JPS58186057A (en) 1982-04-26 1982-04-26 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6875282A JPS58186057A (en) 1982-04-26 1982-04-26 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPS58186057A true JPS58186057A (en) 1983-10-29

Family

ID=13382806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6875282A Pending JPS58186057A (en) 1982-04-26 1982-04-26 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS58186057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175545A (en) * 1999-10-01 2010-08-12 Weatherford Lamb Inc Highly sensitive accelerometer
GB2531817A (en) * 2014-11-03 2016-05-04 Westerngeco Seismic Holdings Ltd Accelerometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175545A (en) * 1999-10-01 2010-08-12 Weatherford Lamb Inc Highly sensitive accelerometer
GB2531817A (en) * 2014-11-03 2016-05-04 Westerngeco Seismic Holdings Ltd Accelerometer
GB2531817B (en) * 2014-11-03 2019-12-04 Westerngeco Seismic Holdings Ltd Accelerometer
US10768197B2 (en) 2014-11-03 2020-09-08 Schlumberger Technology Corporation Accelerometer

Similar Documents

Publication Publication Date Title
US5475489A (en) Determination of induced change of polarization state of light
US5479094A (en) Polarization insensitive current and magnetic field optic sensor
Spillman Jr et al. Schlieren multimode fiber‐optic hydrophone
US4495411A (en) Fiber optic sensors operating at DC
US7359586B2 (en) Fiber optic strain sensor and associated data acquisition system
EP1175599B1 (en) Methods and apparatus for enhancing dynamic range, sensitivity, accuracy, and resolution in fiber optic sensor systems
EP0098875A4 (en) Quadrature fiber-optic interferometer matrix.
CN213147852U (en) Medium and high precision optical fiber gyroscope
US5475298A (en) Method and apparatus for measurements dependent on the faraday effect using polarized counter-propagating light
US4709145A (en) Method and apparatus for compensating fiber optic lead and connector losses in a fiber optic sensor by using a dual wavelength optical source and matched polarizer
Vohra et al. High performance fiber optic accelerometers
Bao et al. Fiber-optic vector accelerometer using orthogonal Bragg grating inscription over innermost cladding of a multi-clad fiber
JPH0311644B2 (en)
Giallorenzi Fibre optic sensors
Short et al. An experimental study of acoustic vibration effects in optical fiber current sensors
JPS58186057A (en) Acceleration sensor
CN108362412A (en) A kind of optical-fiber laser pressure sensor and its pressure measurement method
Nascimento et al. Novel optical current sensor for metering and protection in high power applications
US4726650A (en) Optical accelerometer
JP3685906B2 (en) Current measurement method
CN106404243A (en) High-frequency dynamic information demodulation system and method based on optical fiber grating polarization information detection
US10866438B2 (en) Faraday-based polarization scrambler
US3424007A (en) Pressure and depth detector
Leung et al. Fiber-optic current sensor developed for power system measurement
JPH05223883A (en) Partial discharge detection method using optical fiber