[go: up one dir, main page]

JPS58185540A - Production method of unsaturated carboxylic acid ester - Google Patents

Production method of unsaturated carboxylic acid ester

Info

Publication number
JPS58185540A
JPS58185540A JP6839782A JP6839782A JPS58185540A JP S58185540 A JPS58185540 A JP S58185540A JP 6839782 A JP6839782 A JP 6839782A JP 6839782 A JP6839782 A JP 6839782A JP S58185540 A JPS58185540 A JP S58185540A
Authority
JP
Japan
Prior art keywords
reaction
reactor
reactors
molecular oxygen
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6839782A
Other languages
Japanese (ja)
Other versions
JPH0569813B2 (en
Inventor
Setsuo Yamamatsu
節男 山松
Yoshio Suzuki
良雄 鈴木
Atsushi Aoshima
青島 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6839782A priority Critical patent/JPS58185540A/en
Publication of JPS58185540A publication Critical patent/JPS58185540A/en
Publication of JPH0569813B2 publication Critical patent/JPH0569813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:In reacting methacrolein with methanol and molecular oxygen in the presence of a catalyst, to obtain the titled substance economically in high yield without causing by-products, by connecting two or more continuous reactors of the perfect blending type in series, whose pH is kept at 6-9. CONSTITUTION:Two or more perfect blending type reactors such as agitated reactor, or gas introduction liquid-jet column type reactor, are connected in series, methacrolein or acrolein is reacted with methanol and molecular oxygen in the presence of a catalyst containing palladium with keeping the pH of reaction solutions of the reactors 1, 2, and 3 at 6-9, to give the desired substance. In the reaction, a molecular oxygen containing gas to be fed the reactors is especially effectively made to flow into the following reactors and discharged from the final stage reactor to the outside of the system in the same way as the reaction solutions. In order to maintain the pH of the reaction solutions of each stage, a carboxylate of an alkali metal or alkaline earth metal as a metal solution, etc. is added to them.

Description

【発明の詳細な説明】 本発明はメタクロレイン又はアクロレインをメタノール
と分子状酸素により、 Pdを含む触媒の存在下で反応
させメタクリル酸メチル又はアクリル酸メチルを製造す
るに際し、副生物の生成を抑制しつつ行なう効率的な連
続的製法の改良に関するものである。
Detailed Description of the Invention The present invention is a method for suppressing the production of by-products when producing methyl methacrylate or methyl acrylate by reacting methacrolein or acrolein with methanol and molecular oxygen in the presence of a catalyst containing Pd. This paper relates to improvements in efficient continuous manufacturing methods.

工業的に有用なメタクリル酸メチル又はアクリル酸メチ
ルを製造する方法としてメタクロレイン又はアクロレイ
ンをメタノールと分子状酸素によって一挙に製造する新
しいルート(即ち酸化的エステル化反応とも呼べるべき
プロセス)が近時脚光を浴びてきた。この方法は従来退
寮されてきたアルデヒドから酸、更にエステルへと変換
させて行く二段法より工程が短かく且っ高収率であり、
工業的に有用なポリマー原料の新しい製法として大きな
意義を有するものである。
A new route for producing methacrolein or acrolein all at once using methanol and molecular oxygen (i.e., a process that can be called an oxidative esterification reaction) has recently been in the spotlight as a method for producing industrially useful methyl methacrylate or methyl acrylate. I have been bathed in This method has shorter steps and higher yield than the two-step method of converting aldehyde, which has traditionally been removed, to acid and then to ester.
This is of great significance as a new method for producing industrially useful polymer raw materials.

このような方法を実施するにはメタクロレイン又はアク
ロレインを過剰のメタノール中で分子状酸素と反応させ
ることによって行なわれるが、Pdを含む触媒の存在が
必須である。反応はito℃以下、好ましくは30〜?
θ℃という低温でも充分な速度で進行し、メタクロレイ
ン又はアクロレインを基準とした当該メチルエステルへ
の選択率はりθ憾を越える妬い値を示すのであるが、同
時にギ酸メチルの一1生があり、これが一つの欠点とな
っていた。ギ酸メチルは触媒中に含まれるPdニヨって
大皺に存在するメタノールが(1) 式に示すれる反応
式によって生成させられたものと推定されている。
To carry out such a process, which is carried out by reacting methacrolein or acrolein with molecular oxygen in excess methanol, the presence of a catalyst containing Pd is essential. The reaction is carried out at a temperature of 10°C or less, preferably 30°C or less.
The process proceeds at a sufficient rate even at a low temperature of θ°C, and the selectivity to the methyl ester based on methacrolein or acrolein exceeds θ, but at the same time, methyl formate has a lifetime. This was one drawback. It is estimated that methyl formate is produced by Pd contained in the catalyst and methanol present in the large wrinkles according to the reaction formula shown in equation (1).

2 CHsOH+ Ox −→HCOOCHs+ 2 
Hz O(1)本反応を連続的に実施しようとした場合
、反応器の一部にpHが不均一な部分ができると、触媒
の活性持続性に好ましくない影響を及ぼすことを本発明
者等は見い出した。管式反応器では、特に工業的規模で
実施するには、気液の充分なる分散状態を維持するのが
難かしい。また該反応は大きな発熱を伴うこと及び気液
間の物質移動を必要とすることなどのため工業的には完
全混合型の反応器を用い、且つ連続式操作をするのが有
利である。
2 CHsOH+ Ox −→HCOOCHs+ 2
Hz O (1) The present inventors have found that when attempting to carry out this reaction continuously, if a portion of the reactor is uneven in pH, it will have an unfavorable effect on the sustainability of the catalyst activity. found out. In tubular reactors, it is difficult to maintain sufficient gas-liquid dispersion, especially when implemented on an industrial scale. Furthermore, since the reaction is accompanied by a large amount of heat and requires mass transfer between gas and liquid, it is industrially advantageous to use a complete mixing type reactor and to carry out continuous operation.

ところが、この場合、前述のギ酸メチルの生成が格段に
大きくなるという欠点の他、メタクロレイン又はアクロ
レイン−濃度の反応では一転化率を達成できないという
欠点を見い出した。更にpH維持のために塩基性物質を
多く用いなければならないという欠点を有していること
が本発明者等の検討で明らかになった。
However, in this case, in addition to the drawback that the production of methyl formate is significantly increased, it has been found that a single conversion cannot be achieved in a reaction with a methacrolein or acrolein concentration. Further, studies by the present inventors have revealed that the method has the disadvantage that a large amount of basic substance must be used to maintain the pH.

本発明者等はこのような現状に鑑み、メタクリル酸メチ
ル又はアクリル酸メチルを完全混合型反応器により連続
的に製造することの重要性をui識して、ギ酸メチルの
生成を可及的に抑制しつつ当該メチルエステルの高選択
反応を連続的に実施する方法を鋭意検討したところ、完
全混合型反応器を直列に一個以上接続し、特殊条件下に
反応させることで副反応を抑制できることを見い出し、
本発明に到達した。
In view of the current situation, the present inventors realized the importance of continuously producing methyl methacrylate or methyl acrylate in a completely mixed reactor, and aimed to produce methyl formate as much as possible. After conducting intensive studies on a method to continuously carry out the highly selective reaction of the methyl ester while suppressing the reaction, we found that it is possible to suppress side reactions by connecting one or more complete mixing reactors in series and allowing the reaction to occur under special conditions. heading,
We have arrived at the present invention.

即ち2本発明は、メタクロレイン又はアクロレインをP
dを含む触媒の存在下でメタノール及び分子状酸素と反
応させてメタクリル酸メチル又はアクリル酸メチルを連
続的に製造する方法に於いて、完全混合型反応器をλ個
以上直列に接続し、各反応器の反応液のpnを6〜?に
維持しながら反応させることを特徴とする方法に関する
ものである。
That is, the present invention provides methacrolein or acrolein with P
In a method for continuously producing methyl methacrylate or methyl acrylate by reacting it with methanol and molecular oxygen in the presence of a catalyst containing d, λ or more complete mixing reactors are connected in series, and each Is the pn of the reaction solution in the reactor 6~? The present invention relates to a method characterized in that the reaction is carried out while maintaining the following conditions.

更に第1段反応器及び後続反応器に供給する分子状酸素
含有ガスを直列に連結した完全混合型反応器を反応液が
移動するのと同一方向に流し、I&終反応器から系外に
流出させると効果的である。
Furthermore, the molecular oxygen-containing gas supplied to the first stage reactor and the subsequent reactor is passed through a complete mixing reactor connected in series in the same direction as the reaction liquid moves, and flows out of the system from the I & final reactor. It is effective to do so.

本発明の方法に於いては、pH7に:6〜りに維持した
完全混合型連続反応器を一個以を直列に連結して反応さ
せることが要点であり、これにより如何なる理由によっ
てギ酸メチルの生成が抑制されるのか厳密な解析は充分
ではないが5本発明者等の推察によれび、触媒上のパラ
ジウムに吸着したメタノールのギ酸メチル中間体への反
応がpH4〜デの場合には主反応以上に効果的に抑制さ
れ。
In the method of the present invention, the key point is to conduct the reaction by connecting one or more complete mixing type continuous reactors maintained at pH 7:6 to 6 in series, thereby preventing the production of methyl formate for any reason. Although it is not sufficient to conduct a rigorous analysis of whether the more effectively suppressed.

完全混合型反応器を多段化し、且つ反応液のpuを6〜
りに維持することによりギ酸メチルの則生を著しく抑制
できたものと考えられ、 Pdを含む触媒であれば、系
における他の金属の種類によらず、該反応では常に認め
られる現象であることを本発明者等は見い出した。
The complete mixing type reactor is multi-staged, and the pu of the reaction liquid is 6 to 6.
It is thought that the regular formation of methyl formate was significantly suppressed by maintaining the temperature at a constant temperature, and this phenomenon is always observed in this reaction if the catalyst contains Pd, regardless of the types of other metals in the system. The present inventors found out.

を記反応方法、二於いて各反応器に供給された分子状酸
素含有ガスは反応液と同様、後続反応器に流した後、最
終段反応器から系外に流出させるのが特に効果的であり
、その意味するところは、ギ酸メチルの生成を爽に抑制
することである。
It is especially effective to flow the molecular oxygen-containing gas supplied to each reactor into the subsequent reactor and then flow it out of the system from the final reactor, as in the reaction method described in Section 2. The meaning of this is that it significantly suppresses the production of methyl formate.

各反応器に供給された分子状酸素含有ガスを反応に供し
た後当該反応器に於いて全量系外に流出させないで一部
ないし全量を隣接反応器に流し。
After the molecular oxygen-containing gas supplied to each reactor is subjected to a reaction, a portion or the entire amount is allowed to flow into an adjacent reactor without allowing the entire amount to flow out of the system.

反応に再度使用することにより使用ガス量を減少させる
ことが出来、経済的である。この場合未消費酸素含有反
応ガスが直列反応器を移動する方式として反応液が移動
するのと同一方向(並流式)又はその逆方向(向流式)
が可能である。ところが分子状酸素含有ガス、例えば空
気な最終段反応器に導入して得られる未消費酸素含有反
応ガスを反応液の流れと逆方向に流し、最終的に第1段
反応器から系外に流出させる向流式の場合には並流式に
比べてギ酸メチルの生成が着しく多くなることを本発明
者等は見い出した。従って該反応を多段完全混合型反応
器を用いて連続的に実施するには分子状酸素含有ガス、
例えば空気を@/段反応器及び後続反応器に導入して得
られる未消費酸素含有反応ガスを反応液の流れと同一方
向に流した後1M終段反応器から系外に流出させる並流
式で流すことが必要であり、この事実は全く予想外の串
であった。
By using it again in the reaction, the amount of gas used can be reduced, which is economical. In this case, the unconsumed oxygen-containing reaction gas moves through the series reactors in the same direction as the reaction liquid (cocurrent flow type) or in the opposite direction (countercurrent type).
is possible. However, the unconsumed oxygen-containing reaction gas obtained by introducing a molecular oxygen-containing gas, such as air, into the final stage reactor flows in the opposite direction to the flow of the reaction liquid, and finally flows out of the first stage reactor. The present inventors have found that in the case of a counter-current type, methyl formate is produced significantly more than in a co-current type. Therefore, in order to carry out the reaction continuously using a multistage complete mixing reactor, a molecular oxygen-containing gas,
For example, a parallel flow type in which unconsumed oxygen-containing reaction gas obtained by introducing air into the @/stage reactor and subsequent reactor is flowed in the same direction as the flow of the reaction liquid, and then flows out of the system from the 1M final stage reactor. This fact was completely unexpected.

分子状酸素含有ガスを並流式で流す方法を図面を用いて
更に詳細に説明する。反応液は直列シニ連結した例えば
3個の攪拌槽型反応器/、:、jを通じて流れ、各反応
器内は攪拌器により完全混合状態に保たれている。(メ
タ)アクロレイン及びメタノールはyから反応器/に供
給され!及び乙を経て反応器λ及び3(二移動し、7を
経て(メタ)アクリル酸メチル含有反応液として取り出
される。
The method of flowing molecular oxygen-containing gas in parallel flow will be explained in more detail with reference to the drawings. The reaction solution flows through, for example, three stirred tank reactors /, :, j connected in series, and the inside of each reactor is maintained in a completely mixed state by a stirrer. (Meta)acrolein and methanol are fed from y to the reactor/! After passing through the reactors λ and 3, it is transferred to the reactors λ and 3, and taken out as a reaction solution containing methyl (meth)acrylate via 7.

必要ならば!、9./θからメタクロレインを追加供給
して反応に供することもできる。7の未又応(メタ)ア
クロレインを回収り、サイクルしてこれにあてるとよい
If necessary! ,9. It is also possible to additionally supply methacrolein from /θ and use it for the reaction. It is preferable to collect the unreacted (meth)acrolein of 7 and apply it to this by cycling.

pH−整用の塩基性物質は/く、/2及び/3な通じて
反応器7.2及び3に供給される。分子状酸素含有ガス
例えば空気は/4tから反応器/に供給され、未消費酸
素を含む反応ガスは15及び/乙を通じて反応器λ及び
31′−供給され、最終的には20から系外に流出され
る。各段反応器の流出反応ガスの一部又は全量を後続反
応器に供給し。
A basic substance for pH adjustment is supplied to reactors 7.2 and 3 through the /2 and /3 channels. Molecular oxygen-containing gas, such as air, is supplied from /4t to the reactor /, and the reaction gas containing unconsumed oxygen is supplied to the reactors λ and 31' through 15 and /B, and finally exits the system from 20. It will be leaked. Part or all of the reaction gas flowing out of each stage reactor is supplied to the succeeding reactor.

残りを2/、、2λ、コ3より系外に流出させる。The remainder flows out of the system through 2/, 2λ, and 3.

全量を後続反応器に供給するのがギ酸メチル生成を抑制
、するという点でより有利で好ましい方である。必要で
あれば分子状酸素を77、/J’、/?より補給する。
It is more advantageous and preferable to feed the entire amount to the subsequent reactor in terms of suppressing the production of methyl formate. If necessary, add molecular oxygen to 77, /J', /? Replenish more.

これには空気を使用するのが好ましいが各板流出反応ガ
ス、例えば2/、コー。
Although air is preferably used for this, each plate effluent reactant gas, e.g.

−3をリサイクルして使用することもできる。-3 can also be recycled and used.

末法シニ従えば完全混合型反応器で当該メチルエステル
を連続的に製造する際にギ酸メチル及び他の脳生物1例
えば原料アルデヒドのβ−メトキシ体、ジメチルアセタ
ール等の生成を抑制し、メタノール及び原料アルデヒド
の損失を大幅に低減させられることの他、特に反応速度
面からも格段の利点が段られる事が明らかになった。却
ち完全混合型反応器一段で実施する時には高濃廣のメタ
ノ【ルイン又はアクロレインを反応させ且つ高転化率を
狙う場合には1反応器度が極端に低下することになるが
、本法に従えば反応速度を低下させることなく高転化率
が可能となり、より小さな反応器ですますことが出来る
事が明らかになった。更にこの様な場合にはメタノール
のリサイクル置が格段に減少することになりメタノール
回収工程に要するコストを大幅に低減できるという利点
も併せて見い出されたのである。
According to the final method, when the methyl ester is continuously produced in a complete mixing reactor, the production of methyl formate and other brain organisms 1, such as β-methoxy form of raw material aldehyde, dimethyl acetal, etc., is suppressed, and methanol and raw material It has become clear that in addition to significantly reducing the loss of aldehyde, there are significant advantages particularly in terms of reaction speed. On the other hand, if the process is carried out in a single stage of a complete mixing type reactor, and if highly concentrated methanol or acrolein is to be reacted and a high conversion rate is aimed at, the degree per reactor will be extremely low. It has become clear that if this is done, a high conversion rate can be achieved without reducing the reaction rate, and a smaller reactor can be used. Furthermore, it has also been discovered that in such a case, the number of methanol recycling stations is significantly reduced, and the cost required for the methanol recovery process can be significantly reduced.

本方法の別の利点としてpH維持のために反応器の各段
に供給する塩基性物質の使用歓を大幅に減少させられる
という意外な事実も見い出された。
It has been unexpectedly discovered that another advantage of this process is that the use of basic substances fed to each stage of the reactor for pH maintenance can be significantly reduced.

この経済的意義は大きい。This has great economic significance.

本法を実施するには、完全混合型反応器として攪拌槽型
反応器又は液柱ガス吹きこみ基型反応器を使用する。い
ずれの場合も反応器内を完全混合状態に保つことが副反
応を抑止するうえで肝要である。種型反応器では反応液
及び触媒を攪拌機にて激しく攪拌して、触媒を均一に懸
濁し、これに適当な吹き込みを通じて分子状酸素含有ガ
スを導入し、攪拌器により気泡を細かく分断し、気液の
接触を充分ならしめて反応を行う。一方液柱ガス吹き込
み基型反応器では塔底からガス分散板を通じて吹き込ん
だ気泡の1昇運動により、触媒を均一に反応器中に懸濁
させる。気泡の合一を防ぎ良好な流動状態を得るにはガ
ス吹き込み強度を空塔基準で/〜−)/θ傳−とするの
が好ましい。気泡を再分散させるため、ガス分散機能1
番を有する充填物を用いることも有効である。塔の1丁
の混合を充分行なうためには5塔内に西塔又は場外に液
循環簀を設けるのが特屯二好ましくこれらを通じて反応
液及び触媒が循環し、塔内の完全混合性を高めるのに有
効である。塔内に西塔な設ける場1り、昇塔、西塔のい
ずれがダウン・カマ−となってもさしつかえない。
To carry out the process, a stirred tank reactor or a liquid column gas-injected base reactor is used as the complete mixing reactor. In either case, it is important to maintain a complete mixing state in the reactor in order to suppress side reactions. In the seed reactor, the reaction solution and catalyst are vigorously stirred with a stirrer to uniformly suspend the catalyst, and a molecular oxygen-containing gas is introduced into this through appropriate blowing, and the stirrer breaks up the air bubbles finely. The reaction is carried out by ensuring sufficient contact between the liquids. On the other hand, in a liquid column gas-blown reactor, the catalyst is uniformly suspended in the reactor by the upward movement of bubbles blown from the bottom of the column through a gas distribution plate. In order to prevent coalescence of bubbles and obtain a good fluidization state, it is preferable to set the gas blowing strength to /~-)/θden- based on the empty column. Gas dispersion function 1 to redisperse air bubbles
It is also effective to use a packing with a number. In order to achieve sufficient mixing in each of the columns, it is preferable to install a liquid circulation tank in the west column or outside the 5 columns, through which the reaction liquid and catalyst are circulated to improve complete mixing in the column. It is effective for If there is a west tower within the tower, it doesn't matter if either the ascending tower or the west tower becomes the downcomer.

本発明に於いては上記完全混合型反応器をλ個以上直列
に接続して連続式に反応を実施するのであるが、puを
均一に保った反応器に原料液又は反応液を連続的に供給
し、液面が一定になる如くに反応液を抜き出し液固分離
装置により触媒を分離した後、後続反応器に反応液のみ
を送り1分離された触媒は反応液の一部とともに当該反
応器にもどす。反応器の数には特に限定はないが1.2
〜ダ槽の範囲から選ぶのが反応成績及び経済面からも有
利である。
In the present invention, λ or more of the above-mentioned complete mixing type reactors are connected in series to carry out the reaction in a continuous manner. After the reaction liquid is extracted so that the liquid level is constant and the catalyst is separated by a liquid-solid separator, only the reaction liquid is sent to the succeeding reactor.The separated catalyst is transferred to the reactor along with a part of the reaction liquid. Return to. There is no particular limitation on the number of reactors, but 1.2
It is advantageous from the viewpoint of reaction performance and economy to select from the range of .

酸化剤としての分子状酸素は純酸素ガス或いはこれを窒
素等不活性ガスで希釈されたもの、好ましくは空気が用
いられる。各段に供給する酸素の置は反応に必要な化学
量論以上、好ましくは化学il論の7.2倍以七あれば
充分であり、メタクロレイン又はアクロレイン1モルに
付きの1モル或いは0.3モル以上であり、上限は各段
の流出ガスの酸素濃度が爆発範囲(♂容量チ)を越えな
い範囲で選ばれる。
The molecular oxygen used as the oxidizing agent is pure oxygen gas or its diluted form with an inert gas such as nitrogen, preferably air. It is sufficient that the oxygen supplied to each stage is at least 7.2 times the stoichiometric amount necessary for the reaction, preferably at least 7.2 times the stoichiometric amount, and is 1 mole or 0.2 mole per mole of methacrolein or acrolein. The amount is 3 moles or more, and the upper limit is selected within a range in which the oxygen concentration of the outflow gas from each stage does not exceed the explosive range (♂capacity).

各段の反応液のpHな6〜9、より好ましくは7〜lに
維持するにはアルカリ金属及びアルカリ土類金属のカル
ボン酸塩、炭酸塩、重炭酸塩及び水酸化物の中から一種
ないし二種以上を選びメタ)。
To maintain the pH of the reaction solution in each stage at 6 to 9, more preferably 7 to 1, one or more of alkali metal and alkaline earth metal carboxylates, carbonates, bicarbonates, and hydroxides can be used. Select two or more types (meta).

ノール浴液又は安置の水嬉液として各段に供給する。ア
ルカリ金属としてLi、Na、になど、アルカリ土類金
属としてMg、Cm、Sr、Baなどから選ばれる。カ
ルボン酸はギ酸、酢酸、プロピオン酸などの飽和脂肪酸
又は安息香酸などの芳香族カルボン酸などが使用できる
が、低級脂肪酸が一般的に好ましい。またカルボン酸塩
は結晶水を含んCいてもさしつかえない。
It is supplied to each stage as a Nord bath solution or a standing water solution. The alkali metals are selected from Li, Na, Ni, etc., and the alkaline earth metals are selected from Mg, Cm, Sr, Ba, etc. As the carboxylic acid, saturated fatty acids such as formic acid, acetic acid, and propionic acid, or aromatic carboxylic acids such as benzoic acid can be used, but lower fatty acids are generally preferred. Further, the carboxylic acid salt may contain C containing water of crystallization.

本発明における反応温度は100℃以上の高温でも実施
できるが好ましくは30〜?θ℃である。
The reaction temperature in the present invention can be carried out at a high temperature of 100°C or higher, but preferably 30°C or higher. θ°C.

各段の反応温度はこの温度範囲内から選ばれるが。The reaction temperature for each stage is selected within this temperature range.

必ずしも同一温度にする必要はない。It is not necessary that the temperature be the same.

反応圧力は減圧下から加圧下の広い範囲が用い得るが、
通常/〜コθV−の圧力で実施される。
A wide range of reaction pressures can be used, from reduced pressure to increased pressure.
It is usually carried out at a pressure of / - θV-.

各段の反応圧力はこの圧力範囲から該立に選ぶことがで
きるが1通常前段反応圧を後段反応圧より高目に設定す
る。反応ガスを後続反応器に供給する場合、コンプレッ
サーを使用しなくてもすむという点で操作上有利である
Although the reaction pressure of each stage can be selected from this pressure range, the reaction pressure of the first stage is usually set higher than the reaction pressure of the second stage. There is an operational advantage in that a compressor is not required when feeding the reaction gas to a subsequent reactor.

反応時間(滞留時間:即ち、反応器内滞留液Wkl液流
量)は特に限爺されるものではなく、設定した条件によ
り異なるので一義的には定められないが、通常全反応時
間として一θ分〜ダ時間である。
The reaction time (residence time: i.e., the flow rate of the liquid Wkl retentate in the reactor) is not particularly limited and cannot be unambiguously determined as it varies depending on the set conditions, but it is usually 1θ minute as the total reaction time. ~It's time.

本発明で用いられるメタクロレイン又はアクロレインは
工業的にはイソブチレン及び又はt−ブタノールあるい
はプロピレンの酸化によって整造されるのが一般的であ
るが、その他の如何なる方法で得られたものでよい。メ
タノールは実質的シ二無水のメタノール、特に純メタノ
ールを使用するのが好ましい。@/段反応器に供給する
原料としてメタクロレイン又はアクロレインとメタノー
ルを別々にあるいは予め混合して供給してもよい。
Methacrolein or acrolein used in the present invention is industrially generally prepared by oxidizing isobutylene and/or t-butanol or propylene, but it may be obtained by any other method. As methanol, it is preferred to use substantially dianhydrous methanol, especially pure methanol. As raw materials to be supplied to the @/stage reactor, methacrolein or acrolein and methanol may be supplied separately or as a mixture in advance.

メタノール中のメタクロレイン又はアクロレインの濃度
は/血墓チ以上〜!θ電量憾、好ましくはj〜3!重1
1僑である。@/段反応器の反応液は直列に連結した後
続反応器に順次送られ反応に供されるが、必要に応じて
後続反応器に別仁メタクロレイン又はアクロレインを供
給してもよく。
The concentration of methacrolein or acrolein in methanol is more than / blood grave! θ electricity amount, preferably j~3! Heavy 1
I am an overseas student. The reaction liquid in the @/stage reactor is sequentially sent to subsequent reactors connected in series and subjected to reaction, but methacrolein or acrolein may be supplied to the subsequent reactors as necessary.

この場合最終段反応器の未反応メタクロレイン又はアク
ロレインを回収し、リサイクルメタクロレイン又はアク
ロレインとして用いるのが操作上有利である。本反応系
に溶媒は特に必要はないが。
In this case, it is operationally advantageous to recover unreacted methacrolein or acrolein from the final stage reactor and use it as recycled methacrolein or acrolein. A solvent is not particularly necessary for this reaction system.

飽和炭化水素等の不活性電媒が存在してもよい。An inert charge medium such as a saturated hydrocarbon may also be present.

本発明に使用−「る触媒はパラジウム単独又はこJしに
その他の異種元素1例えば鉛、水銀、タリウム、ビスマ
ス、テルル、ニッケル、クロム、コノ(ルト、カドミウ
ム、インジウム、タンタル、銅。
The catalyst used in the present invention is palladium alone or in combination with other foreign elements such as lead, mercury, thallium, bismuth, tellurium, nickel, chromium, copper, cadmium, indium, tantalum, and copper.

曲鉛、ジルコニウム、ハフニウム、タングステン。Bent lead, zirconium, hafnium, tungsten.

Iンガン、銀、レニウム、アンチモン、スズ、口L2ウ
ム、ルテニウム、イリジウム、白金、金、チタン、アル
ミニウム、ホウ素、ケイ素等を含んでいてもよい。更に
アルカリ金属化合物もしくはアルカリ土類金属化合物を
含んでいてもよい。好ま【、<はパラジウムと鉛、水銀
、タリウムもしくはビスマスより選ばれた少なくとも一
種の元素を含み、必要ならばアルカリ金属化合物もしく
はアルカリ土類金属化合物から選ばれた少なくとも一員
を含んでなる触媒を用いるのが好ましい。これらの触媒
構成要素は単独に或いはシリカ、アルミナ。
It may contain iron, silver, rhenium, antimony, tin, metal, ruthenium, iridium, platinum, gold, titanium, aluminum, boron, silicon, and the like. It may further contain an alkali metal compound or an alkaline earth metal compound. Preferably, < is a catalyst containing palladium and at least one element selected from lead, mercury, thallium, or bismuth, and if necessary, at least one member selected from an alkali metal compound or an alkaline earth metal compound. is preferable. These catalyst components may be silica or alumina alone.

チタン、炭酸塩、水酸化物、活性炭などの担体に担持さ
れたものでもよい。これら触媒の使用量は特に限定はな
いが、反応液lt中にθ、θグ〜θ、j階使用するのが
好ましい。
It may be supported on a carrier such as titanium, carbonate, hydroxide, or activated carbon. The amount of these catalysts to be used is not particularly limited, but it is preferable to use them in the reaction solution lt in the order of θ, θg to θ,j.

本発明に於いては触媒は液相懸濁状態にて使用するため
、3θメツシユより細かな粉状のものであればよ<、2
00〜330メツシユの粒子径が好ましい。
In the present invention, since the catalyst is used in a liquid phase suspension state, it is sufficient that it is in the form of a powder finer than a 3θ mesh.
A particle size of 00 to 330 mesh is preferred.

以トに本発明の詳細な説明する。例中俤は特に断わらな
い限り恵置僑を示す。
The present invention will be described in detail below. Example 中忤 indicates a person who has been given a gift, unless otherwise specified.

実施例−/ 内+Vj:y−owam、内容積/、2 tのステンレ
ス岐攪拌型反応器を2つ直列に連結して反応を実施した
Example -/ Inner +Vj: y-owam, internal volume/, two 2 t stainless steel branched stirred reactors were connected in series to carry out the reaction.

反応器は還流コンデンサー、液フィードロ、液抜き出し
El及びガス導入口を備えており、電磁式回転攪拌器に
より攪拌される。加熱はジャケットによりなされる。
The reactor is equipped with a reflux condenser, a liquid feeder, a liquid outlet El, and a gas inlet, and is stirred by an electromagnetic rotary stirrer. Heating is provided by the jacket.

各反応器にγ−アルミナ(水沢化学ネオビード)にパラ
ジウム2.3’4−鉛s、o囁、マグネシウムリθ慢を
担持した触媒0.3Kgを仕込み、嘱/、段反応器に2
2.3 ’lkメタクロレイン/メタノールθ、♂6L
/br 、 NaOH/ NaOH液をθ、θ6 t/
brで供給し、温度♂θU 、3 Lg/cjGの圧力
下で空気を2.j NL/hrの割合でステンレス焼結
板を経て通気しながら反応を打った。触媒懸濁反応液は
、液固分離して触媒を反応器にもどした後1反応液のみ
を引き続いCm2段反応器にNmOH/ MeOH液O
1θj t/brとともに導入し、温度lθ℃、コ、I
 K/dOの圧カドで第7段反応器の流出ガスを@2段
反応器に通気し。
Each reactor was charged with 0.3 kg of a catalyst consisting of γ-alumina (Mizusawa Kagaku Neobead) supported with palladium 2.3'4-lead s, o s, and magnesium θ-aluminum.
2.3 'lk methacrolein/methanol θ, ♂6L
/br, NaOH/ NaOH solution θ, θ6 t/
br, and the air is supplied at a temperature of ♂θU and a pressure of 3 Lg/cjG. The reaction was conducted while venting through a stainless steel sintered plate at a rate of NL/hr. After the catalyst suspension reaction solution is liquid-solid separated and the catalyst is returned to the reactor, only one reaction solution is subsequently transferred to a Cm two-stage reactor with NmOH/MeOH solution O.
Introduced with 1θj t/br, temperature lθ℃, co, I
Vent the effluent gas from the 7th stage reactor into the 2nd stage reactor at a pressure of K/dO.

史に空気な/、jNt/ah追加して反応を行った。反
応液のi)Hは@/段、@2段反応器ともに7.θ〜7
、jに保つようにNaOH量をコントロールした。
The reaction was performed by adding air/, jNt/ah to the history. i) H of the reaction solution is 7. in both @/stage and @2 stage reactor. θ~7
The amount of NaOH was controlled to keep it at ,j.

@コ最反応液を分析したところ、メタクロレイン転化率
はI 4t、71G 、メタクリル酸メチル収率71.
2%<IA択率tt、t 慢)、 #酸/ チルカθ、
θタコ3モル/MMAモル生成していた。
When the reaction solution was analyzed, the conversion of methacrolein was 4t, 71G, and the yield of methyl methacrylate was 71.
2%<IA selectivity tt, t arrogant), #acid/chirka θ,
3 moles of θtaco/mol of MMA were produced.

比較例−/ 実施例−/と同様な攪拌槽型反応器/段で反応を実施し
た。原料として22.3%メタクロレイン/メタノール
0.27 L/at 、NaOH/MeO)10.03
1/br、供給ガスとして空気20 Nt/−hとした
他は実施例−7と同様にして反応させたところ、メタク
ロレイン転化率は74.j 1 、メタクリル酸メチル
収率A @、/ s(選択率/1./嘔)、ギ酸メチル
がθ、317モル1モルMMム生成していた。
Comparative Example-/The reaction was carried out in a stirred tank reactor/stage similar to Example-/. As raw materials 22.3% methacrolein/methanol 0.27 L/at, NaOH/MeO) 10.03
When the reaction was carried out in the same manner as in Example 7 except that air was used at 20 Nt/-h as the supplied gas, the methacrolein conversion rate was 74. j 1 , methyl methacrylate yield A@,/s (selectivity/1./s), methyl formate was produced at θ, 317 mol 1 mol MM.

比較例−一 各段の反応液のpHを9.0−2.jにした以外は実施
例−/と同様にして反応を実施した。メタクロレイン転
化率9 /、3 嗟、メタクリル酸メチル収411.9
.3r嗟(選択率7t、/慢)、ギ酸メチルがθ、3に
♂モル1モルMMA生成していた。
Comparative Example - pH of the reaction solution in each stage was set to 9.0-2. The reaction was carried out in the same manner as in Example-/, except that j was changed. Methacrolein conversion rate: 9/3, Methyl methacrylate yield: 411.9
.. After 3 hours (selectivity 7t/long), 1 mol of male MMA of methyl formate was produced at θ, 3.

比較例−3 各段の反応液のpHをs、s −t、oにした以外は実
施例−/と同様にして反応を実施した。メタクロレイン
転化本6/、θ嗟、メタクリル酸メチル収率4t93*
 (選択*//、コ鳴)であった。
Comparative Example-3 The reaction was carried out in the same manner as in Example-/, except that the pH of the reaction solution in each stage was set to s, s-t, and o. Methacrolein conversion book 6/, θ, methyl methacrylate yield 4t93*
(selection *//, sound).

実施例−一 内径グθ■、内容積2.jtのステンレス製液柱ガス吹
きこみ型反応器(塔内に!メツシュの金−をI!″個間
隔に水平に設置)を2つ、直列に連結して反応を実施し
た。反応器は還流コンデンサー。
Example-1 Inner diameter θ■, internal volume 2. The reaction was carried out by connecting two JT stainless steel liquid column gas injection type reactors (inside the towers, !metsch gold plates were installed horizontally at I!'' intervals) in series.The reactors were refluxing. condenser.

液フィードロ、液抜き出し口、及び塔外に1循環管を備
えており、加熱はジャケットによりなされる。
It is equipped with a liquid feeder, a liquid outlet, and one circulation pipe outside the tower, and heating is performed by a jacket.

各反応器にアルミナ(商品名:住友活性アルミt)にパ
ラジウム/、j IG 、ビスマスコJ 哄、リチンム
コ、0−を担持した触媒な0.3時づつ仕込み、礪/段
反応器に22.2憾メタクロレイン・メタノ−& /、
/ j/hr 、 NaOH量 CHsOl(液をθ、
/l/hrで供給し、温度lθ℃、jKe’ajGの圧
力下で空気をjN/Alkの割合でステンレス製焼結板
を経て通気することにより触媒を懸濁させ1反応液とと
もに塔内な循環させながら反応を行った。触媒懸濁反応
液は液固分離して触媒を反応器にもどした後、反応液の
みを引き続いて第2段反応器にN aOH/MeOH液
θ、/L/brとともに導入し、温度/θ℃、2.♂K
v’cd Gの圧力下でII/段反応器の流出ガスを第
2段反応器に通気し、更に空気を3 NA/−追加して
反応を行った。反応液のpHはII!/段、第2段反応
液ともに7.θ〜7.!に保つようにNaOH量をコン
トロールした。第一段反応液を分析したところ、メタク
ロレイン転化率lθ、3憾、メタクリル酸メチル収率7
 /、¥参(選択率r?、9憾)、ギ酸メチルがθ、θ
r/1モル/MMAモル生成していた。
Alumina (product name: Sumitomo Activated Aluminum T) was charged with a catalyst supporting palladium, IG, bismuthco, lithinmuco, and 0- to each reactor at a rate of 0.3 hours. Sorry, methacrolein/methanol &amp;
/ j/hr, NaOH amount CHsOl (liquid θ,
/l/hr, the catalyst is suspended by passing air through a stainless steel sintered plate at a ratio of jN/Alk at a temperature of lθ°C and a pressure of jKe'ajG. The reaction was carried out while circulating. After the catalyst suspension reaction liquid was separated into liquid and solid and the catalyst was returned to the reactor, only the reaction liquid was successively introduced into the second stage reactor together with the NaOH/MeOH liquid θ, /L/br, and the temperature was maintained at /θ. °C, 2. ♂K
The effluent gas of the II/stage reactor was vented to the second stage reactor under a pressure of v'cd G, and the reaction was carried out by adding 3 NA/- of air. The pH of the reaction solution is II! / stage and second stage reaction solution are both 7. θ~7. ! The amount of NaOH was controlled to maintain the same amount. Analysis of the first stage reaction solution revealed that the methacrolein conversion rate lθ was 3, and the yield of methyl methacrylate was 7.
/, ¥ reference (selectivity r?, 9), methyl formate is θ, θ
r/1 mole/mol of MMA was produced.

実施例−3 シリカゲル(冨士デグイソンID)にパラジウム2.!
−、タリウム2.!囁、カルシラムコ憾を担持した触媒
を用い、原料として33.3%メタグロレイン・メタノ
ール、@/段供給ガスとして空気7 Nt/w−1窒素
3Nt/m、fM2段追加ガスとして空気2 Nt/m
 、窒素¥ Nt/h及び各段の反応液のpHを7.、
j−f、θとした他は実施例−2と同様にして反応させ
たところ、メタクロレイン転化率76、を嘩、メタクリ
ル酸メチル収率に7.2−(M折率r7.J優)、ギ酸
メチルが0.076モル/MMAモル生成していた。
Example-3 Palladium 2. !
-, thallium 2. ! Using a catalyst supporting Calcilamco, 33.3% metaglolein/methanol as the raw material, air 7 Nt/w-1 as the gas supplied per stage, 3 Nt/m of nitrogen, and 2 Nt/m of air as the fM2 additional gas.
, nitrogen ¥ Nt/h and the pH of the reaction solution in each stage to 7. ,
When the reaction was carried out in the same manner as in Example 2 except that j-f and θ were changed, the methacrolein conversion rate was 76, and the methyl methacrylate yield was 7.2-(M refraction rate r7.J excellent). , 0.076 mol/mol MMA of methyl formate was produced.

実施例−y 原料として/2.♂嚢アクロレイン・メタノールを用い
たほかは実施例−/と同様に反応を行った。
Example-y As raw material/2. The reaction was carried out in the same manner as in Example -/, except that male sac acrolein and methanol were used.

アクロレインの転化率は/ j、r *、アクリル酸メ
チル収4!7J−,j%(選択率/7.θ憾)2ギ酸メ
チルがθ、//j七ル/七ルMMA生成していた。
The conversion rate of acrolein was / j, r *, the yield of methyl acrylate was 4!7 J-, j% (selectivity / 7. θ), and the methyl formate produced θ, // j7/7-l MMA. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の詳細な説明する概略図である。 八、2.3・・・反応器、y−・・メタクロレイン・メ
タノール供給0.7・・・反応液流出[]、/八/へ−
/3・・・ル基性物質供給口、/l・・・分子状酸素供
給し1゜/7. /l /9・・・追加酸素供給1]、
コθ・・・反応ガス排出口 特許出願人 旭化成工業株式会社
The drawings are schematic diagrams illustrating the invention in detail. 8, 2.3...Reactor, y-...Methacrolein/methanol supply 0.7...Reaction liquid outflow [], /8/to-
/3...L basic substance supply port, /L...Molecular oxygen is supplied 1°/7. /l /9...additional oxygen supply 1],
θ... Reactive gas outlet patent applicant Asahi Kasei Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)  メタクロレイン又はアクロレインをパラジウ
ムを含む触媒の存在下でメタノール及び分子状酸素と反
応させてメタクリル酸メチル又はアクリル酸メチルを製
造する方法に於いて、完全混合型反応器を2個以七直列
に接続し、各反応器の反応液のpHをg〜9に維持しな
がら反応させることを特徴とするメタクリル酸メチル又
はアクリル酸メチルの連続的製造法。
(1) In the method of producing methyl methacrylate or methyl acrylate by reacting methacrolein or acrolein with methanol and molecular oxygen in the presence of a catalyst containing palladium, two to seven complete mixing reactors are used. A method for continuously producing methyl methacrylate or methyl acrylate, which comprises connecting the reactors in series and carrying out the reaction while maintaining the pH of the reaction solution in each reactor at g to 9.
(2)2個以F直列した完全混合型反応器に反応液の移
動と同じ方向に分子状酸素含有ガスを流し。 最終反応器から系外に流出させる特許請求の範囲第1墳
記戦の連続的製造法。
(2) A molecular oxygen-containing gas is caused to flow in the same direction as the movement of the reaction liquid through two or more complete mixing reactors arranged in series. Claim 1: A method for continuous production of konkisen, in which it is discharged from the final reactor to the outside of the system.
JP6839782A 1982-04-23 1982-04-23 Production method of unsaturated carboxylic acid ester Granted JPS58185540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6839782A JPS58185540A (en) 1982-04-23 1982-04-23 Production method of unsaturated carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6839782A JPS58185540A (en) 1982-04-23 1982-04-23 Production method of unsaturated carboxylic acid ester

Publications (2)

Publication Number Publication Date
JPS58185540A true JPS58185540A (en) 1983-10-29
JPH0569813B2 JPH0569813B2 (en) 1993-10-01

Family

ID=13372517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6839782A Granted JPS58185540A (en) 1982-04-23 1982-04-23 Production method of unsaturated carboxylic acid ester

Country Status (1)

Country Link
JP (1) JPS58185540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515645A (en) * 2013-04-19 2016-05-30 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing methyl methacrylate
JP2017507903A (en) * 2013-12-20 2017-03-23 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing methyl methacrylate
WO2019022890A1 (en) * 2017-07-28 2019-01-31 Rohm And Haas Company A method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst
KR20200033278A (en) * 2017-07-28 2020-03-27 다우 글로벌 테크놀로지스 엘엘씨 Method for preparing methyl methacrylate by oxidative esterification using a heterogeneous catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG71815A1 (en) * 1997-07-08 2000-04-18 Asahi Chemical Ind Method of producing methyl methacrylate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153743A (en) * 1979-05-17 1980-11-29 Asahi Chem Ind Co Ltd Preparation of unsaturated carboxylic acid ester
JPS5750941A (en) * 1980-09-12 1982-03-25 Japan Synthetic Rubber Co Ltd Preparation of carboxylic ester
JPS5750942A (en) * 1980-09-12 1982-03-25 Japan Synthetic Rubber Co Ltd Preparation of carboxylic ester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153743A (en) * 1979-05-17 1980-11-29 Asahi Chem Ind Co Ltd Preparation of unsaturated carboxylic acid ester
JPS5750941A (en) * 1980-09-12 1982-03-25 Japan Synthetic Rubber Co Ltd Preparation of carboxylic ester
JPS5750942A (en) * 1980-09-12 1982-03-25 Japan Synthetic Rubber Co Ltd Preparation of carboxylic ester

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515645A (en) * 2013-04-19 2016-05-30 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing methyl methacrylate
JP2017507903A (en) * 2013-12-20 2017-03-23 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing methyl methacrylate
WO2019022890A1 (en) * 2017-07-28 2019-01-31 Rohm And Haas Company A method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst
KR20200032131A (en) * 2017-07-28 2020-03-25 다우 글로벌 테크놀로지스 엘엘씨 Method for preparing methyl methacrylate by oxidative esterification using a heterogeneous catalyst
KR20200033278A (en) * 2017-07-28 2020-03-27 다우 글로벌 테크놀로지스 엘엘씨 Method for preparing methyl methacrylate by oxidative esterification using a heterogeneous catalyst
CN111094230A (en) * 2017-07-28 2020-05-01 罗门哈斯公司 Method for producing methyl methacrylate by oxidative esterification using heterogeneous catalysts
CN111433182A (en) * 2017-07-28 2020-07-17 罗门哈斯公司 Method for producing methyl methacrylate by oxidative esterification using heterogeneous catalysts
JP2020528351A (en) * 2017-07-28 2020-09-24 ローム アンド ハース カンパニーRohm And Haas Company Method for producing methyl methacrylate by oxidative esterification using a heterogeneous catalyst
JP2020528423A (en) * 2017-07-28 2020-09-24 ローム アンド ハース カンパニーRohm And Haas Company Method for producing methyl methacrylate by oxidative esterification using a heterogeneous catalyst
US10822297B2 (en) 2017-07-28 2020-11-03 Dow Global Technologies Llc Method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst
CN111094230B (en) * 2017-07-28 2023-04-04 罗门哈斯公司 Method for producing methyl methacrylate by oxidative esterification using heterogeneous catalysts
CN111433182B (en) * 2017-07-28 2023-04-04 罗门哈斯公司 Method for producing methyl methacrylate by oxidative esterification using heterogeneous catalysts

Also Published As

Publication number Publication date
JPH0569813B2 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
US9617199B2 (en) Process for preparing unsaturated esters proceeding from aldehydes by direct oxidative esterification
US9963417B2 (en) Process for producing methyl methacrylate
US6057475A (en) Process for the production of acetic acid
CN1058959C (en) Low pressure process for the manufacture of cyclohexanedicarboxylate esters
CN101311159A (en) Process for preparation of methyl methacrylate by esterification during oxidation
CN1246267C (en) Fisher-Tropsch process
JP3342078B2 (en) Process for the production of dialkyl carbonate
JP2000506774A (en) Countercurrent fixed bed reactor with packing element
KR20060005344A (en) Method of manufacturing acetic acid
JPS58185540A (en) Production method of unsaturated carboxylic acid ester
KR100196255B1 (en) Reactor for heterogeneous-phase reactions and its use
US4225729A (en) Process for hydrogenation of diacetoxybutene
CN109415289B (en) Method for producing 2-methoxyacetic acid
KR100754755B1 (en) Process for preparing aromatic amine
JP2679954B2 (en) Method and apparatus for producing unsaturated carboxylic acid esters
JP2528067B2 (en) Method for producing 1,4-cyclohexane dimethanol
JPH06321823A (en) Method for producing 1,3-cyclohexanedimethanol
JPH10245360A (en) Method for producing carbonyl compound
JP3956444B2 (en) Method for producing butanediol
US6369277B1 (en) Selective liquid-phase hydrogenation of α,β-unsaturated carbonyl compounds
JP2883719B2 (en) Method for producing isopropyl acetate
KR100380017B1 (en) Manufacturing method of unsaturated carboxylic ester by continuous process
JPH0558615B2 (en)
CN114436841A (en) Continuous device for producing ester compounds through hydrocarbon air oxidation
JP2528067C (en)