[go: up one dir, main page]

JPS58182468A - Magnetic-mechanical actuator - Google Patents

Magnetic-mechanical actuator

Info

Publication number
JPS58182468A
JPS58182468A JP6286782A JP6286782A JPS58182468A JP S58182468 A JPS58182468 A JP S58182468A JP 6286782 A JP6286782 A JP 6286782A JP 6286782 A JP6286782 A JP 6286782A JP S58182468 A JPS58182468 A JP S58182468A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
core
shaped core
mechanical actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6286782A
Other languages
Japanese (ja)
Inventor
Koichi Murakami
孝一 村上
Shinki Kikuchi
菊地 新喜
Tadaaki Watanabe
渡辺 忠昭
Satoshi Hikichi
引地 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP6286782A priority Critical patent/JPS58182468A/en
Publication of JPS58182468A publication Critical patent/JPS58182468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To give parametric oscillatory characteristics, and to increase starting torque by moving hard and soft magnetic materials and a conductive metallic body on the end surface of a U-shaped core. CONSTITUTION:Both legs of the U-shaped cores 1, 2 of the magnetic materials are assembled so as to be joined mutually centering around a cylindrical core 3 of a magnetic material. Primary winding 4 is wound on the core 1, and AC power supplies of single phase are connected at both terminals of the winding. On the other hand, secondary winding 5 is wound on the core 2, and a resonant capacitor 6 is connected and a magnetic-field generating element is constituted. When a plurality of the elements are arranged in the direction of progress while using the element as a unit and single-phase AC power is inputted to the primary winding 4, a vehicular body consisting of the magnetic material, etc. is moved on the end surfaces of the U-shaped cores 1, 2.

Description

【発明の詳細な説明】 本発明はりニアモータに関するもので、特にノ々ラメト
リック発振を利用した磁気−機械アクチュエータに係る
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to linear motors, and more particularly to magneto-mechanical actuators that utilize nonorametric oscillation.

本発明者のうち村上は、特開昭55−144769号公
報において・ザラメトリック発振特性を持つ固りツクモ
ータは構造が極めて簡単でちり、容易に製作できるとい
う利点がある。
Murakami, one of the inventors of the present invention, wrote in Japanese Patent Application Laid-Open No. 55-144769: A rigid motor having a sarametric oscillation characteristic has the advantage that it has an extremely simple structure and is easy to manufacture.

さらに本発明者らはこのモータの変形として第1図に示
すような構造のモータを発表している。
Furthermore, the present inventors have announced a motor with a structure as shown in FIG. 1 as a modification of this motor.

(電気学会マグネティクス研究会資料MAG82−20
1982年1月) 第1図において、U字状磁心(コア)A、tA2は励磁
用磁路であり、夫々空間的に90’転移して配置されて
おり、前記コアA l+ A 2の断面は環状共通磁路
Bの下面に夫々接合されている。
(IEEJ Magnetics Study Group Material MAG82-20
(January 1982) In Fig. 1, U-shaped magnetic cores A and tA2 are magnetic paths for excitation, and are arranged spatially shifted by 90', and the cross section of the core A l + A 2 is are respectively joined to the lower surface of the annular common magnetic path B.

これらのコアA 1  r A 2に夫々型巻きして図
のように挿入された巻線を1次巻線N、及び2次巻線N
2とし、N1巻線端子には単相電源電圧Elを接続し、
N2巻線端子には共振用コンデンサCを接続する。
The windings that were wound around these cores A 1 r A 2 and inserted as shown in the figure are the primary winding N and the secondary winding N.
2, connect the single-phase power supply voltage El to the N1 winding terminal,
Connect the resonance capacitor C to the N2 winding terminal.

この装置の入力巻線N、に単相交流電源を接続すると、
環状磁心Bに回転磁界が生じ、部屋ロータや、第1図(
b)に示すアルミ円板あるいは磁性円板を配することに
より・母ラメトリック誘導電動機として動作し、前記ロ
ータや円板は回転する。
When a single-phase AC power source is connected to the input winding N of this device,
A rotating magnetic field is generated in the annular magnetic core B, and the room rotor and the
By arranging the aluminum disc or magnetic disc shown in b), the motor operates as a base ramometric induction motor, and the rotor and disc rotate.

本願発明は上記の原理に基づいて、環状共通磁路Bを切
断し、棒状にすれば直進進行をするりニア−モータが得
られることに着想を得た。
The present invention was based on the above-mentioned principle, and was inspired by the fact that if the annular common magnetic path B is cut and made into a rod shape, a near motor capable of moving in a straight line can be obtained.

本発明は磁性体で構成した棒状コアと、その両側に磁性
体で構成したU字状コアをずらして、且つ夫々のU字状
の両側に前記棒状コアが接するように前記棒状コアとU
字状コアを紹み立てtさらに前記U字状コアの一方の脚
には入力1次巻線を  ・他方のコアの脚には2次巻線
を施して、この2次巻線に共振用コンデンサを接続して
磁界発生エレメントを構成せしめ、該エレメントを単位
として複数個進行方向に配列し、前記1次巻線に単相交
流電力を入力し、前記U字状コアの端面上を硬質。
The present invention has a rod-shaped core made of a magnetic material, and a U-shaped core made of a magnetic material on both sides of the rod-shaped core, and the U-shaped core made of a magnetic material is shifted so that the rod-shaped core and the U-shaped core are in contact with both sides of each U-shape.
In addition, one leg of the U-shaped core is provided with an input primary winding, and the other core leg is provided with a secondary winding, and this secondary winding is used for resonance. A capacitor is connected to constitute a magnetic field generating element, a plurality of these elements are arranged in the traveling direction as a unit, single-phase AC power is input to the primary winding, and the end surface of the U-shaped core is hardened.

軟質磁性体、導電性金属体が移動するようにしたことを
特徴とする磁気−機械アクチュエータに係る。
The present invention relates to a magneto-mechanical actuator characterized in that a soft magnetic material or a conductive metal material is moved.

次に本発明を図面を用いて説明する。Next, the present invention will be explained using the drawings.

第2図は本発明を説明するだめの磁界発生装置の1エレ
メントを示し、同図(a) 、 (b) 、 (c)は
夫々正面図、側面図、平面図である。
FIG. 2 shows one element of a magnetic field generating device for explaining the present invention, and FIGS. 2(a), 2(b), and 2(c) are a front view, a side view, and a plan view, respectively.

先づ硅素鋼板、フェライト等の磁性体で構成されたU字
状コア1および2を用意し、さらに同様な磁性体で棒状
コア3を用意し、このコア3を中心にしてU字状コア1
および20両脚が夫々接合するように組み立てる。コア
1および2は図(C)に示すように距離Δtだけずれる
ように配置する。コア1には1次巻線4を捲回し、その
両端子は単相の交流電源を接続する。一方、コア2には
2次巻線5を施こし、さらに共振コンデンサ6を接続す
る。
First, U-shaped cores 1 and 2 made of a magnetic material such as a silicon steel plate or ferrite are prepared, and a rod-shaped core 3 made of the same magnetic material is prepared.
and 20.Assemble so that both legs are joined. Cores 1 and 2 are arranged so as to be offset by a distance Δt as shown in Figure (C). A primary winding 4 is wound around the core 1, and both terminals thereof are connected to a single-phase AC power source. On the other hand, a secondary winding 5 is provided on the core 2, and a resonant capacitor 6 is further connected thereto.

なお、共通磁路を構成する棒状コア3の位置は。Furthermore, the position of the rod-shaped core 3 that constitutes the common magnetic path is as follows.

U字型コアの端面と同じでもよいが(a)図の如く距離
dだけ低くとりつけてる方がU字コア端面での漏洩磁束
をある程度大きくするためにはよυ好ましい。
Although it may be the same as the end face of the U-shaped core, it is more preferable to install it a distance d lower as shown in Figure (a) in order to increase the leakage magnetic flux at the end face of the U-shaped core to some extent.

第2図のようなエレメントを固定し、1次電圧E1を印
加し、・ぐラメトリック発振が生じているとき、J:面
に磁性体の板を乗せると、2次電圧E2のE!に対する
90°進み或は90°遅れにより板は左方或は右方に移
送されることを確認した。
When the element shown in Fig. 2 is fixed and the primary voltage E1 is applied, and a gramometric oscillation is occurring, when a magnetic plate is placed on the J: surface, the secondary voltage E2 is E! It was confirmed that the plate is moved to the left or right by advancing or delaying by 90 degrees.

この現象はコア1,2のエレメントがノやラメトリック
発振を行ない、交流進行被磁界が磁極間に発生している
ことを示すものである。
This phenomenon indicates that the elements of the cores 1 and 2 are oscillating lametrically and that an alternating current traveling magnetic field is generated between the magnetic poles.

この場合、2次側のコンデンサの接続を断つとパラ−、
lト+)ツク発振が停止し前記磁性板は移送されなくな
るし、また、この事実はコア1および2のずれ(距離Δ
t)が全くなくなった状態ではパラメ) IJツク発振
は停止し、金属板は移送されないということからもうか
がえる。
In this case, if you disconnect the secondary side capacitor, para-
The oscillation stops and the magnetic plate is no longer transferred, and this fact also means that the deviation of cores 1 and 2 (distance Δ
This can be seen from the fact that when t) completely disappears, IJT oscillation stops and the metal plate is not transferred.

第3図は、第2図のエレメントを電気的接続記号として
表わしたものである。PC’はこのようなコアの結合を
表わす。
FIG. 3 shows the elements of FIG. 2 as electrical connection symbols. PC' represents such a core combination.

第4図は、第2図に示すエレメントを複数個−直線上に
配列したものである。但し、1次、2次巻線については
説明上価いているが1例えば、第5図のように電気接続
する。
FIG. 4 shows a plurality of elements shown in FIG. 2 arranged in a straight line. However, the primary and secondary windings are electrically connected as shown in FIG. 5 for the sake of explanation.

実験では、第6図に示すように、レール8の上にコロ9
をとりつけ磁性体板7を置いたところ。
In the experiment, a roller 9 was placed on the rail 8 as shown in Fig. 6.
is attached and the magnetic plate 7 is placed.

E2のElに対する極性を変えると右の方向に走行させ
ることが出来た。
By changing the polarity of E2 with respect to El, I was able to make it run in the right direction.

以上本発明の基本的構造をその動作原理について説明し
たが1本発明において、移動体の力及び速度の調整は、
1次側巻線に入力する電圧の値の調整および電源の周波
数の可変によって行なえるし、またエレメントと次ぎの
エレメントの距離を変化させても行なえる。また、2次
回路のコンデンサに並列に74ラメトリック発振が停止
しない程度の可変抵抗を挿入し、この値を変えて進行磁
界の速度を変えることもできる。また上記の説明では、
磁界発生エレメントを固定子とし、磁性板を移動させた
が、長尺の磁性板を固定とし、エレメントを移動体とし
ても実現可能である。
The basic structure of the present invention and its operating principle have been explained above, but in the present invention, the force and speed of the moving object are adjusted by
This can be done by adjusting the value of the voltage input to the primary winding and varying the frequency of the power supply, or by changing the distance between one element and the next element. It is also possible to insert a variable resistor in parallel to the capacitor of the secondary circuit to a degree that does not stop the 74-ram metric oscillation, and change this value to change the speed of the traveling magnetic field. Also, in the above explanation,
Although the magnetic field generating element is used as a stator and the magnetic plate is moved, it is also possible to use a fixed long magnetic plate and use the element as a moving body.

また、上記の説明では移動体を磁性板で構成したが、力
が多少小さくなるがアルミ板などの高導電性材料で構成
したもの或は両者の複合されたものでもよい。
Further, in the above description, the movable body is made of a magnetic plate, but it may be made of a highly conductive material such as an aluminum plate, or a combination of both, although the force is somewhat smaller.

第7図は本発明の他の実施例を示す。この図は第2図に
示すエレメントをX方向に対し対称にしかも並列に配置
したもので、U字コア1および1′に1次巻線を、コア
2および2′に2次巻線を施こしたものである。エレメ
ント1つだけでは、力F1のベクトルはY方向にも多少
の分力fyが働くが、このようにエレメントを2つ並列
配置すると。
FIG. 7 shows another embodiment of the invention. This figure shows the elements shown in Figure 2 arranged symmetrically and in parallel with respect to the X direction, with primary windings on U-shaped cores 1 and 1' and secondary windings on cores 2 and 2'. It is strained. With only one element, the vector of force F1 will have some component force fy acting in the Y direction, but when two elements are arranged in parallel like this.

Y方向の分力は相殺され、X方向の分力のみがさらに大
きくなシ、大きな力を得ることができる。
The component forces in the Y direction are canceled out, and only the component force in the X direction is even larger, making it possible to obtain a larger force.

第8図は、移送されてきた移動物体の速度を減衰あるい
は停止するだめの機能を具備したものにかかる。
FIG. 8 shows an apparatus having a function of attenuating or stopping the speed of a moving object being transported.

この機能によって元の方向への移送も可能とするもので
ある。
This function also allows transport in the original direction.

第8図において、エレメント4ケの場合について説明す
ると、基本的には第2図と同じ構成とし。
In FIG. 8, the case of four elements will be explained. Basically, the configuration is the same as that in FIG. 2.

エレメントに夫々1〜4の番号を付す。AI”□A3ま
では、全く同じ構成でこれらからの力fxl 。
Each element is numbered 1 to 4. Up to AI"□A3, the power fxl from these has exactly the same configuration.

fX21 fx3は夫々左方を向いている。A4では共
通の棒状コア3′をその壕まにして、エレメントA3に
近い方に1次巻線を施したU字状コア1′を配置し2次
巻線が施こされたU字状コア2′はコア1′よりずらし
て左方に配置する。このようにコア3′をそのままに、
1′と3′とをスライドさせて配置すると、この屋4に
よる力fx4はA1−A3の力とは全く逆方向に働き、
右方から移動してきた物体に速度の減退や停止を行わせ
ることができる。第9図はこの時の電気的接続結線図を
示したもので。
fX21 and fx3 are respectively facing left. In A4, a U-shaped core 1' with a primary winding is arranged near the element A3 using a common rod-shaped core 3' as a groove, and a U-shaped core with a secondary winding is arranged. 2' is arranged on the left side, shifted from the core 1'. In this way, leaving core 3′ as it is,
When 1' and 3' are slid and placed, the force fx4 due to this house 4 acts in the completely opposite direction to the force A1-A3,
Objects moving from the right can be made to slow down or stop. Figure 9 shows the electrical connection diagram at this time.

ニレメン)A1〜扁3の1次と2次を同相と考えた場合
、エレメントA4は逆相に結線したものと言える。
If the primary and secondary elements of A1 to A3 are considered to be in phase, it can be said that element A4 is wired in opposite phase.

このようなことをもって、コアA3 、A2 、A1と
、コア3を固定したままコア1および2をコア3に結合
したままスライドして逐次位置を入れ替えてやれば、こ
れまでの左方向への移送とは逆の右方向への移動を行な
わせることができる。
With this in mind, if cores A3, A2, A1, and core 3 are fixed, cores 1 and 2 are connected to core 3, and their positions are swapped one by one by sliding them. It is possible to move the object to the right in the opposite direction.

実施例−1 第2図に示すような磁界発生の単位エレメントのうち、
1次側のU字状コア1の寸法をa = 7.8cm +
 Wc = 2 crn、 tc = 1 cmとする
硅素鋼板(所謂力、トコア)を用い、2次側のU字状コ
ア2も同じ寸法のものを用いた。また共通棒状をコア3
として、同じ硅素銅板で長さt= 12.1 cm 、
幅W−1cTnのものを用い、1次側および2次側の巻
線を夫々1.2 tanφの線を600ターン巻回し2
次側に70μFの容量を接続し、パラメトリックリニア
モータを構成した。−次巻線に50 Hzで120V。
Example-1 Among the unit elements for magnetic field generation as shown in Fig. 2,
The dimension of the U-shaped core 1 on the primary side is a = 7.8cm +
A silicon steel plate (so-called "tokoa") with Wc = 2 crn and tc = 1 cm was used, and the U-shaped core 2 on the secondary side had the same dimensions. Also, the common rod shape is core 3.
As, length t = 12.1 cm for the same silicon copper plate,
Using a wire with a width of W-1 cTn, the primary and secondary windings were each wound with 600 turns of 1.2 tanφ wire2.
A 70 μF capacitor was connected to the next side to configure a parametric linear motor. - 120V at 50 Hz to the next winding.

219Aの交流源を印加したところ、パラメトリック発
振を確認できた。このような状態のもとにこのエレメン
トより3wn上での磁束を測定したのが、第1O図であ
って、(a)と(b)図とは位置関係を対応させてあり
、コア1の中心上即ちA −A’線上。
When a 219A AC source was applied, parametric oscillation was confirmed. Figure 1O shows the measurement of the magnetic flux 3wn above this element under these conditions. Figures (a) and (b) correspond to each other in positional relationship. On the center, ie on the A-A' line.

;ア2の中心線即ちc −c’細線上コア3の中心線上
即ちC−σ線上を夫々に左右になぞって測定しだところ
、(b)図のような磁束分布となった。(b)図のA、
B、C曲線は(、)図のA−A’、B−B’、およびc
 −c’綾線上夫々対応する。
When measurements were taken by tracing the center line of A2, ie, c-c', on the center line of thin wire core 3, ie, on the C-σ line, to the left and right, the magnetic flux distribution was as shown in Figure (b). (b) A in the figure,
The B and C curves are A-A', B-B', and c in (,).
-c' correspond to each other on the twill line.

この結果A、C曲線から明らかなようにU字状コアの磁
極端面上で磁束1000ガウス程度のピーク値をとシ、
シかもコア1および2のずれΔt=3、5 cmに対応
して、磁束のピークもずれている。
As a result, it is clear from curves A and C that a peak value of about 1000 Gauss of magnetic flux is generated on the pole end face of the U-shaped core.
Moreover, the peak of the magnetic flux is also shifted in correspondence with the shift of Δt=3.5 cm between cores 1 and 2.

共通棒状コア上の磁束を表す曲線Cは、コア1および2
のピーク値よシは1/3以下前後でしかなかった0 ずれΔtが全くの0とした場合は、パラメトす。
Curve C representing the magnetic flux on the common rod core is for cores 1 and 2.
The peak value of 0 was only around 1/3 or less.If the deviation Δt is completely 0, then the parameter is

り発振はせず、2次側の磁界発生はされなかった。There was no oscillation, and no magnetic field was generated on the secondary side.

なお、後述するが、1次側コアの磁束と2次側の磁束と
では位相が90°ずれているため、この装置の上面に可
動子として磁性板、あるいは磁石板。
As will be described later, since the magnetic flux of the primary side core and the magnetic flux of the secondary side are out of phase by 90 degrees, a magnetic plate or a magnet plate is installed as a mover on the top surface of this device.

あるいはアルミ板等の導電性金属板を台車等に載置する
と左右方向に移動することを確認した。
Alternatively, it was confirmed that when a conductive metal plate such as an aluminum plate is placed on a trolley or the like, it moves in the left and right direction.

実施例−2 前記実施例−1の磁界発生エレメントを用い。Example-2 Using the magnetic field generating element of Example-1.

1次巻線の電圧を変化させた時の1次巻線の電流Il 
、電力Ply2次巻線の誘起電圧B21.電流i2 +
および鉄板をのせて総重量360 grの台車を用い、
バネばか9を固定し、このはかりと・々ランスのとれた
時のはかりの値をF′として示したのが第11図である
Primary winding current Il when changing the primary winding voltage
, the induced voltage of the power Ply secondary winding B21. Current i2 +
Using a trolley with a total weight of 360 gr and carrying iron plates,
Figure 11 shows the value F' on the scale when the spring head 9 is fixed and the scale is in balance.

但し、二次側には75μFの容量を接続した。However, a 75 μF capacitor was connected to the secondary side.

Elが118V以下ではノやラメトリック発振せず、こ
の値を境界にして、推進力Fは格段の差のあることが判
明した。
It has been found that when El is below 118V, no ramometric oscillation occurs, and with this value as the boundary, there is a significant difference in the propulsive force F.

第12図には、この時のパラメトリック発振しティる状
態でのオシロスコープによる1次、2次の電圧電流波形
Et  * Is  r B2  r I2を示す01
次’[1111と2次側]とに位相ずれのあることが明
らかである。この位相ずれによシ、共通棒状コアの長さ
方向に推進力の働く効果を生ずる。
Figure 12 shows the primary and secondary voltage and current waveforms Et * Is r B2 r I2 measured by the oscilloscope in the state of parametric oscillation at this time.
It is clear that there is a phase shift between the next '[1111 and the secondary side]. This phase shift produces the effect of a propulsive force acting in the length direction of the common rod-shaped core.

とができた。I was able to do it.

以上、磁界発生装置エレメントを固定子として説明した
が、移動体即ち可動子は、鉄等の磁性板。
Although the magnetic field generator element has been described above as a stator, the movable body, that is, the movable element is a magnetic plate made of iron or the like.

永久磁石体等であれば前述したような進行磁界により移
動されるばかシでなく、アルミ板、銅板等の導電体でも
渦電流効果により推進力が働く。ただ渦電流による場合
は力Fは劣化する。
If it is a permanent magnet, it will not be moved by the traveling magnetic field as described above, but even conductive materials such as aluminum plates and copper plates will have a propulsive force due to the eddy current effect. However, in the case of eddy current, the force F deteriorates.

また、パラメトリック発振による磁界発生装置エレメン
トを台車等に載置し、長尺の磁性体、永久磁石体上を移
動させうることは自明である。
Furthermore, it is obvious that a magnetic field generating device element using parametric oscillation can be placed on a cart or the like and moved over a long magnetic body or permanent magnet body.

本発明のパラメトリック・リニアモータは、従来のりニ
アモータに比し、構造が極めて簡単で。
The parametric linear motor of the present invention has an extremely simple structure compared to conventional linear motors.

単相交流電源で十分進行波磁界を発生させることができ
る。波形はまだ、きれいな正弦波でなくともよい。更に
上記したようにスロットを必要とせず、磁極が簡単に製
作でき、またコイル成型は型巻きで行うことができるた
めコストダウンになる。
A traveling wave magnetic field can be sufficiently generated using a single-phase AC power source. The waveform does not have to be a perfect sine wave yet. Furthermore, as described above, no slots are required, the magnetic poles can be easily manufactured, and the coil can be formed by die winding, resulting in cost reduction.

本発明によるモータはスターティングトルクが大である
こと、速度制御や前進後退が比較的簡単であり、輸送機
や口デット、アクチュエータ等の産業用さらにはモル−
ル等、あらゆる分野で利用することができる。
The motor according to the present invention has a large starting torque, speed control and forward/backward movement are relatively simple, and is suitable for industrial applications such as transportation machines, vehicles, actuators, etc.
It can be used in all fields.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するだめのAラメトリック
誘導モータの斜視図、第2図は本発明によるリニアモー
タのエレメントを示す図で、(&)は正面図、(b)は
側面図、(C)は上面図である。第3図はエレメントの
電気的接続図、第4図は本発明によるリニアモータの構
成を示す正面図、第5図はその電気結線図、第6図はリ
ニアモータに移動体を乗せたときの側面図、第7図は本
発明の他の実施態様を示す上面図、第8図は本発明のさ
らに他の実施態様例を示す(a)上面図、(b)側面図
。第9図はその際の電気結線図を示す。第10図は実施
例における磁界発生エレメントの磁束密度分布図。 第11図は1次巻線電圧E1を変イヒさせた時の11 
 + pt  + B2  + I2および力Fを示す
曲線。 第12図はEl  、il 1 B2 + I2のオシ
ロスコープ波形 図において、1.1’、2.2’:IJ字状コア、3:
棒状コア、4:1次巻線、5:2次巻線、6:共振コン
デンサ、7:移動体、8:レール、9:巳、=II8V E、=+30V
Fig. 1 is a perspective view of an A-ramometric induction motor for detailed explanation of the present invention, Fig. 2 is a diagram showing elements of a linear motor according to the present invention, (&) is a front view, and (b) is a side view. FIG. 2C is a top view. Fig. 3 is an electrical connection diagram of the elements, Fig. 4 is a front view showing the configuration of the linear motor according to the present invention, Fig. 5 is its electrical connection diagram, and Fig. 6 is a diagram of the linear motor when a moving object is mounted on it. FIG. 7 is a top view showing another embodiment of the present invention, and FIG. 8 is a top view (a) and a side view (b) showing still another embodiment of the present invention. FIG. 9 shows an electrical wiring diagram at that time. FIG. 10 is a magnetic flux density distribution diagram of the magnetic field generating element in the example. Figure 11 shows 11 when the primary winding voltage E1 is varied.
Curve showing + pt + B2 + I2 and force F. Figure 12 is an oscilloscope waveform diagram of El, il 1 B2 + I2, 1.1', 2.2': IJ-shaped core, 3:
Rod-shaped core, 4: Primary winding, 5: Secondary winding, 6: Resonant capacitor, 7: Moving body, 8: Rail, 9: Snake, = II8V E, = +30V

Claims (8)

【特許請求の範囲】[Claims] (1)磁性体で構成した棒状コアと、その両側に磁性体
で構成したU字状コアをずらして、且つ夫夫のU字状の
両側に前記棒状コアが接するように前記棒状コアとU字
状コアを組み立て、さらに前記U字状コアの一方の脚に
は入力1次巻線を他方のコアの脚には2次巻線を施して
、この2次巻線に共振用コンデンサを接続して磁界発生
エレメントを構成せしめ、該エレメントを単位として複
数個進行方向に配列し前記1次巻線に単相交流電力を入
力し、前記U字状コアの端面上を硬質、軟質磁性体、導
電性金属体が移動するようにしたことを特徴とする磁気
−機械アクチーエータ。
(1) A rod-shaped core made of a magnetic material and a U-shaped core made of a magnetic material on both sides are shifted, and the rod-shaped core and the U-shaped core are in contact with both sides of the husband's U-shape. The U-shaped core is assembled, and one leg of the U-shaped core is provided with an input primary winding, the other core leg is provided with a secondary winding, and a resonance capacitor is connected to this secondary winding. A plurality of these elements are arranged in the traveling direction as a unit, single-phase AC power is input to the primary winding, and hard and soft magnetic materials, A magneto-mechanical actuator characterized in that a conductive metal body is moved.
(2)磁界発生の単位エレメントを複数個延圧させ、1
つ又は1つ以上の単位エレメントの進行磁界方向を他の
エレメントの方向と逆向きに構成した特許請求の範囲第
1項記載の磁気−機械アクチュエータ。
(2) Rolling a plurality of unit elements for magnetic field generation, 1
2. The magneto-mechanical actuator according to claim 1, wherein the direction of the traveling magnetic field of one or more unit elements is opposite to that of other elements.
(3)磁界発生の単位エレメントを並列に配置した特許
請求の範囲第1項並に第2項記載の磁気−機械アクチー
エータ。
(3) A magneto-mechanical actuator according to claims 1 and 2, in which magnetic field generating unit elements are arranged in parallel.
(4)磁界発生のエレメントが固定子である特許請求の
範囲第1項乃至第3項記載の磁気−機械アクチーエータ
(4) The magneto-mechanical actuator according to any one of claims 1 to 3, wherein the magnetic field generating element is a stator.
(5)磁界発生のエレメントが可動子である特許請求の
範囲第1項乃至第3項記載の磁気−機械アクチュエータ
(5) The magneto-mechanical actuator according to any one of claims 1 to 3, wherein the magnetic field generating element is a movable element.
(6)磁界発生エレメントと相対的運動する物体に軟磁
性体を用いた特許請求の範囲第1項乃至第5項記載の磁
気−機械アクチュエータ。
(6) The magneto-mechanical actuator according to any one of claims 1 to 5, wherein a soft magnetic material is used as an object that moves relative to the magnetic field generating element.
(7)磁界発生エレメントと相対的運動をする物体に永
久磁石体を用いた特許請求の範囲−1項乃至第5項記載
の磁気−機械アクチーエータ。
(7) A magneto-mechanical actuator according to claims 1 to 5, in which a permanent magnet is used as an object that moves relative to the magnetic field generating element.
(8)磁界発生エレメントと相対的運動をする物体とし
て導電性金属体を用いた特許請求の範囲第1項乃至第5
項記載の磁気−機械アクチュエータ。
(8) Claims 1 to 5 in which a conductive metal body is used as the object that moves relative to the magnetic field generating element.
Magneto-mechanical actuator as described in Section 1.
JP6286782A 1982-04-15 1982-04-15 Magnetic-mechanical actuator Pending JPS58182468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6286782A JPS58182468A (en) 1982-04-15 1982-04-15 Magnetic-mechanical actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6286782A JPS58182468A (en) 1982-04-15 1982-04-15 Magnetic-mechanical actuator

Publications (1)

Publication Number Publication Date
JPS58182468A true JPS58182468A (en) 1983-10-25

Family

ID=13212660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6286782A Pending JPS58182468A (en) 1982-04-15 1982-04-15 Magnetic-mechanical actuator

Country Status (1)

Country Link
JP (1) JPS58182468A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498920A (en) * 1978-01-20 1979-08-04 Yokogawa Hokushin Electric Corp Position motor
JPS55144769A (en) * 1979-04-28 1980-11-11 Koichi Murakami Ac motor composed of stator magnetic path having parametric oscillating characteristics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498920A (en) * 1978-01-20 1979-08-04 Yokogawa Hokushin Electric Corp Position motor
JPS55144769A (en) * 1979-04-28 1980-11-11 Koichi Murakami Ac motor composed of stator magnetic path having parametric oscillating characteristics

Similar Documents

Publication Publication Date Title
Boldea Linear electric machines, drives, and MAGLEVs handbook
Baoming et al. Design of transverse flux linear switched reluctance motor
Li et al. Detent force reduction of an arc-linear permanent-magnet synchronous motor by using compensation windings
JP6781489B2 (en) Electromagnetic device
Lv et al. An advanced equivalent circuit model for linear induction motors
Gieras et al. Analytical calculation of electrodynamic levitation forces in a special-purpose linear induction motor
Hirata et al. Dynamic analysis method of two-dimensional linear oscillatory actuator employing finite element method
JP3771543B2 (en) Linear motor drive device
Luo et al. Design of end-iron-free voice coil motor with appropriate PM length ratio
Lee et al. Computation of inductance and static thrust of a permanent-magnet-type transverse flux linear motor
Yan et al. Electromagnetic linear machines with dual Halbach array
Colinet et al. Investigation on the potential of PCB winding technology for high-dynamic and high-precision linear actuators
Hane et al. Reluctance network model of permanent magnet synchronous motor considering magnetic hysteresis behavior
Lv et al. Analysis on the air-gap magnetic flux density and propulsion of the TFLSM considering cogging effect
JPS58182468A (en) Magnetic-mechanical actuator
Xu Kilowatt three-phase rotary transformer design for permanent magnet DC motor with on-rotor drive system
Liu et al. Performance improvement for superconducting linear synchronous motor with general racetrack coils
Fujii et al. XY linear synchronous motors without force ripple and core loss for precision two-dimensional drives
Juds et al. AC contactor motion computed with coupled electromagnetic and structural finite elements
Sano et al. An accurate iron loss evaluation method based on finite element analysis for permanent magnet motors
CN110943590A (en) Magnetic difference motor
Ghaffari et al. 2-D analytical model for slotless double-sided outer armature permanent-magnet linear motor
JP3700883B2 (en) Linear motor stator
Kuijpers et al. Force analysis of linear induction motor for magnetic levitation system
Ulbrich et al. Linear Machine with a Magnetic-Coupled Structure Based on the Transverse Flux Technology