JPS58182302A - Magnetic resonator - Google Patents
Magnetic resonatorInfo
- Publication number
- JPS58182302A JPS58182302A JP6505082A JP6505082A JPS58182302A JP S58182302 A JPS58182302 A JP S58182302A JP 6505082 A JP6505082 A JP 6505082A JP 6505082 A JP6505082 A JP 6505082A JP S58182302 A JPS58182302 A JP S58182302A
- Authority
- JP
- Japan
- Prior art keywords
- ferrimagnetic
- thin film
- films
- mode
- static magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 29
- 239000010409 thin film Substances 0.000 claims abstract description 27
- 230000005293 ferrimagnetic effect Effects 0.000 claims abstract description 17
- 230000003068 static effect Effects 0.000 claims abstract 4
- 239000000758 substrate Substances 0.000 claims description 14
- 239000010408 film Substances 0.000 abstract description 7
- 239000004020 conductor Substances 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 6
- 239000002902 ferrimagnetic material Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000002223 garnet Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2/00—Networks using elements or techniques not provided for in groups H03H3/00 - H03H21/00
- H03H2/001—Networks using elements or techniques not provided for in groups H03H3/00 - H03H21/00 comprising magnetostatic wave network elements
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は7工リ磁性薄膜体を用いて成る磁性共鳴装置釦
係わる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic resonance apparatus button using a seven-layer magnetic thin film body.
イツトリウム・鉄・ガーネット(通称YIQ)単結晶は
、そのフェリ磁性共鳴の現象を利用して、固足及び可変
フィルタ、可変発振器などのマイクロ波デバイスに既に
広く使用されている。7エリ磁性共鳴の現象を共振回路
に応用した場合には。Yttrium-iron-garnet (commonly known as YIQ) single crystals are already widely used in microwave devices such as fixed-leg and variable filters and variable oscillators by utilizing the phenomenon of ferrimagnetic resonance. 7 Eli When applying the phenomenon of magnetic resonance to a resonant circuit.
共振周波数が試料の大きさに依らないために小形化出来
ること、また直流印加磁゛界を変えることにより共振周
波数を可変に出来ることなどの特徴がある0%にフェリ
磁性材料としてYIG単結晶な用いた場合、共鳴半値幅
が非常に狭いためマイクル波帯で数1000という高い
無負荷Q値を持つ共振器を得ることができる。YIG single crystal is used as a 0% ferrimagnetic material, which has the characteristics that it can be miniaturized because the resonance frequency does not depend on the size of the sample, and that the resonance frequency can be varied by changing the applied DC magnetic field. When used, it is possible to obtain a resonator with a high unloaded Q value of several thousand in the microwave band because the resonance half width is very narrow.
ところで、既に実用化されているYIGマイクロ波素子
では真球に加工したYIG単結晶試料を用いるのが一般
的である。真球試料を用いるのは高周波磁界の一様性が
良い場合、静磁モードが励振され難く、一様歳差モード
による唯一の共振モードが得られるという利点があるか
らである。従来のYIG単結単結晶用いたバンドパス・
フィルタでは、その透過特性は高周波磁界の一様性が完
全でないため、僅かながら静磁モードに対応するスプリ
アス・モードが存在するが、はぼ単峰に近い透ll4S
性が得られている。しかしながら、球形のフェリ磁性体
試料を用いる場合には、次のような欠点があった。即ち
試料を真球に加工するには、技術的に高度で、しかも画
情な工程が必要であること。1juKtJI的に試料表
mt−細かい研磨粒を用いて欠陥なく仕上げないと共鳴
半値幅が十分に狭くならず共振器の無負荷Q値が低くな
る原因となる。Incidentally, in YIG microwave devices that have already been put into practical use, it is common to use a YIG single crystal sample processed into a true sphere. The reason for using a true spherical sample is that when the uniformity of the high-frequency magnetic field is good, the magnetostatic mode is less likely to be excited, and there is an advantage that the only resonant mode, which is the uniform precession mode, can be obtained. Bandpass using conventional YIG single crystal
Since the filter's transmission characteristics are not completely uniform in the high-frequency magnetic field, there is a slight spurious mode corresponding to the magnetostatic mode, but the transmission characteristics are almost single-peaked.
sex is obtained. However, when using a spherical ferrimagnetic sample, there are the following drawbacks. In other words, processing a sample into a perfect sphere requires a technically advanced and elaborate process. If the sample surface is not finished without defects using fine abrasive grains, the resonance half-width will not be sufficiently narrow, which will cause the no-load Q value of the resonator to become low.
このため、YIG単結単結晶用いた1イクロ波デバイス
では量産性及び価格の点で問題があった。Therefore, a single microwave device using a single YIG single crystal has problems in terms of mass production and cost.
本発明は、上述の点に鑑み薄膜状のフェリ磁性体を用い
且つその際に発生する高次の静磁モードを十分抑制し、
上記問題点を解決した磁性共鳴装置を提供するものであ
る。In view of the above points, the present invention uses a thin film-like ferrimagnetic material and sufficiently suppresses the high-order magnetostatic mode generated at that time,
The present invention provides a magnetic resonance apparatus that solves the above problems.
本発明の磁性共鳴装置は、所要の基板と、この基板上に
あって夫々異なるアスペクト比を有する形状のフェリ磁
性薄膜体と、基板主面に直角に磁場を与える手段を有し
、夫々のフェリ磁性薄膜体の対応する静磁モードの周波
数を異ならせたことを特徴とするものである。The magnetic resonance apparatus of the present invention includes a required substrate, ferrimagnetic thin film bodies disposed on the substrate and each having a different aspect ratio, and means for applying a magnetic field perpendicular to the main surface of the substrate, This is characterized in that the frequencies of the corresponding magnetostatic modes of the magnetic thin film are made different.
以下本発明を詳細説明する。The present invention will be explained in detail below.
磁気バブル記憶素子の味見を通じて近年盛んになったガ
ドリニウム・ガリウム・ガーネット(通称GGG)基板
上にガーネット磁性薄膜な液相エピタキシャル成長させ
る技術により、結晶性の良好なYfG薄膜を作製するこ
とが可能である。このYIG薄膜を選択エツチングによ
り円形あるいは矩形等に加工し、このフェリ磁性共鳴を
利用することによってマイクロ波デノくイスを構成する
ことが出来る。この場合には、通常のフォト・+7ソグ
ラフイ技術が利用出来ることから加工性に優れ、しかも
1枚のGGG基板から多数の素子力を取れることから量
産性に優れている。しかも薄膜材料であることから、マ
イク四・スト1ノツプ・ラインなどを伝送線路としてマ
イクロ波集積回路化することが容易であるという利点が
ある。It is possible to fabricate YfG thin films with good crystallinity using liquid phase epitaxial growth of garnet magnetic thin films on gadolinium gallium garnet (commonly known as GGG) substrates, which has become popular in recent years through the experience of magnetic bubble memory devices. . By processing this YIG thin film into a circular or rectangular shape by selective etching and utilizing this ferrimagnetic resonance, a microwave denoisseur can be constructed. In this case, the processability is excellent because ordinary photo-+7 lithography technology can be used, and the mass productivity is excellent because a large number of element forces can be obtained from one GGG substrate. Moreover, since it is a thin film material, it has the advantage that it can be easily integrated into a microwave integrated circuit using four microphones, one knob, a stop line, etc. as a transmission line.
薄膜フェリ磁性体試料のもつ主要な欠点をま、高周波磁
界の一様性の良い場所に試料−b(電力)れても内部高
周波磁界は一様にならず静磁モート°′bt多数励損さ
れることである。第1図は9GHzの空胴共振器中で測
定された円形薄膜試料のフェリ磁性共鳴の測定結果で、
多数の静磁モー)” #”−励振されている様子が示さ
れている。従って、この試料を用いてバンドパス・フィ
ルタを構成すると、各々の静磁モードに対応する多数の
スプリアス・モードが存在することになる。The main drawback of thin film ferrimagnetic samples is that even if the sample is placed in a place with good uniformity of the high-frequency magnetic field, the internal high-frequency magnetic field will not be uniform and many magnetostatic motes will be excited. It is to be done. Figure 1 shows the measurement results of ferrimagnetic resonance of a circular thin film sample measured in a 9 GHz cavity resonator.
A large number of magnetostatic modes (#) are shown being excited. Therefore, if a bandpass filter is constructed using this sample, there will be a large number of spurious modes corresponding to each magnetostatic mode.
一方、円板状フェリ磁性体試料の試料面に垂直に!電流
磁界を印加したときの静磁モードにつ(・ては、文献(
Journal of Applied Physlc
m、 Vol、4R。On the other hand, perpendicular to the sample surface of the disk-shaped ferrimagnetic sample! Regarding the magnetostatic mode when a current magnetic field is applied, see the literature (
Journal of Applied Physics
m, Vol, 4R.
Julv 1977、3001頁〜3007頁)で解析
されており、各モードは(nlN)m で表示される。Julv 1977, pp. 3001-3007), and each mode is expressed as (nlN)m.
ただし、(n、N)mモードは円周方向Kn個の節をも
ち、直径方向KN個の節をもち、厚さ方向K(m−1)
個の節をもつモードである。第1図に照し合わせてみる
と(1,N)m系列が主要な静磁モードであることが解
る。仁のうち最も強く励振される(1.1)1モードが
一様歳差モードと同様なモードとなっている。ところで
、上記文献の解析結果は全ての磁界を飽和磁化4πM8
で正規化し、周波数をω、=r4KMSで正規化すれば
非常に統一的に箇とめられることが解る。ただし、γは
磁気回転比である。第2図は比較的近い値のアスペクト
比C(即ちC;厚みt/直径d)を有する2種類の円板
状フェリ磁性体試料について、夫々(1,N)1モード
の共鳴周波数を求めた結果である。縦軸はN値、横軸は
共鳴周波数を示す。ただし、直流印加磁界をHoとした
ときり。−Ho/4πM、=1とした。同図中・印はダ
=0.030の場合、O印は一=Q、l) 31の場合
である。この結果から解るように主共鳴モードであるN
−IKついては共鳴周波数は近接しているが、NtQ値
が犬舎くなるにつれて共鳴周波数のずれはだんだん大會
くなっている。However, the (n, N)m mode has Kn nodes in the circumferential direction, KN nodes in the diametrical direction, and K(m-1) in the thickness direction.
It is a mode with nodes. When compared with FIG. 1, it can be seen that the (1,N)m series is the main magnetostatic mode. The (1.1) 1 mode, which is most strongly excited, is similar to the uniform precession mode. By the way, the analysis results in the above literature show that all magnetic fields are saturated magnetized 4πM8
It can be seen that if the frequency is normalized by ω,=r4KMS, it can be classified very uniformly. However, γ is the gyromagnetic ratio. Figure 2 shows the resonance frequencies of the (1,N)1 mode for two types of disk-shaped ferrimagnetic samples with relatively similar aspect ratios C (i.e. C; thickness t/diameter d). This is the result. The vertical axis shows the N value, and the horizontal axis shows the resonance frequency. However, when the DC applied magnetic field is Ho. −Ho/4πM,=1. In the same figure, the * mark indicates the case when Da=0.030, and the O mark indicates the case when 1=Q, l) 31. As can be seen from this result, the main resonance mode is N
Regarding -IK, the resonant frequencies are close to each other, but as the NtQ value increases, the difference in the resonant frequencies becomes larger and larger.
従って、アスペクト比σの僅かに異なる例えば円形YI
G薄膜を多段に用いてパントノくス・フィルタを構成す
れば、主共鳴モードはほぼ重なり合(・、他の高次の静
磁モードは有効に打消し合って、スプリアス・レスポン
スの小さなフィルタを作ることが出来る。Therefore, for example, a circular YI with a slightly different aspect ratio σ
If a pantone filter is constructed using G thin films in multiple stages, the main resonant modes will almost overlap (・, and other higher-order magnetostatic modes will effectively cancel each other out, making it possible to create a filter with small spurious response. You can make it.
第3図乃至第5図は本発明の一実施例であり、2債の円
形YIG薄膜を用いた)(ンドノくス・フィルタである
0本例においては、GGG基板(1)の−主面(1り上
に液相エピタキシャル成長によって相対向する2つの円
形YIG薄膜(21及び(3)を形成する。この場合、
両YIQ薄膜(21及び(3)はその薄厚t1及びtz
が液相エピタキシャル成長によって互に揃えられるため
K(即?) tl = tz )、円の山径d1及びd
!を夫々僅かに変えてアスペクト比σを異ならせる。一
方、アル建す基板(4)を設け、この基板鼻面(4b)
に接地導体(5)を被着形成すると共に、基板表面(4
a)に人力ストリップライン(6)及び出力ストリップ
ライン(7)を被着形成し、この両ストリップライン(
6)及び(7)の夫々の端部を接地導体(5)釦接続す
る。このアルンナ基板(4)の表面(4a)K、上記G
GG基板+11をその夫kll)円形YIG薄膜(21
及び(3)が対応する出力ストリップライン(7)及び
入力ストリップライン(6)に対接するように配置する
。、そして、GGG基板(1)の他面(1b)上に両薄
膜(2)及び(3)を結合するストリップライン(8)
を入・出力ストリップラインf6) (71と直交し且
つ両薄II! +21(3)を横切るように被着形成し
、そのストリップライン(8)の両端を接地導体(5)
に接続する。直流磁界は基板(1)の面(1b)に対し
て垂直方向に印加される。なお(9)は高周波磁界を示
す、斯る構成によるバンドパス・フィルタαeKよれば
、アスペクト比(膜厚/直径)σの僅かに異なる2つの
円形YIG薄膜12)及び(3)を用いたことにより、
上述した通り各薄膜(2)及び(31における主共鳴モ
ードはほぼ重なり合い、他の高次の静磁モードは打消し
合い、スプリアス・レスポンスの小さいフィルタ特性が
得られる。Figures 3 to 5 show an embodiment of the present invention, in which a circular YIG thin film of 200 mm is used. (Two circular YIG thin films (21 and (3) facing each other are formed by liquid phase epitaxial growth on the top of the film. In this case,
Both YIQ thin films (21 and (3) have their thin thicknesses t1 and tz
are aligned with each other by liquid phase epitaxial growth, K (immediately?) tl = tz), and the diameters of the circles d1 and d
! The aspect ratios σ are made different by slightly changing the respective values. On the other hand, a board (4) for mounting is provided, and the nose surface (4b) of this board is
A ground conductor (5) is formed on the substrate surface (4).
A) is coated with a manual stripline (6) and an output stripline (7), and both striplines (
Connect the respective ends of 6) and (7) to the ground conductor (5) button. The surface (4a) of this Arunna substrate (4) K, the above G
GG substrate +11 and its husband kll) circular YIG thin film (21
and (3) are arranged so as to face the corresponding output stripline (7) and input stripline (6). , and a strip line (8) connecting both thin films (2) and (3) on the other surface (1b) of the GGG substrate (1).
The input/output strip line f6) is formed so as to be perpendicular to 71 and across both thin II!
Connect to. A DC magnetic field is applied in a direction perpendicular to the surface (1b) of the substrate (1). Note that (9) indicates a high-frequency magnetic field. According to the bandpass filter αeK with such a configuration, two circular YIG thin films 12) and (3) with slightly different aspect ratios (thickness/diameter) σ are used. According to
As described above, the main resonance modes in each of the thin films (2) and (31) almost overlap, and other higher-order magnetostatic modes cancel each other out, resulting in filter characteristics with small spurious response.
尚、上側において円形YIQ薄嗅12)及び(3)の直
径d1及びdzを同じ(dl−dz) K して膜厚t
1及びt2を変えても(t1キtg)アスペクト比−は
変えられるので、この場合も同様の効果が得られる。In addition, on the upper side, the diameters d1 and dz of the circular YIQ thin lines 12) and (3) are the same (dl-dz) K and the film thickness t
Even if 1 and t2 are changed (t1, tg), the aspect ratio can be changed, so the same effect can be obtained in this case as well.
また、薄膜(2)及び(3)の形状としては円形に限ら
ず、正方形あるいは長方形等でもよい。この場合のアス
ペクト比−は膜厚tと辺の長さ廖との比(t/Q)であ
り、従ってとの膜厚tと辺の長さtの比を変えることで
同じくスプリアス・レスポンスの小さいフィルタ特性が
得られる。焚にフェリ磁性試料はv嗅に限らずバルクの
材料から加工した円板等であっても構わないし、材料と
してはYIG単結晶に限らず共鳴半値幅の狭いあらゆる
フェリ磁性体材料を使用し得る。Further, the shape of the thin films (2) and (3) is not limited to a circle, but may be a square or a rectangle. In this case, the aspect ratio - is the ratio of the film thickness t to the side length (t/Q), so by changing the ratio of the film thickness t to the side length t, the spurious response can also be reduced. Small filter characteristics can be obtained. The ferrimagnetic sample to be fired is not limited to V-sniff, but may also be a disk processed from a bulk material, and the material is not limited to YIG single crystal, but any ferrimagnetic material with a narrow resonance half-width can be used. .
WIK本発明はバンドパス・フィルタに限らず、153
411の原理を応用したYIG町変発振S等のフェリ磁
性共鳴装置1lIKも適用できる。WIKThe present invention is not limited to bandpass filters, but also applies to 153
A ferrimagnetic resonance apparatus 1lIK such as YIG Town Variable Oscillator S which applies the principle of 411 can also be applied.
上述せる如く、本発明は複数の薄膜状のフェリ磁性体を
用い、その際各7エリ磁性体のアスペクト比を僅か[f
えることにより高次の静磁モードを抑制することが出来
る鴨ので、フェリ磁性体を用いたマイクロ波デバイスを
安価に且つ量産的に提供することが可能となる。As mentioned above, the present invention uses a plurality of thin film-like ferrimagnetic materials, and in this case, the aspect ratio of each ferrimagnetic material is set to be slightly [f
Since high-order magnetostatic modes can be suppressed by increasing the magnetic field, it becomes possible to provide microwave devices using ferrimagnetic materials at low cost and in mass production.
第1図は本発明の説明に供する円形フェリ磁性薄膜にお
ける静磁モードの発生の状態を示す線図。
第2図はアスペクト比の異なる2種類の円形フェリ磁性
薄膜についての(1,N)tモードの共鳴周波数な求め
た特性図、第3図は本発明の一実施例を示すバンドパス
・フィルタの斜視図、第4図はそのA−A線上の断面図
、第5図はそのB−B@上の断面図である。
(11はGGG基板、+21 (31はフェリ磁性薄膜
体、(6)は入力ストリップライン、(7)は出力スト
リップラ第1図
塙E&#fl波1欠
第3図FIG. 1 is a diagram showing the state of magnetostatic mode generation in a circular ferrimagnetic thin film used to explain the present invention. Figure 2 is a characteristic diagram of the resonance frequency of the (1,N)t mode for two types of circular ferrimagnetic thin films with different aspect ratios, and Figure 3 is a diagram of a bandpass filter showing an embodiment of the present invention. A perspective view, FIG. 4 is a sectional view taken along line AA, and FIG. 5 is a sectional view taken along line BB@. (11 is GGG substrate, +21 (31 is ferrimagnetic thin film, (6) is input strip line, (7) is output strip line.
Claims (1)
形状の複数のフェリ磁性薄膜体と、上記基板の主面に直
角に磁場を与える手段を有し、上記夫々のフェリ磁性薄
膜体の対応する静磁モードの周波数を異らせた磁性共鳴
装置=A plurality of ferrimagnetic thin film bodies each having a shape having a different aspect ratio are disposed on a substrate and a core substrate, and a means for applying a magnetic field perpendicularly to the main surface of the substrate is provided, and a static magnetic field corresponding to each of the ferrimagnetic thin film bodies is provided. Magnetic resonance device with different magnetic mode frequencies =
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6505082A JPS58182302A (en) | 1982-04-19 | 1982-04-19 | Magnetic resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6505082A JPS58182302A (en) | 1982-04-19 | 1982-04-19 | Magnetic resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58182302A true JPS58182302A (en) | 1983-10-25 |
Family
ID=13275740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6505082A Pending JPS58182302A (en) | 1982-04-19 | 1982-04-19 | Magnetic resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182302A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257607A (en) * | 1984-06-05 | 1985-12-19 | Sony Corp | Tuning oscillator |
JPS6165502A (en) * | 1984-09-06 | 1986-04-04 | Sony Corp | Ferromagnetic thin film filter |
-
1982
- 1982-04-19 JP JP6505082A patent/JPS58182302A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257607A (en) * | 1984-06-05 | 1985-12-19 | Sony Corp | Tuning oscillator |
JPS6165502A (en) * | 1984-09-06 | 1986-04-04 | Sony Corp | Ferromagnetic thin film filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940000428B1 (en) | Tuned oscillator | |
Murakami et al. | A 0.5-4.0-GHz tunable bandpass filter using YIG film grown by LPE | |
NL8304200A (en) | FERROMAGNETIC RESONATOR. | |
US4743874A (en) | Magnetostatic wave tunable resonator | |
JPH0628332B2 (en) | Receiving machine | |
CN104466338B (en) | YIG magnetic static wave resonator | |
JPH01236724A (en) | Chip for magnetostatic wave element and magnetostatic wave element | |
JPS58182302A (en) | Magnetic resonator | |
US4939488A (en) | Magnetostatic wave device | |
JP2779057B2 (en) | Magnetostatic wave device chip and magnetostatic wave device | |
US3480888A (en) | Electronically tuned filter | |
US3889213A (en) | Double-cavity microwave filter | |
CN107919517B (en) | Planarized High-Q Tunable Magnetostatic Wave Resonator | |
Murakami et al. | A bandpass filter using YIG film grown by LPE | |
KR960006463B1 (en) | Ferromagnetic resonance device and filter device | |
CN118352756B (en) | Adjustable band-pass filter | |
JPS59103403A (en) | Magnetic resonator | |
JP2595716B2 (en) | Magnetostatic device | |
JP2517913B2 (en) | Ferromagnetic resonance device | |
Robinson | Broad-Band Hybrid Junctions (Correspondence) | |
JPS60260202A (en) | Band-pass filter | |
EP0211958A1 (en) | Magnetostatic wave circulator | |
JPH0265307A (en) | magnetostatic wave device | |
JPH04115701A (en) | Magnetostatic wave element | |
JP2819576B2 (en) | Magnetostatic device |