[go: up one dir, main page]

JPS58180905A - Method and apparatus for measuring bend of shape steel - Google Patents

Method and apparatus for measuring bend of shape steel

Info

Publication number
JPS58180905A
JPS58180905A JP6235982A JP6235982A JPS58180905A JP S58180905 A JPS58180905 A JP S58180905A JP 6235982 A JP6235982 A JP 6235982A JP 6235982 A JP6235982 A JP 6235982A JP S58180905 A JPS58180905 A JP S58180905A
Authority
JP
Japan
Prior art keywords
measured
amount
deflection
shape steel
shaped steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6235982A
Other languages
Japanese (ja)
Other versions
JPH0429006B2 (en
Inventor
Jun Furukawa
古川 遵
Nobuyuki Sekimizu
関水 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6235982A priority Critical patent/JPS58180905A/en
Publication of JPS58180905A publication Critical patent/JPS58180905A/en
Publication of JPH0429006B2 publication Critical patent/JPH0429006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To make it possible to perform measurement in a line, by placing a shape steel to be measured on supporting points having a specified interval, pushing up the shape steel so as to offset the deflection due to its own weight, measuring the deflected amount of the shape steel under this state, thereby obtaining the bend amount. CONSTITUTION:A measuring apparatus comprises a supporting point device 1, a deflection amount detector 2, an operation control device 3, and a pushing up device 4. The supporting point device 1 comprises a pair of supporting points 10 and 10, which can be freely moved up and down and also moved in the longitudinal direction of a shape steel to be measured A and a device, which measures the weight of the shape steel to be measured A that is mounted on said supporting points 10. The horizontal and vertical movement of the supporting points 10 and 10 are controlled by the operation control device 3. The distance l2 between the supporting points 10 and 10 and the measured weight are inputted to the operation control device 3. The deflection amount detector 2 can be moved between the supporting points 10 and 10. The deflected amount is detected by detecting how much the lower surface of the shape steel A is displaced with respect to the height level of the supporting points 10 and 10. The shape steel A is pushed up by the pushing up device 4. A resistance force P to be loaded at this time is computed and outputted by the operation control device 3.

Description

【発明の詳細な説明】 この発明は形鋼oab欄定一定及び装置に関する。[Detailed description of the invention] TECHNICAL FIELD This invention relates to a section steel OAB field setting and apparatus.

形銅製品は通常熱間圧am冷却されるが、これらの過程
にシいて製品断面各部の熱容量の違い中冷却の不拘−叫
により曲りを生ずる。
Shaped copper products are usually cooled by hot pressure am, but during these processes, bending occurs due to the difference in heat capacity of each part of the product cross section and due to unrestrained cooling.

この−bFi襲−ラ矯正Ilあるいはプレス矯正機によ
り矯正されゐのが普通である。
Normally, the straightening is carried out using this -bFi attack roller straightening machine or a press straightening machine.

しかし平面上に置かれた形鋼製品は自重によりたわみを
生ずるため、普通の測定方法では曲り量O定量的把握は
困難である。
However, since a shaped steel product placed on a flat surface bends due to its own weight, it is difficult to quantitatively determine the amount of bending O using ordinary measurement methods.

その曳め従来は、次Oような測定方法により曲り量を一
定していた。
Conventionally, the amount of bending was kept constant using the following measurement method.

まず形鋼製品がH形鋼や溝形鋼勢の90転回可能な断面
影状を有する製品の場合、クレーン等により製品を90
転回させ、―直方向の曲りを水平方向の一11KL、こ
れにより自1によるたわみをなくした上で水系尋によシ
一定する。
First, if the shaped steel product is an H-shaped steel or channel steel product with a cross-sectional shape that can be rotated 90 degrees, the product can be rotated 90 degrees using a crane, etc.
It is turned, and the bend in the vertical direction is 111 KL in the horizontal direction, thereby eliminating the deflection caused by the self 1 and making it constant in the water system.

また製品が鋼矢板等の90転回することが困−な断面形
状を有するものである場合には、一定する製品の長さに
より予め定められ九關隔で配設された2儒0支点上に、
各々の支点外張ヤ出し長さが均等に表るように製品を載
せこの時Oたわみ量を測定する。次K[I!品をクレー
ン等によ1)180 転回し、同様に支点上に載せこの
時の九わみ量を測定する。このようにして求めた2つの
たわみ量から曲り量を算出すゐ。
In addition, if the product has a cross-sectional shape that makes it difficult to rotate 90 degrees, such as steel sheet piles, it is necessary to ,
The product is placed so that the outer extension length of each fulcrum is expressed equally, and the amount of O deflection is measured. Next K [I! 1) Rotate the product by 180 degrees using a crane, place it on the fulcrum, and measure the amount of deflection at this time. The amount of bending is calculated from the two amounts of deflection obtained in this way.

しかし上記し九ような従来の測定方法ではいずれもクレ
ーン等の装置を使用すゐ石畳があるためオンラインでの
迅速′&測測定出来なかった。また、そのためにオフラ
インにおける波数検査とせざるを得す、製品すべての検
査を行い品質保証をすることが困−である勢の欠点があ
った。
However, all of the conventional measurement methods described above require the use of cranes and other equipment, making it impossible to perform quick online measurements. In addition, there is a drawback that it is difficult to inspect all products and guarantee quality, which necessitates off-line wave number inspection.

このような欠点を改轡するため本願出願人は既に%顧昭
56−4398g号にて新規な曲り測定方法及び装置を
提案済である。
In order to overcome these drawbacks, the applicant of the present application has already proposed a new method and device for measuring bending in %Ko Sho No. 56-4398g.

この提案済の方法及び装置は所定の間隔を有する支点の
上に被測定形鋼を載置し、該被測定形鋼のたわみ量を測
定し、]I!に諌被一定形鋼に所定の加重をかけた状態
でそのたわみ量を測定し、前記夫々測定した3つのたわ
み量から被一定形鋼O真の曲p量を算出しようとするも
のである。
This proposed method and device places a shaped steel to be measured on fulcrums having a predetermined interval, measures the amount of deflection of the shaped steel to be measured, and measures ]I! The amount of deflection is measured with a predetermined load applied to the fixed shaped steel, and the true bending amount of the fixed shaped steel is calculated from the three deflection amounts measured respectively.

本発明は上記し九提案済の方法汲び装置をP!に発m−
aせたものであり、支点間に載置した形鋼管下から自重
によるたわみを相殺するように押し上げ、この状態でた
わみ量を測定し形鋼の曲りを得るようKしたものである
The present invention is based on the above-mentioned nine proposed methods and apparatus. Issued on m-
The shape steel pipe is placed between fulcrums and is pushed up from below to offset the deflection due to its own weight, and the amount of deflection is measured in this state to determine the bending of the shape steel.

本発明においては、まずag1図に示すように被測定形
鋼(A)を支点(B) CB)上に載置す2・1、この
形鋼(A) O重量(W)及び全長CL)Fi予め測定
しておく。また支点(B) CB)からはみ出すオーバ
ーハング長さく4) (zt)は同一の長さとし、この
長さくt、)を予め決めておく。
In the present invention, first, as shown in Fig. ag1, the shaped steel to be measured (A) is placed on the fulcrum (B) CB). Measure Fi in advance. Also, the overhang length 4) (zt) protruding from the fulcrum (B) CB) shall be the same length, and this length t,) is determined in advance.

この時画定される形鋼(A)のたわみ量(Jl)は形鋼
(A)の曲り量(J)とl!富による九わみ量(Jco
)から成り、 J、 z J +a@6 が成立する。これを書き替えると、 J“Jl−ago  となる。
The amount of deflection (Jl) of the shaped steel (A) determined at this time is the amount of bending (J) of the shaped steel (A) and l! Wealth-induced nine-way amount (Jco)
), and J, z J +a@6 holds true. If we rewrite this, it becomes J“Jl-ago.

本発明法においては、ここで第1図(b)に示すように
被測定形鋼(ム)を支点間の中心下側から所定の抗力(
P)で押し上げ、自重によるたわみ量(Jco)を相殺
して0とし、J篇Jlとして、この時のたわみt(Jυ
を形鋼orb量(、a)とする。
In the method of the present invention, as shown in FIG. 1(b), a predetermined drag (
P), the amount of deflection due to its own weight (Jco) is offset to 0, and the deflection at this time t(Jυ
Let be the shape steel orb amount (, a).

ここで自重によるたわみ量(Jco)は理論的に下式で
示される。
Here, the amount of deflection due to own weight (Jco) is theoretically expressed by the following formula.

ここで、E:ヤング率(勢へり l:断面雪次モーメント(36) W:単位長さ当p重量(#/1I) 一方、抗力(P)による押し上げ量(す)は理論的に下
式によ)示される。
Here, E: Young's modulus (force l: moment of cross-sectional snow (36) W: p weight per unit length (#/1I) On the other hand, the amount of push-up due to drag (P) is theoretically calculated using the following formula. (by) indicated.

したがって自重によるたわみ量(δaO)を押し上げ量
(jp)によシ相殺するには、δ、−Jc6・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・−・・・・・・・・・・・・・
・■とする必畳がある。
Therefore, in order to offset the amount of deflection due to own weight (δaO) with the amount of push up (jp), δ, -Jc6...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・-・・・・・・・・・・・・・・・
・There is a must to be tatami.

ここで■式に0.0式を代入すれば、 形鋼(ム)を押し上げれば、自重による九わみ量(Je
o)が椙llI″gれ、この状態で九わみ量(Jρを測
定すれば、ζ・れが形鋼(ム)01111量(J)とな
る。
Here, by substituting the formula 0.0 into formula
If the deflection amount (Jρ) is measured in this state, the amount of deflection (Jρ) will be the amount (J) of the section steel (mu).

こOよう倉本発輯による一定方味によれ杜、形鋼(ム)
を転回させる石畳が全くないから、オンラインでovi
t定が可能となる。
Mori and shaped steel in a certain way developed by Kuramoto
Because there are no cobblestones to turn the
It becomes possible to determine t.

次に本発明方法を***するための羨置O具体的−笑施
例を第z図に基づいて説−する。
Next, a concrete example for carrying out the method of the present invention will be explained based on Fig. Z.

こO装置は支点装置0)と良わみ量検出5(2))と演
算制御装置(3)と押し上げ装置(4)とからなる。
This O device consists of a fulcrum device 0), a deflection amount detection 5(2)), an arithmetic and control device (3), and a pushing up device (4).

支点装置(1)は昇降自在でかつ被測定形鋼(A)O長
手方向移動自在な一対O支A輪輪と、ζO支点oQ(転
)に載置され為被霧定形鋼O重量をm*すゐ重量1Iy
il装置(図示ぜず)から戚為。
The fulcrum device (1) is equipped with a pair of O-support A wheels that can be raised and lowered and is freely movable in the longitudinal direction of the shaped steel to be measured (A), and is placed on the fulcrum oQ (rotation) of ζO, so that the weight of the shaped steel O to be measured can be measured in m. *Swi weight 1Iy
from the il device (not shown).

支点(至)(2)の移動及び昇降は演算制御装置($)
 Kよp制御され、支点(2)(2)OI[離C41)
は演算制御装置(3)に入力される。また上記重量測定
装置により一1定され九重量(W)%演算制御装置(3
)K入力される。
The movement and elevation of the fulcrum (to) (2) is controlled by the arithmetic control device ($)
K and p controlled, fulcrum (2) (2) OI [release C41]
is input to the arithmetic and control unit (3). In addition, the weight (W)% calculated by the weight measuring device is fixed at 9% by the weight measuring device (3%).
)K is input.

九わみ量検出5(2)は支点韓韓閏を移動し得るよう罠
なっておシ、形鋼(ム)の下iIが支点(2)(2)の
高さレベルに対してどれだけ変位しているかを検知する
ことによ・)、たわみ量を検出する。この検出値はまた
演算制御装置(3)に入力される。
The deflection amount detection 5 (2) is a trap so that the fulcrum can be moved, and how much the lower iI of the section steel is relative to the height level of the fulcrum (2) (2). By detecting displacement, the amount of deflection is detected. This detected value is also input to the arithmetic and control unit (3).

押し上げ装置(4)は、たわみ量検出器(7)と同じく
支点(至)(至)間を移動可能となりてお)、形鋼(ム
)を所定の抗力(P)で押し上がる押し棒(40)と荷
重を検出するp−ドセル(41)から眠る。押し棒(4
0)は適宜な駆動装置により形鋼(ム)を押し上げる。
The push-up device (4), like the deflection amount detector (7), is movable between fulcrums (to) and a push rod (to) that pushes up the section steel (mu) with a predetermined resistance (P). 40) and the p-dossel (41) that detects the load. push rod (4
0) pushes up the section steel (mu) using an appropriate drive device.

この時の負荷すべ1i抗力CP)は演算制御装置(3)
Kよ珈上記■式Kl!って算出され出力される。またI
IIIIK負荷1+した荷重はロードセル(41) K
よりfIIK#1され演算制御装置(3)K入力される
At this time, the load force 1i drag force CP) is calculated by the arithmetic and control unit (3)
K yo C above ■ type Kl! is calculated and output. Also I
The load of IIIK load 1+ is the load cell (41) K
Then fIIK#1 is input to the arithmetic and control unit (3).

以上Oような構go装置は被測定形鋼の霧長犠能を有す
る装置O下流側であれば、製造70−内のどの位置に設
置すること4可能である。以下その一例として形鋼製品
をそo−1手方向に移送する搬送テーブル上に設置した
場合0111作についてll!男する。
The device having the structure O described above can be installed at any position within the production 70- as long as it is downstream of the device O having the fog length sacrificial ability of the shaped steel to be measured. Below is an example of a case where a shaped steel product is installed on a transfer table that is transferred in the 1-way direction. be a man

會ず、その長−8(t)を上流側に位置する一長器(5
)Kよ〉測長された$11定形鋼は、本測定装置の位置
で停止する。この停止はストッパ勢によ)行えけ嵐い。
The length -8 (t) is the one length vessel (5) located upstream.
)K〉The $11 shaped steel whose length was measured stops at the position of this measuring device. This stoppage should be done by the stoppers) Arashi.

前記癲長器(5)からの長さC1)1号は演算制御装置
(3)に送信され、ここで予め決められ九オーバーハン
グ長−5CL@>から支点間隔(4)が演算堪れる。演
算制御装置(3)はこの演算1れ良支点閣隔(L、)と
なるように支点CLQ(ト)を移動させ、次いで支点a
4(2)を上昇させて形鋼を支持し友後、検出器Q)及
び押し棒(40)が形鋼(A)のほぼ中央部に来るよう
に移動させる。なおオーバーハング長さく4)は測定作
業に支障を亀たさない範囲で小さくすみ方が測定誤差が
小さくなるので好ましい。
The length C1) from the lengthener (5) is sent to the arithmetic and control unit (3), where the fulcrum spacing (4) is calculated from the predetermined 9 overhang length -5CL@>. The arithmetic and control device (3) moves the fulcrum CLQ (g) so that the distance between the fulcrums and the fulcrums (L, ) is equal to this calculation 1, and then moves the fulcrum a
4 (2) to support the shaped steel, and then move the detector Q) and push rod (40) to approximately the center of the shaped steel (A). Note that it is preferable to keep the overhang length 4) as small as possible without interfering with the measurement work, since this will reduce measurement errors.

形鋼(ム)が支点(7)αOK*持畜れると、重量(W
)が測定され、演算制御装置(3)に入力される。ここ
で演算制御装置(3)においては、p m −($4ニ
ー雪44.雪) St。
When the shaped steel (Mu) is held at the fulcrum (7) αOK*, the weight (W
) is measured and input to the arithmetic and control unit (3). Here, in the arithmetic and control unit (3), p m -($4 knee snow 44. snow) St.

O演算を行い、この抗力CP)を押し上げ装置(4)に
出力する。押し上げ装置幀)は演算制御装置(3)から
指令された抗力CP)で押し棒(40)を形鋼(ム)に
押し付ける。こCIIIIIK負荷された抗力CP)は
ロードセル(41) Kよ〉検出され、装置(3)K読
み込まれる。
O calculation is performed and this drag force CP) is output to the pushing up device (4). The push-up device 幹) pushes the push rod (40) against the section steel (mu) using the drag force CP commanded by the arithmetic and control device (3). This CIIIK loaded drag force CP) is detected by the load cell (41)K and read by the device (3)K.

これにより形鋼(A)の自重によるたわみ(Jeo)は
Oとなるから、この状態で九わみ量検m*(2)によp
たわみ量(J、)を検出すれば、ζ□ J。
As a result, the deflection (Jeo) of the shaped steel (A) due to its own weight becomes O, so in this state, the deflection amount test m * (2) is p
If the amount of deflection (J, ) is detected, ζ□ J.

がm1曲〉量(J)となる。こ01111)量(J)は
適宜手段によ〕外部に表示される。
is m1 songs〉quantity (J). The amount (J) is displayed externally by appropriate means.

上記動作を第S図の流れ図に示す。The above operation is shown in the flowchart of FIG.

なお、たわみ量検出器−)としては接触式O竜ンサとマ
ダネスケール静を用いて形鋼(ム)下側から該センナを
接触1せ、その時の−k)/量の上下位置を検出するよ
うな構成のものでも東いが本集−例では第4図に示すよ
う傘党学式のものを用いてお9、演算制御装置(3)と
接続している。$1411中、@は光検出装置、輪はと
O光検出装置(2)を昇降させる昇降装置、fi4Fi
光検出義置輔O上下方向位置を検出すゐ位置検出装置、
(X)は支点(2)(転)のレベル、(a)とCI) 
Fi被測定形鋼(ム)のたわみ部最下端部である。
In addition, as the deflection amount detector -), use a contact type O-sensor and Madane scale static to contact the deflection sensor from the bottom side of the section steel (mu), and detect the vertical position of -k)/amount at that time. In this example, as shown in FIG. 4, an umbrella system 9 is used and connected to the arithmetic and control unit (3). In $1411, @ is a photodetection device, the ring is a lifting device that lifts and lowers the O photodetection device (2), fi4Fi
Optical detection prosthesis device that detects the vertical position;
(X) is the level of fulcrum (2) (rolling), (a) and CI)
This is the lowest end of the deflection part of the Fi shaped steel to be measured.

光検出装置0!メは図示するように断1m1c字形のヘ
ッド(ハ)と投光器−及び受光aに)から構成されてい
る。投光a価と受光器−はヘッド−の先g1郁に向い合
せて設けられてお9、この実施例ではこの組食せが3組
設けられている。
Light detection device 0! As shown in the figure, the main unit consists of a 1m1c-shaped head (c), a light emitter, and a light receiver (a). The light emitter and the light receiver are provided facing the tip g1 of the head9, and in this embodiment, three sets of these combinations are provided.

投光器に)からは党が投ぜられ、受光器−に受光され、
この1i11のビーム(m、) (mm)がlIl定レ
ベルを形成するが、該ビーム(ms) (mm)は岡−
水平線上に位置させるように投光ローと受光優−(2)
O水平位置を合せておく、ビーム(m=) (mJが遮
断畜れると受光1It14は物体検mos4#を出力し
、この信号は演算制御装置−)にλ力場れるように構成
されている。
The light is projected from the light emitter) and is received by the light receiver,
This 1i11 beam (m,) (mm) forms a constant level, but the beam (ms) (mm) is
Low light emitting and high light receiving so that they are positioned on the horizon (2)
Align the horizontal position of the beam (m=) (When mJ is interrupted, the light receiver 1It14 outputs object detection mos4#, and this signal is configured to be sent to the λ force field to the arithmetic and control unit). .

危お、この実施例においては、受光饅−−〇前面に受光
スリット@−を設けてあ〉、投光器(2)からのビーム
の鉱が都をこCOXリット勿で紋〕検出精度を高めてい
る。まえ各投光器−と受光器(2)の上部にはタッチス
イッチ■を設けてあ知、こζに被梶定浄銅等がll1I
I!シた場合直ちにこれを検知するようにしている。
In this embodiment, a light-receiving slit is provided on the front surface of the light-receiving device to improve detection accuracy. There is. A touch switch is installed on the top of each emitter and receiver (2).
I! If this happens, it will be detected immediately.

このタッチスイッチ−は昇眸鋏置@KIll!続させ衝
突時に非常停止するようKIll成しておいても良い。
This touch switch is a rising eye scissors @KIll! KIll may be configured so that the system continues and makes an emergency stop in the event of a collision.

以上Oような構成O光検出鋏置輔は昇降装置四に支持さ
れ、を九これによ)昇降可能となっている。昇降装置−
は架台−と毫−タ■と側対Oリニアヘッド(31)とか
6構llc畜れている。リニアヘッド(31)は峰−夕
■に績絖畜れモータ■oWA転運動を直−運動に変換す
るもOで、ラックピニオン等と同一の機能を有する40
でhる。光検出装置(2)はこのリニアヘッド($1)
 OKllラドs2)上に載置されている。
The light detection scissors holder having the above structure is supported by a lifting device 4, and is thereby capable of being raised and lowered. Lifting device
There are 6 parts including a frame, a roller, and a side-to-side O linear head (31). The linear head (31) is a motor that converts rotational motion into linear motion, and has the same function as a rack and pinion.
It's huru. The photodetector (2) is this linear head ($1)
It is placed on the OKll Rad S2).

モーターは正逆転可能とし、演算制御装置e)からの上
昇又は下降指令によシ正又は逆回転するよう(構wtさ
れている。
The motor is capable of forward and reverse rotation, and is configured to rotate forward or backward in response to an ascending or descending command from the arithmetic and control unit e).

’1kks  (81)(is)は架台@O上方位置と
下方位置に設けられえり建ットスイッチであ〕、ロッド
(1り 0昇降範囲即ち充検出装who昇降範目を規制
している。ζOすミツトスイッチ(U)は噌−夕■と接
続させてONとなり喪時に令−タ■を非常停止するよう
K11IiEしても良い。
'1kks (81) (is) is a stand switch installed at the upper and lower positions of the frame @O] and the rod (1kks). The mitsuto switch (U) may be connected to K11IiE so that it is turned ON to emergency stop the controller (2) in the event of mourning.

位置検出装置−はこの実施例で拡直線IIOマグネスケ
ールを用いておplそO1l気ヘッド(34)を連結棒
(3!りを介してヘッド−〇下端蕩と連結していゐ。こ
の−fグネスケール斡は形鋼(ム)O支点レベル(X)
 Kビーム−t) (as)が位置している時その上下
方向位置信号(8)−・となるように調整されてお夛、
ヘッド−が下降するほど目が″大きくなゐようにセット
されている。こOYダネスケール四〇出力は演算制御装
置(2)に入力されてい為。
In this embodiment, the position detection device connects the head (34) to the lower end of the head via a connecting rod (34) using an expanded linear IIO Magnescale. Gune scale is the section steel (mu) O fulcrum level (X)
The vertical position signal (8) is adjusted so that when the K beam (t) (as) is located,
The eyes are set so that they become larger as the head descends.This is because the OY scale 40 output is input to the arithmetic and control unit (2).

演算制御装置(3)は、時々刻々変化する位置検出装置
−からの位置信号(11)を入力す為と共に、受光器@
−からのたわみ藝最下端IICII+)(β)の検出信
号を入力し、(”) CI)検出時点での位置信号を読
み、たわみ量(J、)即ちIIIj量(J)を出力する
。なお、ζo II 、形鋼(ム)の両エツジ(ぼ)(
−)0下端におけるえわ4ik(Jig) (J、β)
を求めて下式のように平均値−1をとbようKしても棗
い。
The arithmetic and control unit (3) inputs the position signal (11) from the position detection device which changes from time to time, and also inputs the position signal (11) from the light receiver @
Input the detection signal of the lowest point of deflection IICII+) (β) from -, read the position signal at the time of detection ('') CI), and output the deflection amount (J,), that is, the amount IIIj (J). , ζo II, both edges of the section steel (
-) 4ik (Jig) at the lower end of 0 (J, β)
Even if you calculate the average value - 1 as shown in the formula below, it is still a long time.

この理由は一般に形鋼OWR画形状及び寸法が完全な対
称形ではなく、若干左右Oアンバランスがあること、ま
た抗力CP)を加え為位置が形鋼巾方向中心よシtずれ
ることがToj)、この影響で両エツジ下端位置が左右
同じとは、ならないことがあ、&えめであゐ。
The reason for this is that the shape and dimensions of the shaped steel OWR are generally not completely symmetrical, and there is a slight left-right imbalance, and that the position of the shaped steel is shifted from the center in the width direction due to the addition of drag (CP). , Due to this influence, the lower end positions of both edges may not be the same on the left and right sides.

次にこOたわみ量検出器(2)の動作を説明する。Next, the operation of the deflection amount detector (2) will be explained.

まず演算制御装置(1)からモーターへ正転駆動指令が
出力され、そ−夕■が正転を始め光検出俵置輪が上昇を
始める。いま最下端11(−)が(−)よ〕下位置にあ
るとすると(直)がビーム(m、)  位置にくると、
光を遮断するため受光器−からは<g)検出信号が演算
制御装置(2)へと出力場れる。装置(3)ではこの時
の位置検出装置−から0信号(ml) tたわみ量(a
□)としてその内部メ4VK記憶する。続けて他方の受
光器−によ)(I)が検出されて同様に演算制御II鋏
置装3)はそO内部メ毫りにたわみ量(Jψ)を記憶す
る0次にこO<a□)と(す)から平均値を求めて友わ
重量(Ji) jlち*b量(りを得てこれを出力する
。次いで演算制御装置体)は毫−ターに停止及び逆転指
令を出力し、光検出装置(ハ)が元O位置に戻つ九時点
でこれを停止させ調定を完了する。
First, a normal rotation drive command is output from the arithmetic and control unit (1) to the motor, and then the motor starts to rotate in the normal direction and the light detection bale holder starts to rise. Now, if the lowest end 11 (-) is at the lower position than (-), when the (straight) comes to the beam (m,) position,
In order to block the light, a <g) detection signal is output from the light receiver to the arithmetic and control unit (2). In device (3), at this time, the position detection device -0 signal (ml) t deflection amount (a
□) is stored in its internal memory as 4VK. Subsequently, (I) is detected by the other photoreceiver, and the arithmetic control II scissor device 3) stores the deflection amount (Jψ) in its internal memory. Calculate the average value from □) and (su) to obtain the weight (Ji) and output it.Then, the arithmetic and control unit outputs stop and reverse commands to the motor. Then, at the 9th point in time when the photodetector (c) returns to the original O position, it is stopped and the adjustment is completed.

以上のような構成o−hわみ量検出11によれば極めて
精度の高い測定を行うことがで龜る。
According to the o-h deflection amount detection 11 configured as described above, it becomes difficult to perform measurements with extremely high accuracy.

以上説明したように、本発−0III定方法および装置
によれば、形鋼を転闘することなくそorb量を測定す
ることが可能となるため、ライン内での連続一定が可読
と表や、すべての製品の−〉検査を行うことが出来る等
O効果がある。
As explained above, according to the present invention-0III method and device, it is possible to measure the amount of orb without rolling the section steel, so it is possible to read the table continuously and constantly in the line, It has O effects such as being able to inspect all products.

【図面の簡単な説明】[Brief explanation of the drawing]

謳1図は本発明方法の11114図、第3園は本発明装
置の一実施例を示す正Iir園、18図はそO動作を示
す流れ図、第4園では良わみ量検出器の一実施例を示す
正面図である。 図中、(1)は支点装置、(2)は喪わ重量検出器、(
3)は演算側m装置、(4)は押し上げ装置、(2)は
支点、(40)は押し棒、(41)tjロードセル、(
ハ)は光検出装置、(2)は昇降装置、−は位置検出装
置、Q4#iヘッド、−は投光器、輪は受光器、蛸は受
光スνット、−社タツはvニアヘッド、(!12)はロ
ッド、(U)はり建ットスイッチ、−は磁気ヘッド、(
U)は連結棒を各示す。 41軒出願人 日本鋼管株式会社
Figure 1 is a diagram 11114 of the method of the present invention, Figure 3 is a positive diagram showing an embodiment of the apparatus of the present invention, Figure 18 is a flowchart showing its operation, and Figure 4 is a diagram showing one example of the deflection amount detector. It is a front view showing an example. In the figure, (1) is the fulcrum device, (2) is the weight detector, (
3) is the calculation side m device, (4) is the push-up device, (2) is the fulcrum, (40) is the push rod, (41) is the tj load cell, (
C) is a photodetection device, (2) is a lifting device, - is a position detection device, Q4#i head, - is a projector, a ring is a light receiver, an octopus is a light receiving spot, - is a v near head, ( !12) is a rod, (U) is a beam switch, - is a magnetic head, (
U) indicates each connecting rod. 41 applicants: Nippon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】 1、所定の間隔を有する支点O上に被一定形鋼を載置し
、談被淵定形鋼を自重によるたわみを相殺するように押
し上げ、この状態で被測定形鋼のたわみ量を一定して被
測定形鋼の曲りを得ることを特徴とする形銅の曲り測定
方法。 l  m1llI定形鋼の長手方向に移動自在でかつ上
下方向昇降可能な被測定形鋼を載置する一対の支点と、
載支点間において被測定形鋼を任意の力で押し上げ石押
し上げ装置と、被測定形銅Oたわみ量を一定するたわみ
量測定装置とを有することを%黴とする形銅の−り橢定
装置。
[Claims] 1. Place the shaped steel to be measured on fulcrums O having a predetermined interval, push up the shaped steel to offset the deflection due to its own weight, and in this state, press the shaped steel to be measured. A method for measuring the bending of shaped copper, characterized in that the bending of the shaped steel to be measured is obtained by keeping the amount of deflection constant. A pair of fulcrums on which the shaped steel to be measured is placed, which is movable in the longitudinal direction of the shaped steel and can be raised and lowered in the vertical direction;
A copper shape deformation device having a stone pushing device for pushing up the shape steel to be measured with arbitrary force between supporting points, and a deflection amount measuring device that constants the amount of deflection of the shape copper to be measured. .
JP6235982A 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel Granted JPS58180905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6235982A JPS58180905A (en) 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6235982A JPS58180905A (en) 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel

Publications (2)

Publication Number Publication Date
JPS58180905A true JPS58180905A (en) 1983-10-22
JPH0429006B2 JPH0429006B2 (en) 1992-05-15

Family

ID=13197837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6235982A Granted JPS58180905A (en) 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel

Country Status (1)

Country Link
JP (1) JPS58180905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029669A1 (en) * 1993-06-04 1994-12-22 Paulson Peter O Apparatus and method for non-destructive testing of structures
CN108253927A (en) * 2018-01-18 2018-07-06 华南农业大学 A kind of method and system for detecting deformation seedling disk

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679906A (en) * 1979-12-04 1981-06-30 Nippon Kokan Kk <Nkk> Measuring method for up-down curvature of steel material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679906A (en) * 1979-12-04 1981-06-30 Nippon Kokan Kk <Nkk> Measuring method for up-down curvature of steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029669A1 (en) * 1993-06-04 1994-12-22 Paulson Peter O Apparatus and method for non-destructive testing of structures
CN108253927A (en) * 2018-01-18 2018-07-06 华南农业大学 A kind of method and system for detecting deformation seedling disk

Also Published As

Publication number Publication date
JPH0429006B2 (en) 1992-05-15

Similar Documents

Publication Publication Date Title
JPH0455242B2 (en)
JPS58180905A (en) Method and apparatus for measuring bend of shape steel
JPH06281417A (en) Method for measuring height and deviation of trolley line
JP4250278B2 (en) Torque calibration device
JPS6253047B2 (en)
JP3331341B2 (en) Dimension measuring device for section of steel section
CN116234643A (en) Apparatus and method for rolling metal strip
JPH0460405A (en) General-purpose sensor between stands
JPH09210665A (en) Method and device for plate width measurement
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
JPH09505883A (en) Equipment for measuring the dimensions of large objects
CN209533449U (en) Virtual box
KR100862775B1 (en) Hot Rolled Sheet Shape Measuring Machine Simulator
KR100332710B1 (en) Method and device for measuring shape and / or leveling of moving strip steel
JPS58123405A (en) Apparatus for measuring deflected amount of shape steel
JP2020153672A (en) Wind tunnel test system, control method of wind tunnel test system and program
JPH05231854A (en) Height measuring instrument
JPH03195910A (en) Measuring method for camber of crane girder
JPH02287102A (en) Curve detector of die steel
SU522433A1 (en) Stand for determining the coordinates of the center of gravity of transport vehicles
JPH0787937B2 (en) Rolled material tension detector
JPH10332464A (en) Scale for truck
JPH08238508A (en) Method for automatically controlling rolling gage of thickness of steel sheet utilizing laser doppler method and device therefor
JP3418554B2 (en) Flat plate holding device and flat plate holding method
JPH0719804A (en) Method and device for measuring curve depth of plate-like material