[go: up one dir, main page]

JPS58178601A - Band-pass filter - Google Patents

Band-pass filter

Info

Publication number
JPS58178601A
JPS58178601A JP6131482A JP6131482A JPS58178601A JP S58178601 A JPS58178601 A JP S58178601A JP 6131482 A JP6131482 A JP 6131482A JP 6131482 A JP6131482 A JP 6131482A JP S58178601 A JPS58178601 A JP S58178601A
Authority
JP
Japan
Prior art keywords
elements
coupling
resonant elements
resonant
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131482A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatanaka
博 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP6131482A priority Critical patent/JPS58178601A/en
Publication of JPS58178601A publication Critical patent/JPS58178601A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To provide required transmission characteristics to the titled band-pass filter optionally without changing the diameter of resonance elements and the setting interval between them by setting an interstage coupling adjusting element and fine adjusting screws for coupling degree between respective two resonance elements and adjusting the insertion length of each adjusting screw properly. CONSTITUTION:The interstage coupling adjusting elements 51, 5'1-55, 5'5 consisting of rod-like conductors are set up in parallel with the resonance elements 21-26 at proper intervals in the rectangular direction against the direction superposing the resonance elements 21-26. The coupling degree fine adjusting screws 61, 6'1-65, 6'5 are inserted into respective adjacent spaces of the resonance elements 21-25 from the upper wall and lower wall of a housing 1 in parallel with the interstage coupling adjusting elements 51, 5'1-55, 5'5 and the insertion length is finely adjusted and optionally fixed by lock nuts 71, 7'1-75, 7'5.

Description

【発明の詳細な説明】 本発明は、マイクロ波用帯域通過ろ波器に関するもので
ある。以下帯域通過ろ波器をBPli’と略記する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave bandpass filter. Hereinafter, the bandpass filter will be abbreviated as BPli'.

従来のマイクロ波用BPFにおいて高い負荷Qを必要′
とする場合には、共振棒の間隔を大にして結合を疎なら
しめなければならないため全体が大形となる欠点がある
Conventional microwave BPF requires high load Q'
In this case, the spacing between the resonant rods must be increased to make the coupling looser, resulting in a disadvantage that the overall size becomes larger.

又、共振棒間に結合調整棒を介在2せで結合を疎にする
ことにより共振棒の間隔を大にすることなく負荷Qt高
くするように構成したコムライン形BPF’が従来用い
られているが、結合調整棒の直径及び取付位置を所要値
に正確に一致させることが困難で、電圧定在波比及び伝
送特性の良好なりPFを構成することが困難である。
Also, a combline type BPF' has been conventionally used, which is configured to increase the load Qt without increasing the spacing between the resonance bars by interposing two coupling adjustment rods between the resonance bars to make the coupling loose. However, it is difficult to accurately match the diameter and mounting position of the coupling adjustment rod to required values, and it is difficult to configure a PF with good voltage standing wave ratio and transmission characteristics.

本発明は、構造製作が簡潔容易で、負荷Qの高い場合で
も全体を小形に構成し得ると共に良好な電圧定在波比及
び任意かつ良好な伝送特性の得られるマイクロ、成用B
PF を実現することを目的とする。
The present invention has a structure that is simple and easy to manufacture, the entire structure can be made compact even when the load Q is high, and a good voltage standing wave ratio and arbitrary and good transmission characteristics can be obtained.
The purpose is to realize PF.

第一フは本発明の一実施例を示す断面図(第2図のB−
B断面図)、第2図は第1図のA−A断面図、第3図は
半≠i女社第2図のC−C断面図で、各図において、1
は電磁シールド用筐体、21ないし2bは棒状導体より
成る共振素子、3I及び3コは入出力同軸端子、小及び
42は入出力結合素子で、例えばストリップラインより
成る。ストリップラインを用いて結合する代りにタップ
結合、ループ結合又はリボン状導体と共振素子間の容量
を利用する結合等によって入出力結合を行うように構成
しでもよい。5I及び51ないし5す及び5’sは棒状
導体より成る股間結合調整素子で、例えばシ及び5tは
共振素子21及び22の隣接空間においで共振素子と平
行に、かつ共振素子を連ねる方向に対してほぼ直角方向
に適宜間隔を隔てて設けられ、各上端及び下端を筐体1
の上壁及び底壁に固足しである。図には共振素子2I及
び22の隣接空間に2本の調整素子51及び5τを設け
た場合を例示しであるが、設置本数を適宜増べしても本
発明を実施することが出来、又、共振素子を連ねる方向
に対してほぼ直角方向に適宜間隔を隔てて調整素子51
及び51を設ける代りに斜方向に配列してもよ(、調整
素子を3本以上設ける場合には一列に配設する代りに不
規則に配置してもよい。他の股間結合調整素子52及び
5′!ないし襄及び5′−も全く同様に共振素子22な
いし2bの各隣接空間に設けである。61及び6;ない
し6S及び乙は結合度の微調整ねじて、段開結合調整素
子5I及び5;ないし5C;及び5′gと平行に筐体1
の上壁及び底壁から共振素子21ないし2bの各隣接空
間内に挿入すると共に挿入長を微細に調整し、口・ンク
ナット7I及び71′ないしk及び列により任意の挿入
長に固定し得るように形成しである。図(こは微調整ね
じ61及び61を設問結合調整素子51及び5’+の中
間に挿入し、素子51及び5;とねじ61及び61が共
、振素子の隣接空間の上部及び下部におし1て各−列に
配列されるように形成した場合を例示した力(、ねじ6
)及び6′1を素子51及び5;の中間以外σン任意個
所に挿入してもよ(、何れか一方のねじ61又1ま6′
1を省いても差支えない。他のねじ62及び6’zなし
\し65及び6゛9と素子52及び5′2ないし5S及
び5Lfこつし\ても上記と同様である。
The first figure is a sectional view showing one embodiment of the present invention (B--
B sectional view), Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is a sectional view taken along line CC in Figure 2.
2 is an electromagnetic shielding case, 21 to 2b are resonant elements made of rod-shaped conductors, 3I and 3 are input/output coaxial terminals, and 42 are input/output coupling elements, which are made of strip lines, for example. Instead of coupling using a strip line, input/output coupling may be performed by tap coupling, loop coupling, coupling using capacitance between a ribbon-shaped conductor and a resonant element, or the like. 5I and 51 to 5s and 5's are crotch coupling adjustment elements made of rod-shaped conductors, and for example, 5I and 5t are arranged parallel to the resonant elements in the space adjacent to the resonant elements 21 and 22 and with respect to the direction in which the resonant elements are connected. The upper and lower ends of the housing 1
It is firmly attached to the top and bottom walls. Although the figure shows an example in which two adjusting elements 51 and 5τ are provided in the space adjacent to the resonant elements 2I and 22, the present invention can be carried out even if the number of adjusting elements 51 and 5τ is increased as appropriate. Adjustment elements 51 are arranged at appropriate intervals in a direction substantially perpendicular to the direction in which the resonant elements are connected.
and 51 may be arranged in a diagonal direction (in case three or more adjustment elements are provided, they may be arranged irregularly instead of in a line). 5'! to 5'- are provided in the adjacent spaces of the resonant elements 22 to 2b in exactly the same way. 61 and 6; to 6S and O are screws for fine adjustment of the degree of coupling, and step-open coupling adjustment elements 5I are provided. and 5; to 5C; and housing 1 parallel to 5'g.
The resonator elements 21 to 2b are inserted from the top and bottom walls into the adjacent spaces, and the insertion length is finely adjusted, and the insertion length can be fixed at any desired length using the opening and nut nuts 7I and 71' to k and rows. It is formed. In this figure, fine adjustment screws 61 and 61 are inserted between the question coupling adjustment elements 51 and 5'+, and elements 51 and 5; The force (, screw 6
) and 6'1 may be inserted at any location other than between the elements 51 and 5;
There is no harm in omitting 1. The same applies to the case where the other screws 62 and 6'z are not provided, 65 and 6'9, and the elements 52 and 5'2 to 5S and 5Lf are installed.

このように構成した本発明BPFにおし八では、隣接す
る共振素子間の結合係数MTは、 M5°”6    ・・・・・・・・ (1)MS+M
B で表わされる。但し、 Ms:共振素子間に設問結合調整素子を設けていない場
合における共振素子間の結合係数で、共振素子の直径、
取付位置及び筐体の幅(第3図のH)に応じて定まる。
In the BPF of the present invention configured in this manner, the coupling coefficient MT between adjacent resonant elements is M5°"6 (1) MS+M
It is represented by B. However, Ms: The coupling coefficient between the resonant elements when no coupling adjustment element is provided between the resonant elements, the diameter of the resonant element,
It is determined depending on the mounting position and the width of the housing (H in Figure 3).

H已二段間結合調整業子自体の結合係数で、素子の直径
、取付本数及び取付位置に応じて定まる。
This is the coupling coefficient of the H-width two-stage coupling adjustment element itself, and is determined depending on the diameter of the element, the number of elements attached, and the attachment position.

次にBPF’の幾何係数、負荷Q又は伝送信号の3デシ
ベル低下周波数帯墜幅及び中心周波数等によって表わさ
れる各段間の結合係数MK、に+lは、但し、gK及び
gに41は幾何係数で、n:次数 QL:負荷Q 8w3’:伝送信号の3デシベル低下周波数帯域幅f0
:中心周波数 (2)式におけるkは本実施例のように共振素子を6個
設けた場合には1かも6までの値をとり、例へばに=1
 のときは共振素子2I及び22間の結合係数 Mに、
に+/ :MI、2、共振素子21及び22に関連する
幾何係数g8=g1 及びgに÷+=gzを表わし、(
3)式のkに1 を代入してglを求め、(3)式のk
に2を代入してg2を求める。
Next, +l is the geometric coefficient of BPF', the coupling coefficient MK between each stage expressed by the load Q or the 3 dB reduction frequency band width and center frequency of the transmission signal, etc. However, gK and 41 are the geometric coefficients. where, n: order QL: load Q 8w3': 3 dB reduction frequency bandwidth f0 of transmission signal
: Center frequency k in equation (2) takes a value of 1 or up to 6 when six resonant elements are provided as in this example, and for example, = 1.
When , the coupling coefficient M between the resonant elements 2I and 22 is
+/ : MI, 2, geometric coefficients related to the resonant elements 21 and 22 g8 = g1 and g ÷ + = gz, (
3) Find gl by substituting 1 for k in equation (3), and
Substitute 2 into to find g2.

(2)式におけるgに、g計f%QL%BW3及びfO
等を求めて各段間の結合係数 MK、に+lを求めると
共に、(1)式における各段間の結合係数MTが MK
、にすl−にそれぞれ一致するように段間結合調整素子
51及び51′ないし55及び5−の各直径及び共振素
子2Iないし2bの各隣接空間に取付ける段間結合調整
素子の本数並に取付位置を定めると共に結合度の微調整
ねじ61及び6′1ないし6ち及び洗の各挿入長を調整
することによりマキシマリフラット形特性のBPF’を
構成することが出来、その伝送特性は次式で表わされる
In equation (2), g is equal to g total f%QL%BW3 and fO
etc., and calculate +l for the coupling coefficient MK between each stage, and the coupling coefficient MT between each stage in equation (1) becomes MK
, and the diameters of the interstage coupling adjustment elements 51 and 51' to 55 and 5-, and the number and installation of the interstage coupling adjustment elements to be installed in the adjacent spaces of the resonance elements 2I to 2b, respectively. By determining the position and adjusting the coupling degree fine adjustment screws 61 and 6'1 to 6 and the insertion length of the washers, a BPF' with maximally flat type characteristics can be constructed, and its transmission characteristics are expressed by the following formula. It is expressed as

L、 (aB)=+oflog (I+x’3”)  
  ・・−−−・(4)L:伝送信号の減衰量 2Δf x3= −QL f。
L, (aB)=+oflog (I+x'3")
・・−−・(4) L: Attenuation amount of transmission signal 2Δf x3=−QL f.

Δf:中心中心周波数跡らの伝送信号の離調周波数次に
通過域がチェビシェフ形特性、減衰域がワグナ形特性の
BPF’を構成する場合につし\て説明する。
Δf: Detuning frequency of the transmission signal of the center frequency trace Next, a case will be explained in which the passband constitutes a BPF' having a Chebyshev type characteristic and an attenuation area having a Wagner type characteristic.

この場合には(2)式における幾何係数gK及びgKヤ
、は(5)及び(6)式から求める。
In this case, the geometric coefficients gK and gKya in equation (2) are determined from equations (5) and (6).

26K          ・・・・・・ (5)gx
  =  □ γ 4aw−+’aK      ・・・・・・ (6)b
に−l agに−f k=1 の場合、g)c=g+  は(5)式のkに1
を代入して求め%  g(+1”gzは (6)式のk
に2を代入しで求める。(2)式におけるkが2の場合
には、gKは(6)式のk【こ2を代入し、gにヤ1は
 (6)式のkに3を代入してそれぞれ求める。kが3
なしλし6の場合も同様である。尚、 (5)式はgl
を求める場合にのみ用いる。
26K (5) gx
= □ γ 4aw-+'aK ・・・・・・ (6) b
-l ag -f When k=1, g)c=g+ is 1 for k in equation (5)
%g(+1"gz is k in equation (6)
Find it by substituting 2 into . When k in equation (2) is 2, gK is obtained by substituting k[2] in equation (6), and y1 is obtained by substituting 3 into k in equation (6) for g. k is 3
The same applies to the case of none λ and 6. Furthermore, equation (5) is gl
Used only when calculating.

(5)及び(6)式において、 S:通過域内における許容電圧定在波比通過域がチェビ
シェフ形特性、減衰域がワグナ形特性のBPFの伝送特
性は、通過域内の計容電圧定在波比S及び次数nを与え
ることにより次式で表わされる。
In equations (5) and (6), S: Permissible voltage standing wave ratio within the passband The transmission characteristics of a BPF with a Chebyshev type characteristic in the passband and a Wagner type characteristic in the attenuation area are the measured voltage standing wave ratio in the passband. By giving the ratio S and the order n, it is expressed by the following equation.

・・・・(7) X:基準化周、FiL数で、 f:任君の伝送信号の周波数 B叶:許容通過帯域幅 X(+の場合、 T、<幻=cos (n co8x) x〉1の場合、 L(X) =coBh’ (n cash x)伝送信
号の3デシベル低下の基準化周波数においては、(7)
式においで、 が成立する必要があり、 から3デシベル低下の基準化部、皮数x3を求めること
が出来、中心周波数fa、許容通過帯域幅Bar及び伝
送信号の3デシベル但下の基準化周波数x3が定まれば
次式から3デシベル但下周波数WABwsを求めること
が出来る。
・・・・・・(7) 〉1, then L(X) = coBh' (n cash
In the formula, it is necessary to hold, and from this, we can find the standardization part of 3 dB lower, the frequency x3, and the center frequency fa, the allowable passband width Bar, and the standard frequency of 3 dB lower of the transmission signal. Once x3 is determined, the frequency WABws below 3 decibels can be found from the following equation.

BW3 = BWF 1X3 又、負荷Q −Qtは e Qし”□ W3 から求められるから、これらの値と (5)及び(6)
式から求めたg6及びg、ヤ、とを(2)式に代入して
各段間の結合係数MK、に、1を求めると共に股間結合
調整素子51及び5;ないし5I及び5′5の各直径及
び共振索子2.ないし2bの各隣接空間に取付ける段間
結合調整素子の本数並に取付位置を適当に定めると共に
結合度の微凋整ねじ61及び61ないし6s及び6彩の
各挿入長を調整して(1)式における各段間の結合係数
計をMに、に+1にそれぞれ一致さ七ることにより通過
域がチェビシェフ形特性、減衰域がワグナ形特性のBP
Fを構成することが出来る。
BW3 = BWF 1X3 Also, the load Q - Qt can be found from e Q and "□ W3, so these values and (5) and (6)
Substituting g6, g, y and Diameter and resonant cord2. Appropriately determine the number and mounting position of the interstage coupling adjustment elements to be installed in each adjacent space of 2b to 2b, and adjust the insertion length of the fine adjustment screws 61 and 61 to 6s and 6 colors for the degree of coupling (1) By matching the coupling coefficient meter between each stage in the formula to M and +1, respectively, the passband has Chebyshev type characteristics and the attenuation area has BP with Wagner type characteristics.
It is possible to construct F.

このBPF’において例えば共振素子22と25間を間
接結合することにより通過域がチェビシェフ形特性で減
衰域にjtL衰極を有するBPIi’を構成することが
出来る。
In this BPF', for example, by indirectly coupling between the resonant elements 22 and 25, it is possible to configure a BPIi' having a Chebyshev type characteristic in the passband and jtL attenuation in the attenuation range.

第2図に点線を以て示した8は同軸ll#l路又はスト
リップライン等より成る間接結合線路、91及び9コは
共振素子2z及び2Cと間接結合線路8との結合素子で
、ループ又は共振索子22及び29との間に静電容量を
形成する電極等より成る。
8 shown with a dotted line in FIG. 2 is an indirectly coupled line consisting of a coaxial ll#l path or a strip line, etc. 91 and 9 are coupling elements of the resonant elements 2z and 2C and the indirectly coupled line 8, which are loops or resonant lines. It consists of electrodes and the like that form a capacitance between the electrodes 22 and 29.

共振素子2tないし2bより成る主回路を伝送する信号
の中、通過域より周波数の高い信号は共振素子2Iない
し2&より成る各共振回路において電圧電流の位相が9
0度進み、各共振回路間に形成される移相回路において
位相が270度進むから共振素子22より成る共振口f
fHこおける信号の位相と、共振索子25より成る共振
回路における信号の位相は同相となるが、結合素子91
及び9zkループを以て形成した場合には両ループの極
性を適当ならしめでおけば、結合素子91 % 92へ
び線路8よQ成る問接結合回跡を介して共振素子2zよ
り成る共振回路から共振素子2すより成る共振回路へ伝
送される信号の位相は両共振回路間においで180度の
位相差を生ずる。したがって結合素子9I及び92の各
結合度を調整して間接結合回路を伝送する信号の大きざ
と主回路を伝送する信号の大きざを等しくすることによ
りこの信号の周波数位置に減衰極を生ゼしぬることが出
来る。
Among the signals transmitted through the main circuit made up of the resonant elements 2t to 2b, signals with a higher frequency than the passband have a voltage/current phase of 9 in each resonant circuit made up of the resonant elements 2I to 2&.
Since the phase advances by 0 degrees and the phase advances by 270 degrees in the phase shift circuit formed between each resonance circuit, the resonance port f consisting of the resonance element 22
The phase of the signal at fH and the phase of the signal at the resonant circuit consisting of the resonant wire 25 are in phase, but the coupling element 91
and 9zk loops, if the polarities of both loops are adjusted appropriately, the resonant circuit from the resonant circuit consisting of the resonant element 2z to the resonant element via the interrogative coupling circuit consisting of the coupling element 91% and the snake line 8 and Q. The phase of the signal transmitted to the two-piece resonant circuit produces a 180 degree phase difference between the two resonant circuits. Therefore, by adjusting the degree of coupling of coupling elements 9I and 92 to equalize the magnitude of the signal transmitted through the indirect coupling circuit and the magnitude of the signal transmitted through the main circuit, an attenuation pole is created at the frequency position of this signal. It can be painted.

主回路を伝送する信号の中、通過域より低い周波数の信
号は各共振回路において位相が90度遅れ、各共撮回路
間に形成される移相口跡において位相が27070度遅
ので、共振素子22及び25より成る両共振回路におけ
る信号の位相は同相となり、間接結合回路を伝送する信
号の位相は逆相となるので、結合素子9.及びみの各結
合度を適当に調整して主回路及び間接結合回路を伝送す
る両信号の大きさを等しくすることによりこの信号の周
波数位置に減衰極を生ゼしめ得る。
Among the signals transmitted through the main circuit, signals with frequencies lower than the passband have a phase delay of 90 degrees in each resonant circuit, and a phase delay of 27,070 degrees at the phase shift opening formed between each common circuit, so that the resonant element 22 The phases of the signals in both the resonant circuits consisting of the coupling elements 9 and 25 are in phase, and the phases of the signals transmitted through the indirect coupling circuit are opposite. By appropriately adjusting the degrees of coupling of the signals and the signals transmitted through the main circuit and the indirect coupling circuit, an attenuation pole can be created at the frequency position of the signal.

結合素子91及び92の結合度を低くすると減衰極の周
波数位置が通過域から離れる方へ移動し、逆に結合度を
高くすると減衰極の周波数位置が通過域に近づく方へ移
動する。
When the degree of coupling between the coupling elements 91 and 92 is lowered, the frequency position of the attenuation pole moves away from the passband, and conversely, when the degree of coupling is increased, the frequency position of the attenuation pole moves closer to the passband.

このように構成した有極形BPFの伝送特性は次式で表
わされる。
The transmission characteristics of the polarized BPF configured in this way are expressed by the following equation.

本実施例のように次数nが6、即ちnが偶数の場合は、 n h<分数の場合は、 △fse7 +中心周波数で、と減衰極を生ずる周波数
の差 Δf、 :中心周波数f、と許容電圧定在波比を与える
バンドエツジの周波数の差 Rc:実数部をとるの意 工瓜:虚数部をとるの意 尚、減衰極の周波数位置が通過域から比較的離れている
場合には、通過域がチェビシェフ形特性で減衰域がワグ
ナ形特性のB’PPとはIf等しい結合特性となり、減
衰極が通#を西域に比較的近い周波数位置にある場合に
は、間接結合用のループ又は容量の影響等によって理論
値と実験値に差を生ずるのが一般で、前記m4及びへ等
を求めるには適当な補正が必要となる。
When the order n is 6 as in this example, that is, when n is an even number, when n h < fraction, the difference in frequency that produces an attenuation pole is Δf, : center frequency f, and Δfse7 + center frequency. Difference in frequency of the band edge that gives the allowable voltage standing wave ratio Rc: The meaning of taking the real part: The meaning of taking the imaginary part Furthermore, if the frequency position of the attenuation pole is relatively far from the passband, B'PP, where the passband is a Chebyshev type characteristic and the attenuation area is a Wagner type characteristic, has a coupling characteristic that is equal to If, and if the attenuation pole is located at a frequency position relatively close to the west region of the passband, an indirect coupling loop or Generally, there is a difference between the theoretical value and the experimental value due to the influence of capacitance, etc., and appropriate correction is required to obtain the above-mentioned m4 and h.

第4図は本発明の他の実施例を示す断面図(第5図のB
 B断面図)、第5図は第4図のA−A断面図、第6図
は第4図のC−C断面図で、各図において、10は導体
より成る仕切壁で、他の符号は第1図ないし第3図と同
様である。
FIG. 4 is a sectional view (B in FIG. 5) showing another embodiment of the present invention.
5 is a sectional view taken along line A-A in FIG. 4, and FIG. 6 is a sectional view taken along line C-C in FIG. are similar to those in FIGS. 1 to 3.

本実施例においても股間結合調整素子51及び5;ない
し5f及び51の各直径及び共振素子の各隣接空間に取
付ける股間結合調整素子の本数並に取付位置を適当にJ
!5仁と共(こ結合度の微調整ねじ61及び6;ないし
65及び6′3の各挿入長を調整することによって前実
施例と同様の伝送特性を有するBPFを構成し得るが、
本実施例においては共振素子2Iないし26をコの字形
に配設しであるので前実施例に比し全体を更に小形に構
成することが出来る。
In this embodiment as well, the diameters of the crotch coupling adjustment elements 51 and 5; to 5f and 51, the number of crotch coupling adjustment elements to be attached to each adjacent space of the resonant element, and the mounting positions are adjusted appropriately.
! A BPF having transmission characteristics similar to those of the previous embodiment can be constructed by adjusting the insertion length of the fine adjustment screws 61 and 6 to 65 and 6'3.
In this embodiment, since the resonant elements 2I to 26 are arranged in a U-shape, the entire structure can be made smaller than in the previous embodiment.

又、本実施例においては例えば第7図に断面図を示すよ
うに、仕切壁10の一部に孔隙を穿ち、容量形成電極1
1 を介して共振索子22及び25間を間接結合するか
、第8図に断面図を示すようにループ12を介して共振
素子22及び25間を間(妾結合することにより前実施
例と同行にして減衰域に減衰極を生ぜしめ得るが、本実
施例においでは共振素子22及び25が仕切壁10を介
しでpa 接しでいるので前実施例におけるような同軸
線路等を用いる必要なく、仕切壁10の孔隙部に介装し
た結合素子によって間接結合を行い得るからこの点から
も構成を簡潔ならしめることが出来る。
In addition, in this embodiment, for example, as shown in the cross-sectional view in FIG.
1, or by indirectly coupling the resonant elements 22 and 25 via the loop 12, as shown in the cross-sectional view of FIG. At the same time, an attenuation pole can be generated in the attenuation region, but in this embodiment, since the resonant elements 22 and 25 are in contact with each other through the partition wall 10, there is no need to use a coaxial line or the like as in the previous embodiment. Since indirect coupling can be performed by a coupling element inserted in the hole of the partition wall 10, the structure can also be simplified from this point of view.

以上何れの実施例においでも6個の共振素子を用いてイ
ンクディジタル形BPFを構成した場合につき説明した
が、共振素子の極性をすべて同一にしてコムライン形B
PF を構成した場合にも本発明を実施することが出来
、共振素子の数も6個に限ることなく適宜増減すること
が可能で、又、間接結合回路も共振素子22と25間に
設ける代りに共振素子21と2b間に設けるが、22と
2夕聞及び2Iと2&間に設けるようにしでもよく、共
振素子数の増減と同様間接結合口路の設置数を適宜増減
して本発明を実施することが出来る。即ち、縦続接続関
係にある共振素子の中、2個又はその整数倍の個数の共
振素子を隔てた共振索子相互であれば1組又は任意複数
組を間接結合して本発明を実施することが出来る。
In each of the above embodiments, an ink digital type BPF was constructed using six resonant elements.
The present invention can be carried out even when a PF is configured, and the number of resonant elements is not limited to six, but can be increased or decreased as appropriate, and instead of providing an indirect coupling circuit between the resonant elements 22 and 25. The resonant elements 21 and 2b are provided between the resonant elements 21 and 2b, but they may also be installed between the resonant elements 22 and 2 and between the resonant elements 2I and 2&.The present invention can be achieved by appropriately increasing or decreasing the number of indirect coupling ports as well as increasing or decreasing the number of resonant elements. It can be implemented. That is, among the resonant elements in a cascade connection relationship, the present invention can be carried out by indirectly coupling one set or any plurality of resonant cables separated by two or an integral multiple of the resonant elements. I can do it.

振素子間に棒状導体Jり成る股間結合調整素子及び結合
度の微g@整ねじを介在せしめ、設問結合調整素子の直
径、本数及び取付位置を適当に選、仁と共に結合度の微
調整ねじの挿入長を適当ならしめることにより共振素子
の直径及び設置間隔を変えることなく任意所要の伝送性
性をもたせることが可能で、高い負荷Qを要する場合で
も全体を小形に構成し得る等の特長を有する。
Interpose a crotch coupling adjustment element made of a rod-shaped conductor J and a fine coupling adjustment screw between the vibrating elements, and select the diameter, number, and mounting position of the coupling adjustment element appropriately, and tighten the coupling adjustment fine adjustment screw together with the screw. By adjusting the insertion length appropriately, it is possible to provide desired transmission characteristics without changing the diameter and installation spacing of the resonant elements, and the overall structure can be made compact even when a high load Q is required. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図1よ、本発明の一実施例を示す断面
図、第4図ないし第8図は、本発明の他の実施例を示す
断面図で、ド電磁シールド用賀体、21ないし2b:共
振素子、31及び32:入出力同軸端子、4)及び4コ
ニ入出力結合素子、51及び51ないし襄及び5−:股
間結合調整素子、61及び61ないし6s及び6;:結
合度の微調整ねじ、7I及び7;ないし7cす及びル:
Oツクナツト、8:間接結合線路、9+及び〜:結合素
子、10:仕切壁、1ド容量形成電憧、12:ループで
ある。 第1図 第2図 第3図
1 to 3 are cross-sectional views showing one embodiment of the present invention, and FIGS. 4 to 8 are cross-sectional views showing other embodiments of the present invention. or 2b: resonant element, 31 and 32: input/output coaxial terminal, 4) and 4-coni input/output coupling element, 51 and 51 or sleeve and 5-: crotch coupling adjustment element, 61 and 61 or 6s and 6: coupling degree Fine adjustment screws, 7I and 7; to 7c and L:
8: indirect coupling line, 9+ and -: coupling element, 10: partition wall, 1: capacitance forming electric wire, 12: loop. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (+) !亘間隔を隔てて一列に配設された棒状導体よ
り成る°複数個の共振素子と、前記複数個の共振素子の
各隣接空間において両端を電磁シールド用筐体の上壁及
び底壁に固着して前記共振素子と平行に設けられた棒状
導体より成る複数個の股間結合調整素子と、前記複数個
の共振素子の各隣接空うに対応する前記電磁シールド用
筐体の壁面から前記段間結合調整素子と平行に筐体内に
挿入されると共にそめ挿入長を可変ならしめた複数個の
結合度微調整ねじとを備えたことを特徴とする帯域通過
ろ波器。 (2)適宜間隔を隔てて配殺ぎれ、コの字形信号伝送路
を形成する棒状導体より成る複数個の共振素子と、前記
複数個の共振素子の各隣接空間C;おいて両端を電磁シ
ールド用筐体の土壁及び底壁に固着して前記共振素子と
平行に設けられた棒状導体より成る複数個の股間結合調
整素子と、前記複数個の共振素子の各隣接空間に対応す
る前記電磁シールド用筐体の壁面から前記股間結合調整
素子と平行に筐体内に挿入されると共にその挿入長を可
変ならしめた複数個の結合度微調整ねじとを備えたこと
を特徴とする帯域通過ろ波器。  −(3)適宜間隔を
隔てて一列に配設された棒状導体より成る複数個の共振
素子と、前記複数個の共振素子の各隣接空間においで両
端を電磁シールド用筐体の上壁及び底壁に固着して前記
共振素子と平行(こ設けられた棒状導体より成る複数個
の段間結合調整素子と、前記複数個の共振素子の各隣接
空間に対応する前記電磁シールド用筐体の壁画かも前記
平間結合調整素子と平行に筐体内に挿入′されると共に
その挿入長番可変ならしめた複数個の結合度微調整ねじ
と、前記複数個の共振素子の間接結合する間接結合回路
とを備えたことを特徴とする帯域通過ろ波器。 (4〕適宜間隔を隔てて配設され、コの字形信号伝送路
2形成する棒状導体よQ成る複数個の共1辰素子と、前
記複数個の共振素子の各隣接空間において両端を電磁シ
ールド用筐体の土壁及び底壁に固着して前記共振素子と
平行C二股けられた棒状導体より成る複数個の股間結合
調整素子と、前記複数個の共振素子の各隣接空間に対応
する前記電磁シールド用筐体の壁面から前記股間結合調
整素子と平行に筐体内に挿入されると共にその挿入長を
回度ならしめた複数個の結合度微調整ねじと、前記複数
個の共振素子の中、縦続接続関係にある2個又はその整
数倍の個数の共振素子を隔てた共振素子相互を間接結合
する間接結合素子とを備えたことを特徴とする帯域通過
ろ波器。 (5)複数個の共振素子が順次設置極性を反転しでイン
タディジタル形に配設された特許請求の範囲第1項ない
し第4項の何れかに記載の帯域通過ろ波器。 (6)複数個の共振素子が各設置極性を同じにし、てコ
ムライン形に配設された特許請求の範囲第1項ないし第
4項の何れかに記載の帯域通過ろ波器0
[Claims] (+)! A plurality of resonant elements consisting of rod-shaped conductors arranged in a row at wide intervals, and both ends of which are fixed to the top and bottom walls of an electromagnetic shielding case in each adjacent space of the plurality of resonant elements. and a plurality of crotch coupling adjustment elements made of rod-shaped conductors provided in parallel with the resonance elements, and the interstage coupling adjustment from the wall surface of the electromagnetic shielding casing corresponding to each adjacent space of the plurality of resonance elements. 1. A band-pass filter comprising: a plurality of coupling degree fine adjustment screws inserted into a housing in parallel with an element and having variable insertion lengths. (2) A plurality of resonant elements made of rod-shaped conductors arranged at appropriate intervals to form a U-shaped signal transmission path, and each adjacent space C of the plurality of resonant elements; both ends of which are electromagnetically shielded. a plurality of crotch coupling adjustment elements made of rod-shaped conductors fixed to the soil wall and bottom wall of the housing and provided in parallel with the resonant elements; and the electromagnetic elements corresponding to adjacent spaces of the plurality of resonant elements. A band-pass filter characterized by comprising a plurality of coupling degree fine adjustment screws that are inserted from the wall surface of the shielding casing into the casing in parallel with the groin coupling adjusting element and whose insertion lengths are made variable. Wave equipment. - (3) A plurality of resonant elements made of rod-shaped conductors arranged in a row at appropriate intervals, and in each adjacent space of the plurality of resonant elements, both ends are connected to the top wall and bottom of an electromagnetic shielding case. a plurality of interstage coupling adjustment elements made of bar-shaped conductors fixed to a wall and provided in parallel with the resonant elements; and a mural on the electromagnetic shielding casing corresponding to each adjacent space of the plurality of resonant elements. A plurality of coupling degree fine adjustment screws are inserted into the housing in parallel with the flat coupling adjustment element and whose insertion length is variable, and an indirect coupling circuit for indirectly coupling the plurality of resonant elements. A band-pass filter characterized by comprising: (4) a plurality of common wire elements arranged at appropriate intervals and consisting of rod-shaped conductors Q forming the U-shaped signal transmission path 2; a plurality of crotch coupling adjustment elements each consisting of a rod-shaped conductor which is fixed to the soil wall and the bottom wall of the electromagnetic shielding case at both ends in each adjacent space of the resonant elements, and is bifurcated parallel to the resonant elements; a plurality of coupling degrees that are inserted into the housing parallel to the groin coupling adjustment element from the wall surface of the electromagnetic shielding housing corresponding to each adjacent space of the plurality of resonant elements, and whose insertion lengths are made uniform; The present invention is characterized by comprising a fine adjustment screw and an indirect coupling element that indirectly couples two or an integral multiple of the plurality of resonance elements in a cascade connection with each other. (5) A band pass filter according to any one of claims 1 to 4, in which a plurality of resonant elements are arranged in an interdigital manner by sequentially reversing the installation polarity. Pass filter. (6) A band pass filter according to any one of claims 1 to 4, wherein a plurality of resonant elements have the same polarity and are arranged in a combline shape. wave device 0
JP6131482A 1982-04-13 1982-04-13 Band-pass filter Pending JPS58178601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131482A JPS58178601A (en) 1982-04-13 1982-04-13 Band-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131482A JPS58178601A (en) 1982-04-13 1982-04-13 Band-pass filter

Publications (1)

Publication Number Publication Date
JPS58178601A true JPS58178601A (en) 1983-10-19

Family

ID=13167569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131482A Pending JPS58178601A (en) 1982-04-13 1982-04-13 Band-pass filter

Country Status (1)

Country Link
JP (1) JPS58178601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365209A (en) * 1992-04-03 1994-11-15 Sanyo Electric Co., Ltd. Dielectric filters and duplexers incorporating same
US5801605A (en) * 1996-08-26 1998-09-01 Microphase Corporation Distributed TEM filter with interdigital array of resonators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365209A (en) * 1992-04-03 1994-11-15 Sanyo Electric Co., Ltd. Dielectric filters and duplexers incorporating same
US5801605A (en) * 1996-08-26 1998-09-01 Microphase Corporation Distributed TEM filter with interdigital array of resonators

Similar Documents

Publication Publication Date Title
US6239673B1 (en) Dielectric resonator filter having reduced spurious modes
EP1212806A1 (en) High-frequency band pass filter assembly, comprising attenuation poles
JPS6179301A (en) Band-pass filter of dielectric resonator
US4247837A (en) Multi-conductor ferromagnetic resonant coupling structure
US2937347A (en) Filter
US5334961A (en) Strip-line type bandpass filter
JPS58178601A (en) Band-pass filter
JPS58170101A (en) Band-pass filter
US6809615B2 (en) Band-pass filter and communication apparatus
JPH0728163B2 (en) Microwave filter
JP2583849B2 (en) Stripline resonator
JPS58215803A (en) Comb-line type band-pass filter
JPS58178602A (en) Comb line type band-pass filter
JPS595701A (en) Comb line type band-pass filter
JP2597116Y2 (en) Coaxial bandpass filter
JPS6032401A (en) Band pass filter
JPH0730304A (en) High order high frequency filter
CN117638437B (en) Waveguide bandpass filter and electrical equipment
CA1041619A (en) Adjustable interdigital microwave filter
JP3140736B2 (en) Group delay time compensation type band pass filter
JP2004289755A (en) High frequency filter control method, high frequency filter manufacturing method, and high frequency filter
JPS628601A (en) Comb-line type band pass filter
JPS60236501A (en) bandpass filter
RU2320057C1 (en) Microstrip impedance transformer
JPH0237801A (en) Band-pass filter