[go: up one dir, main page]

JPS58177145A - Process for improving catalytic capacity - Google Patents

Process for improving catalytic capacity

Info

Publication number
JPS58177145A
JPS58177145A JP58049672A JP4967283A JPS58177145A JP S58177145 A JPS58177145 A JP S58177145A JP 58049672 A JP58049672 A JP 58049672A JP 4967283 A JP4967283 A JP 4967283A JP S58177145 A JPS58177145 A JP S58177145A
Authority
JP
Japan
Prior art keywords
platinum
state
electron density
catalyst
fermi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58049672A
Other languages
Japanese (ja)
Inventor
スダングシユ・ボウズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPS58177145A publication Critical patent/JPS58177145A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/928Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は貴金属触媒と貴金属触媒の影響によって行われ
る化学反応とに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to noble metal catalysts and chemical reactions carried out under the influence of noble metal catalysts.

化学反応が多くの工業的プロセスに於て有用であるため
には、化学反応は加速された速度で行われる必要がある
。例えば、燃料電池は燃料とオキシダントの間の化学反
応のエネルギを直接的に低電圧偵流電気エネルギに変換
する装置である。高い変換効率を得るためには、熱とし
て失われるエネルギの―をできる限り小さく留め得るよ
うな(1hぐ燃料及びオキシダントの反応が行われる必
要がある。同時に、反応速度は実用的な大きさの電池か
ら経済的に有用な大きさの電流を生じ得るように1分に
高くなければならない。従って、燃料電池の分野(−は
、他の多くの化学’l II f n (2ス、燃焼コ
ンバータなどの場合と同様に、かかるプロヒスを工業的
且商業的に有用なものとするため、かかる反応を加速さ
せる触媒を用いるのが通常である。
For chemical reactions to be useful in many industrial processes, they need to be carried out at accelerated rates. For example, a fuel cell is a device that converts the energy of a chemical reaction between a fuel and an oxidant directly into low voltage recoil electrical energy. In order to obtain a high conversion efficiency, the reaction of fuel and oxidant must be carried out in such a way that the amount of energy lost as heat is kept as small as possible (1 hour).At the same time, the reaction rate must be kept at a practical level must be high per minute so that economically useful magnitudes of current can be produced from the cell.Thus, the field of fuel cells (- is similar to that of many other chemical and combustion converters). In order to make such prohis industrially and commercially useful, it is common to use catalysts to accelerate such reactions.

しかし、触媒の“分野ではまだ多くの事柄が1−分に解
明されない状態に留まっている。化合物触媒への元素の
追加及び省略は過去の試行の結果に基いて試行錯誤によ
り行われているのが現状である。
However, in the field of catalysts, many things still remain to be clarified.The addition or omission of elements to compound catalysts is done through trial and error based on the results of past trials. is the current situation.

その−例として、燃料電池の分野では、一つの触媒が他
の触媒に比べて一層適していることまたは適していない
ことの理由について本当の認識がなされないまま、触媒
材料の種々の組合せによつ−(改善された結果が得られ
ることが多くの特軒明輯^に示されている。例えば米国
特許第3.340゜097号、第3.341.936号
、第3.380.934号、第3.428.490月、
第3゜506.494号、第3.615,836号、第
4.127.469@、第4.136.059号、第4
.137.372号、第4.137,373$j 、 
 glIノl  、  l  Jl  (i 、  I
  I  O)J 、 917 −1  、  l  
t+  ′、+ 、  u07号、第4,202,93
4号及び第4,316.944号を参照されたい。
As an example, in the field of fuel cells, various combinations of catalyst materials are used without any real understanding of why one catalyst is more or less suitable than another. A number of publications have shown that improved results can be obtained, such as U.S. Pat. No. 3.428.490,
No. 3゜506.494, No. 3.615,836, No. 4.127.469@, No. 4.136.059, No. 4
.. No. 137.372, No. 4.137,373 $j,
glI nol, l Jl (i, I
IO) J, 917-1, l
t+', +, u07, No. 4,202,93
See No. 4 and No. 4,316.944.

従って、触媒の影響によって行われる化学反応の分野で
必要とされることは、触媒の影響によって行われる化学
反応の特定の分野で反応速度が改善され得るように反応
速度増大のための決定的因子を一層良く理解することで
ある。
Therefore, what is needed in the field of chemical reactions carried out by the influence of catalysts is a decisive factor for increasing the reaction rate so that the reaction rate can be improved in the particular field of chemical reactions carried out by the influence of catalysts. The goal is to better understand the

本発明の目的は、白金触媒の影響によって行われる化学
反応に於て、酸素の還元が一つの速度制限ステップであ
る場合に触媒性能を改善するだめの方法を提供すること
である。この目的は、本発明によれば、白金触媒のフェ
ルミ単位に於ける状態の電子密度を増すことにより化学
反応の速度を増すことによって達成される。この方法は
、触媒を合金化し、触媒の合金成分を変更し、または合
金成分の醋を変更するという/J法により実現され甘l
る。
It is an object of the present invention to provide a method for improving catalytic performance in chemical reactions carried out under the influence of platinum catalysts in which the reduction of oxygen is one rate-limiting step. This objective is achieved according to the invention by increasing the rate of the chemical reaction by increasing the electron density of the states in the Fermi units of the platinum catalyst. This method is realized by the /J method, which involves alloying the catalyst, changing the alloy component of the catalyst, or changing the concentration of the alloy component.
Ru.

本発明の1記及び他の目的、特徴及び利点は以1zの図
面による説明の中で一層明らかになろう。
One and other objects, features and advantages of the present invention will become more apparent in the following description with reference to the drawings.

以下の説明の中で、触媒活性(支)の比較がなされる時
、それらは質盪活性度の比較を意図している。
In the following discussion, when comparisons of catalyst activity are made, they are intended to be comparisons of catalytic activity.

VI4I4性度は触媒として活性の成分の甲位十醋当り
の触媒の有効性の任意に定められた尺度である。
VI4I4 is an arbitrarily defined measure of the effectiveness of a catalyst per unit of catalytically active component.

例えば、電解質として燐酸を用いる燃料電池の場合、陰
極触媒の買置活性度は、同一の電解質内で同 渥麿及び
圧力に於て分極していない水素/白金基準電極に対して
0.90ボルトの電位が測定される状態ぐ酸系還元によ
り得られる甲位重φ当り最大本流(ミリアンペア/′ミ
リグラム)で定められている。一層大きな質量活性度が
触媒の表面積の増大また番よその固44活t’l屋の増
大1.:J、り冑t)れる。固有活性度は貴金属の中位
表面積当り得られる酸素還元電流として定められ(いる
For example, in a fuel cell using phosphoric acid as the electrolyte, the active activity of the cathode catalyst is 0.90 volts relative to an unpolarized hydrogen/platinum reference electrode in the same electrolyte and at the same temperature and pressure. The state in which the potential is measured is determined by the maximum current (milliampere/'milligram) per weight φ obtained by acid-based reduction. 1. Greater mass activity increases the surface area of the catalyst and also increases the hardness of the catalyst. :J、Ri冑t)Reru. Intrinsic activity is defined as the oxygen reduction current obtained per medium surface area of the noble metal.

吸着及び脱着は触媒のプ【IL′スの間の二つの小鼓な
ステップである。成る材料がM素還元のようなブ0セス
に於て有用な触媒であるためには、吸着結合は安定な酸
化物を形成するほど強くてはならないし、反応に十分な
吸着物質を有さないほど弱くてはならない。吸@結合は
部分的に、電子特に白金−酸素系内で結合生成に役割を
演するd軌道内の電子の数により制御される。もし電子
の数が多過ぎれば、叩らフェルミ単位に於けるd状状態
の電子密度く低温に於て占められる最高の電子エネルギ
単位)が高1」れば安定な酸化物が生成し、他方もし電
子の数が少過ぎれば、即ちフェルミ単位に於けるd状状
態の電子密度が低ければ、材料は有意義な触媒活性度を
全く示さない。
Adsorption and desorption are two important steps during the catalyst process. For a material to be a useful catalyst in a process such as M reduction, the adsorption bonds must not be strong enough to form a stable oxide and there must be enough adsorbed material for the reaction. It shouldn't be so weak that it doesn't exist. Adsorption bonds are controlled in part by the number of electrons, particularly in the d orbitals, which play a role in bond formation within the platinum-oxygen system. If the number of electrons is too large, a stable oxide will be formed if the electron density of the d-state in the beaten Fermi unit (the highest electron energy unit occupied at low temperature) is high 1, If the number of electrons is too low, ie, the electron density of the d-state in the Fermi unit is low, the material will not exhibit any significant catalytic activity.

本発明によれば、触媒活性度を改善するためにフェルミ
単位に於4Jる状態の電子密度が増される。
According to the present invention, the electron density of the 4J state in Fermi units is increased to improve the catalyst activity.

この/i法は一つまたはそれ以1−の元素を用いる買換
、′1[F]の−l成を含ん(・い?)1、(’+ +
1ン九帛も、1(用f1〆属例えば白金で′ある)溶媒
金属から電子を受容し、またはそれに電子を供与する。
This /i method involves redemption using one or more 1- elements, the -l composition of '1[F] (・?)1, ('+ +
1 and 9 also accept electrons from or donate electrons to the solvent metal (for example, platinum).

その結果、隣接原子の電子軌道の重なりが変化するIこ
め、格子1<ラメータが変化する。それに伴い、電子が
溶媒金属から受容されるか、またはそれに供すされるか
に関係して、ノ1ルミ単位に於ける状態の電子密度が増
大若しくは減少する。
As a result, the overlap of the electron orbits of adjacent atoms changes, and the lattice 1 < parameter changes. Accordingly, the electron density of the state in the lumi unit increases or decreases depending on whether electrons are accepted from or donated to the solvent metal.

合金に対して、状態の密度は格子パラメータを増すこと
により減ぎられることが見出されている。
It has been found that for alloys, the density of states can be reduced by increasing the lattice parameters.

他方、状態の密度の増大は格子パラメータの減少により
達成され得る。例えば、白金の触Is活性度は、白金が
特定の遷移金属により合金化された固溶体ぐある時には
強められる。合金化は格子パラメータを減少させ且フェ
ルミ単位に於ける状態の密度を増大させることが見出さ
れている。
On the other hand, increasing the density of states can be achieved by decreasing the lattice parameters. For example, the catalytic Is activity of platinum is enhanced when platinum is in solid solution alloyed with certain transition metals. Alloying has been found to decrease the lattice parameters and increase the density of states in Fermi units.

状態の電子密度の直接測定は複雑な装置を必要とする非
常に困難な測定であるのぐ、状態の電子密度は常磁性磁
化率の増大から、またニアエツジX線吸収測定から推定
された。常磁性磁化率は通常の方法により、例えばS 
iiom  F onerによりReview of 
 3cientific )nstruw+ents、
第30巻(1959年)第548頁に記載されているよ
うな振動試料磁力計を用いて測定された。X線吸収測定
は試料にX線を照射し試料を通過したX線の強度を入射
X線ビームのエネルギの関数としく測定づるという通常
の方法を用いても行われた。このような測定はコーネル
大学に於けるコーネル高エネルギシンクロトロン設備を
利用して行われた。
Although direct measurement of the electron density of a state is a very difficult measurement requiring complicated equipment, the electron density of a state has been estimated from the increase in paramagnetic susceptibility and from near-edge X-ray absorption measurements. Paramagnetic susceptibility can be determined by conventional methods, e.g.
Review of by iiom F oner
3cientific)nstruw+ents,
30 (1959), p. 548, using a vibrating sample magnetometer. X-ray absorption measurements have also been performed using the conventional method of irradiating a sample with X-rays and measuring the intensity of the X-rays passing through the sample as a function of the energy of the incident X-ray beam. These measurements were made using the Cornell High Energy Synchrotron Facility at Cornell University.

二つの例により触媒活性度の改善が示された。Two examples showed improved catalyst activity.

第一に、差動走査カロリメトリを用いて(差動走査カロ
リメータと組合せてdu  Pont990熱分析計で
測定して)空気酸化の際の触ts活t!!度の改善が、
酸化開始温度が白金合金の状態の電子密度   ゞの増
大と共に減少することにより示された(例1参照)。第
二に、350下(177℃)に於ける燐酸中の電気化学
的酸素還元の際の触媒活性度の改善が、0.9ボルトに
於ける固有活性度が状態の電子密度の増大と共に増大す
ることにより示された(例2参照)。このデータは下表
に示されている。
First, differential scanning calorimetry (measured on a du Pont 990 thermal analyzer in combination with a differential scanning calorimeter) was used to determine the tactile activity during air oxidation! ! The improvement in
The oxidation onset temperature was shown to decrease with increasing electron density of the platinum alloy state (see Example 1). Second, the improvement in catalytic activity during electrochemical oxygen reduction in phosphoric acid at 350° C. (177° C.) shows that the intrinsic activity at 0.9 volts increases with increasing electron density of the state. (see Example 2). This data is shown in the table below.

これは更に、金との合金化により白金のフェルミ単位に
於ける状態の電子密度が減少すると触媒活性酸が減少す
ることにより示された。白金に金を加えると、常磁性磁
化率の減少により反映されるように白金の状態の密度が
減少する。囚イj活牲度は、第2図に示されているよう
に、白金に対する50μA/CI’から合金に対する1
5μA/、1’に減少する。
This was further demonstrated by the decrease in catalytically active acid as the electron density of the states in the Fermi unit of platinum decreased upon alloying with gold. Adding gold to platinum decreases the density of platinum states as reflected by a decrease in paramagnetic susceptibility. The concentration ranges from 50 μA/CI' for platinum to 1 for alloys, as shown in Figure 2.
It decreases to 5 μA/, 1'.

合金化により状態の電子密度を変更する時、先ず母金属
が選定されなければならない。母金属としては遷移金属
が好ましい、何故ならば、遷移金属はフェルミ単位に於
けるd状状銀の認め得る密度を有するからである。添加
元素は、格子パラメータ及び〈常磁性磁化率により反映
される)状態の電子密度が右り向に変更され得るように
母金属に対して相対的な原子サイズに基いて選定ぎれる
When changing the electron density of a state by alloying, the parent metal must first be selected. Transition metals are preferred as host metals because they have an appreciable density of d-shaped silver in Fermi units. The additive elements are selected on the basis of their atomic size relative to the parent metal so that the lattice parameters and the electron density of the state (as reflected by the paramagnetic susceptibility) can be modified in the right direction.

−例は白金のようにフェルミ単位に於けるd状状銀の認
め得る密度を有する充満されたd状状銀を有する遷移金
属である。その触媒活性酸はフェルミ単位に於ける触媒
活性度を増すことにより増され、これは例えば遷移金属
とのM換的合金化により達成され得る。白金の状態の密
度が増大していることを示す常磁性磁化率の測定(第2
図)を通じて、電子遷移の生起が示されている。
- Examples are transition metals having a filled d-shaped silver with an appreciable density of d-shaped silver in Fermi units, such as platinum. The catalytically active acid is increased by increasing the catalytic activity in the Fermi units, which can be achieved, for example, by M-commutative alloying with transition metals. Paramagnetic susceptibility measurements (second
(Figure) shows the occurrence of electronic transitions.

ここに説明する方法は酸化反応及び電気化学的M素還元
反応のような化学反応に於ける白金に特に適しているこ
とが見出されている。これらの反応の何れに於ても速度
制限スラップはW!索の還元を含んでいる。
The method described herein has been found to be particularly suitable for platinum in chemical reactions such as oxidation reactions and electrochemical M reduction reactions. In any of these reactions, the speed limit slap is W! Contains the reduction of

更に本発明による改善を示すため二′つの試験が行われ
た。白金の合金の固溶体が形成された。留意リベきこと
として、白金の面心立り構造をそのままに保って、その
状態の電子密度を増すことが重要である。また、フェル
ミ単位に11!<jる状態の電子密度が合金化により増
大するような合金のみを選定することが重要である。フ
ェルミ単位に於4Jる状態の電子密度の改善はフェルミ
単位に於ける状態の電子密度に比例する常磁性磁化率を
測定することにより測定され得る。状態の密度は、合金
化及び非合金化白金(例3参照)のX線吸収ビ−り面積
の差が充WAO状態から空d状態への遷移のために上昇
することを測定することによっても測定され得る。
Two tests were conducted to further demonstrate the improvements provided by the present invention. A solid solution of platinum alloy was formed. It is important to keep in mind that it is important to maintain the face-centered structure of platinum and increase the electron density in that state. Also, 11 per Fermi! It is important to select only alloys whose electron density in the <j state increases upon alloying. The improvement in the electron density of the 4J state in Fermi units can be measured by measuring the paramagnetic susceptibility, which is proportional to the electron density of the state in Fermi units. The density of states can also be determined by measuring that the difference in the X-ray absorption beam areas of alloyed and unalloyed platinum (see Example 3) increases due to the transition from the full WAO state to the empty d state. can be measured.

□ こうして形成された合金が、状態の電子密度の増大
と共に白金の反応速度及び触媒活性度が増大することを
示すために、イソプロピルアル:コールの酸化中及び電
気化学的酸素還元中に試験された。
□ The alloy thus formed was tested during the oxidation of isopropyl alcohol and during electrochemical oxygen reduction to show that the reaction rate and catalytic activity of platinum increases with increasing electron density of the state. .

例1 イソプロピルアルコールで飽和された空気が差動走査力
0リメータ(D、S、C,)内で徐々に加熱されるそれ
ぞれの触媒の上に通された。アルコールの酸化の開始は
熱の突然のサージから検出された。酸化開始に対応する
温度と白金及びそれぞれの合金触媒の常磁性磁化率との
関係がプロットされた。これが第1図に示されている。
Example 1 Air saturated with isopropyl alcohol was passed over each catalyst which was gradually heated in a differential scanning force zero meter (D, S, C,). The onset of alcohol oxidation was detected from a sudden surge of heat. The relationship between the temperature corresponding to the onset of oxidation and the paramagnetic susceptibility of platinum and the respective alloy catalysts was plotted. This is shown in FIG.

合金の常磁性磁化率が大きいほど酸化開始温度が低いこ
とが明らかに示されている。こうしてこのデータは、フ
ェルミ単位に於ける状態の電子密度が高いほど酸化開始
・温度が低いことを示している。
It is clearly shown that the higher the paramagnetic susceptibility of the alloy, the lower the oxidation onset temperature. This data thus shows that the higher the electron density in the Fermi unit state, the lower the oxidation initiation temperature.

例2 第2図には、1g1m中のi!素還元に対する触媒の電
気化学的活性度がそれらの常磁性磁化率の関数としてプ
ロットされている。試験tよ前記のように電解質として
燐酸を用いる0、9ボルトの通常の電気化学的電池で行
われた。再び、常磁性磁化率が高い番よと(フェルミ単
位にIAt)る状態の電子密度が^いはと)触媒活性度
が高いことが明らかに示され(いる。白金よりも状態の
密度が低い一つの合金は10%の金を含む白金である。
Example 2 Figure 2 shows i in 1g1m! The electrochemical activity of the catalysts for elementary reduction is plotted as a function of their paramagnetic susceptibility. Tests were carried out in a conventional electrochemical cell at 0.9 volts using phosphoric acid as the electrolyte as described above. Again, it is clearly shown that the catalytic activity is high (the electron density of the state with high paramagnetic susceptibility (IAt in Fermi units) is lower than that of platinum. One alloy is platinum with 10% gold.

第2図はこの合金の触Is活性度が白金の触媒活性度よ
りも低いことを示しCいる。第3図には、fsIlI中
の酸素還元の触媒活性度と合金化白金及び非合金化白金
のX線吸収ピーク面積の差との関係がプロットされ−(
いる。これらの測定はF、 W、 Lytle他により
Journal of Chemical Physi
cs、第70巻、第11号(1979年6月1日)第4
849〜4855真に記載されている方法に従って行わ
れた。
Figure 2 shows that the catalytic activity of this alloy is lower than that of platinum. In FIG. 3, the relationship between the catalytic activity of oxygen reduction in fsIlI and the difference in the X-ray absorption peak areas of alloyed platinum and unalloyed platinum is plotted.
There is. These measurements were carried out by F. W. Lytle et al. in the Journal of Chemical Physiology.
cs, Volume 70, No. 11 (June 1, 1979) No. 4
849-4855.

このプロットは一磁性合金をも含んでおり、常磁性磁化
率と状態の電子密度との直接的なアナ[1ジーはこれら
の合金に対して示され得ない1)れどb1状態の密度の
相関はこれらの合金に対しても同様に保たれていること
を示唆している。
This plot also includes monomagnetic alloys, and a direct analogy between paramagnetic susceptibility and state electron density cannot be shown for these alloys, but the This suggests that the correlation holds similarly for these alloys.

本発明の貴金属触媒を製作するための典型的なプロセス
は、支持された貴金属触媒上に例えばクロム含有物質を
好ましくはアニオン形態で吸着させ、次いで合金生成を
促進する還元性雰囲気内でりOム含浸触媒を加熱する過
程を含んでいる。好ましいアニオンは前記のようにクロ
ム酸塩であるが、他の合金に対してはそれぞれアニオン
形態のバナジン酸塩、マンガン酸塩、モリブデン酸塩及
びタングステン酸塩も用いられる。この方atよ支持さ
れている合金と同様に支持されていない合金を製作する
のにも良く適しているが、細かく分割された支持されて
いない貴金属は一般に貴金属の50 *’ / 9以下
に制限されている。従って、この方法は一般に負金属の
100−/ 9よりも大きい表面積にII製され得る支
持され細かく分割された負金属を用いることにより最も
良〈実施される。
A typical process for making the noble metal catalysts of the present invention involves adsorbing e.g. It involves heating the impregnated catalyst. The preferred anion is chromate, as mentioned above, but for other alloys the anionic forms of vanadate, manganate, molybdate and tungstate, respectively, are also used. Although this method is well suited for making unsupported as well as supported alloys, finely divided unsupported precious metals are generally limited to less than 50*'/9 of the precious metal. ing. Therefore, this method is generally best practiced using a supported finely divided negative metal that can be fabricated to a surface area greater than 100-/9 times the negative metal.

これについては本願と譲受人を同じくする米国特許第4
.316,944号明細書を参照されたい。
Regarding this, U.S. Patent No. 4, which has the same assignee as the present application,
.. See No. 316,944.

特に白金を用いるものとして本発明を説明してさたが、
任意の貴金属が同様に触媒性能を改稿され得る。更に、
特に燃料電池に応用するものとしく本発明を説明してき
たが、本発明は化学工業、製薬、自動車または汚染防止
に於ける任意の化学反応に同様に応用され得る。前記の
ように、本発明は酸素の還元に対する電気化学的触媒と
して特に有用である。本発明による触媒は、その活性度
が高いことから、酸燃料電池に特に適している。
Although the invention has been described specifically as using platinum,
Any noble metal can be similarly modified for catalytic performance. Furthermore,
Although the invention has been described with particular application to fuel cells, the invention is equally applicable to any chemical reaction in the chemical industry, pharmaceuticals, automotive, or pollution control. As mentioned above, the present invention is particularly useful as an electrochemical catalyst for the reduction of oxygen. Owing to its high activity, the catalyst according to the invention is particularly suitable for acid fuel cells.

本発明による触媒は燃料電池に限らず、@素還元特に電
気化学的酸素還元がプロセスの一部として行われる任意
のプロセスに用いられ得る。
The catalyst according to the present invention can be used not only in fuel cells but also in any process in which @ elementary reduction, especially electrochemical oxygen reduction, is carried out as part of the process.

本発明をその実施例について詳細に説明してきIこが、
本発明の範囲内でその形態及び細部に種々の変更及び省
略が行われ得ることは当業者により理解されよう。
The present invention has been described in detail with respect to its embodiments.
It will be understood by those skilled in the art that various changes and omissions may be made in form and detail without departing from the scope of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイソブDバノル酸化反応中の触媒活性度を状態
の電子密度の関数として示す図である。 第2図及び第3図は電気化学的酸化反応に於(Jる触媒
活性度を状態の電子密度の関数として示す図である。 特許出願人  ユナイテッド・チクノロシーズ・コーポ
レイション
FIG. 1 shows the catalytic activity during the isobutylene oxidation reaction as a function of the state electron density. Figures 2 and 3 are diagrams showing the catalytic activity as a function of state electron density in an electrochemical oxidation reaction. Patent Applicant: United Chiknoroses Corporation

Claims (1)

【特許請求の範囲】[Claims] 白金触媒の影響によって行われる化学反応に於て酸素の
還元が一つの速度制限ステップである場合に触媒性能を
改善づるためのプロセスに於て、白金触媒のフェルミ単
位に於ける状態の電子密度を増すことにより化学反応の
速度が増されることを特徴とする触媒性能の改善のため
のプロセス。
In a process to improve catalytic performance when the reduction of oxygen is one rate-limiting step in the chemical reactions carried out under the influence of platinum catalysts, the electron density of the state in the Fermi unit of platinum catalysts is A process for improving catalyst performance characterized by increasing the rate of a chemical reaction by increasing the rate of a chemical reaction.
JP58049672A 1982-03-31 1983-03-24 Process for improving catalytic capacity Pending JPS58177145A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36398482A 1982-03-31 1982-03-31
US363984 1982-03-31

Publications (1)

Publication Number Publication Date
JPS58177145A true JPS58177145A (en) 1983-10-17

Family

ID=23432557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049672A Pending JPS58177145A (en) 1982-03-31 1983-03-24 Process for improving catalytic capacity

Country Status (16)

Country Link
JP (1) JPS58177145A (en)
AU (1) AU1255683A (en)
BE (1) BE896315A (en)
BR (1) BR8301586A (en)
CA (1) CA1207310A (en)
DE (1) DE3310965A1 (en)
DK (1) DK95983A (en)
EG (1) EG16278A (en)
FI (1) FI831107L (en)
FR (1) FR2524340B1 (en)
GB (1) GB2117791A (en)
IL (1) IL68099A0 (en)
IT (1) IT1160756B (en)
NL (1) NL8300822A (en)
NO (1) NO831099L (en)
SE (1) SE8301300L (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031810A (en) * 1989-05-30 1991-01-08 Matsushita Electric Ind Co Ltd Kitchen system
JP2001015122A (en) * 1999-06-30 2001-01-19 Tanaka Kikinzoku Kogyo Kk Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2002198057A (en) * 2000-05-23 2002-07-12 National Institute Of Advanced Industrial & Technology Fuel cell and improved oxygen electrode for use therein

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447506A (en) * 1983-01-17 1984-05-08 United Technologies Corporation Ternary fuel cell catalysts containing platinum, cobalt and chromium
ATE27209T1 (en) * 1984-01-18 1987-05-15 Engelhard Corp ELECTROCATALYST AND FUEL CELL ELECTRODE USING THESE ELECTRIC CATALYST.
JPS618851A (en) * 1984-06-07 1986-01-16 ガイナー・インコーポレーテツド Fuel battery and electrolyte catalyst therefor
GB9622284D0 (en) * 1996-10-25 1996-12-18 Johnson Matthey Plc Improved catalyst

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB133261A (en) * 1919-04-22 1919-10-09 Allen Warwick Smith Improvements in Carrying and Drag Bags.
NL67110B (en) * 1932-11-02
GB489306A (en) * 1937-01-25 1938-07-25 Ig Farbenindustrie Ag Catalysts
GB491143A (en) * 1937-01-26 1938-08-26 Ig Farbenindustrie Ag Catalysts
GB570071A (en) * 1941-06-30 1945-06-21 Alan Richard Powell Improvements in the oxidation of ammonia to oxides of nitrogen
GB1016058A (en) * 1963-09-30 1966-01-05 Johnson Matthey Co Ltd Improvements in and relating to catalysts
GB1124504A (en) * 1964-08-21 1968-08-21 Johnson Matthey Co Ltd Improvements in and relating to catalysts
GB1108317A (en) * 1964-11-24 1968-04-03 Exxon Research Engineering Co Catalyst composition
US3799889A (en) * 1969-11-27 1974-03-26 V Gryaznov Hydrogenation and hydrodealkylation catalyst
GB1299540A (en) * 1970-04-01 1972-12-13 Inst Neftechimicheskogo Sintez Dehydrogenation, dehydrocyclization and hydrodealkylation catalysts
US4316944A (en) * 1980-06-18 1982-02-23 United Technologies Corporation Noble metal-chromium alloy catalysts and electrochemical cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031810A (en) * 1989-05-30 1991-01-08 Matsushita Electric Ind Co Ltd Kitchen system
JP2001015122A (en) * 1999-06-30 2001-01-19 Tanaka Kikinzoku Kogyo Kk Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2002198057A (en) * 2000-05-23 2002-07-12 National Institute Of Advanced Industrial & Technology Fuel cell and improved oxygen electrode for use therein

Also Published As

Publication number Publication date
DK95983A (en) 1983-10-01
DE3310965A1 (en) 1983-10-13
CA1207310A (en) 1986-07-08
NO831099L (en) 1983-10-03
GB2117791A (en) 1983-10-19
BE896315A (en) 1983-07-18
FR2524340B1 (en) 1987-08-14
IT1160756B (en) 1987-03-11
FI831107A0 (en) 1983-03-30
IT8320266A0 (en) 1983-03-24
GB8305771D0 (en) 1983-04-07
EG16278A (en) 1987-04-30
SE8301300D0 (en) 1983-03-10
AU1255683A (en) 1983-10-06
BR8301586A (en) 1983-12-06
FR2524340A1 (en) 1983-10-07
FI831107L (en) 1983-10-01
IL68099A0 (en) 1983-06-15
DK95983D0 (en) 1983-02-28
SE8301300L (en) 1983-10-01
NL8300822A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
Nashner et al. Structural characterization of carbon-supported platinum− ruthenium nanoparticles from the molecular cluster precursor PtRu5C (CO) 16
JP5281221B2 (en) Precious metal-base metal alloy catalyst, its evaluation and production method
Ross Characterization of alloy electrocatalysts for direct oxidation of methanol: new methods
JPS58177145A (en) Process for improving catalytic capacity
Aberdam et al. X-ray absorption near edge structure study of the electro-oxidation reaction of CO on Pt50Ru50 nanoparticles
CN111095638B (en) Catalyst for solid polymer fuel cell and method for producing same
Engvall et al. Potassium promoter in industrial ammonia synthesis catalyst: Studies by surface ionization
US4711829A (en) Ordered ternary fuel cell catalysts containing platinum and cobalt
Shiotani et al. Angular Distribution of Positron Annihilation Radiation in Vanadium and Niobium–Experiment
JP3389393B2 (en) Anode catalyst for polymer electrolyte fuel cell and method for producing the same
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
US4373014A (en) Process using noble metal-chromium alloy catalysts in an electrochemical cell
KR102234245B1 (en) Catalyst for solid polymer fuel cell and method for manufacturing same
Stassi et al. A half cell study of performance and degradation of oxygen reduction catalysts for application in low temperature fuel cells
Shi et al. Influence of carbon on electrode properties of V–Ti–Ni type hydrogen storage alloy
US4916076A (en) Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Barbier et al. Platinum-palladium catalysts for hydrogen fuel cell electrodes
Belenov et al. Composition, Structure and Stability of PtCu/C Electrocatalysts with Non-uniform Distribution of Metals in Nanoparticles
JPH10302809A (en) Catalyst of phosphoric acid fuel cell
Acosta et al. Chemical Synthesis and Characterization of Carbon Supported Palladium Electro-Catalysts
JP4923271B2 (en) Method for manufacturing a direct methanol fuel cell
Bennett et al. The effect of fission fragment irradiation upon the active to passive transition in the oxidation of self-bonded refel silicon carbide at 850–950° C
Solonin et al. Electrochemical Properties of the Mechanically Activated Composite Based on ZrMnCrNiV Alloy
Pershina et al. The electrochemical facing of powder iron for thermogalvanic elements