[go: up one dir, main page]

JPS58176113A - Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas - Google Patents

Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas

Info

Publication number
JPS58176113A
JPS58176113A JP57057760A JP5776082A JPS58176113A JP S58176113 A JPS58176113 A JP S58176113A JP 57057760 A JP57057760 A JP 57057760A JP 5776082 A JP5776082 A JP 5776082A JP S58176113 A JPS58176113 A JP S58176113A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
intermediate refrigerant
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57057760A
Other languages
Japanese (ja)
Other versions
JPS6327285B2 (en
Inventor
Akio Mori
昭男 森
Kenichi Fukatsu
深津 憲一
Daigo Nasu
那須 大悟
Yasuhiro Kobayashi
康弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP57057760A priority Critical patent/JPS58176113A/en
Publication of JPS58176113A publication Critical patent/JPS58176113A/en
Publication of JPS6327285B2 publication Critical patent/JPS6327285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、固体炭酸ガスおよび液化炭酸ガスの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing solid carbon dioxide and liquefied carbon dioxide.

従来、工業的に固体炭酸ガス)よび液化炭酸ガスを製造
するには次の様な方法がとられてきた。
Conventionally, the following methods have been used to industrially produce solid carbon dioxide) and liquefied carbon dioxide.

石油系炭化水素であるナフサ、または、ブタンなどを熱
分−し、それにより生成する粗炭酸ガスを原料として受
入れ、洗滌基および脱硫塔を通して硫黄分などの不純物
を除去した後、圧縮機により昇圧し、脱湿器を通して水
分を除き−次いで冷凍機により冷却液化し、精製塔に送
りフラッシングを行ない、少量含まれている水素、酸素
、窒素。
Petroleum-based hydrocarbons such as naphtha or butane are heated, and the resulting crude carbon dioxide gas is received as a raw material. After removing impurities such as sulfur through a washing group and a desulfurization tower, the pressure is increased by a compressor. Then, it is passed through a dehumidifier to remove moisture, then cooled and liquefied in a refrigerator, sent to a purification tower for flushing, and contains small amounts of hydrogen, oxygen, and nitrogen.

メタンなどの不純物を完全にパージして高純度液化炭酸
ガスを製造するものであり、一方、固体炭酸ガスの製造
は液化炭酸ガスを貯槽より成型機へ送り、成型機内で断
熱膨張させ、その冷却効果によって得られる雪状ドライ
アイスを圧縮、成型して切断、自動包装の工程を経て製
品とする。成型機内の発生ガスは圧縮機の吸込側に戻し
再圧縮し液化するというのが一般的表製造方法であった
Impurities such as methane are completely purged to produce high-purity liquefied carbon dioxide.On the other hand, solid carbon dioxide is produced by sending liquefied carbon dioxide from a storage tank to a molding machine, adiabatically expanding it in the molding machine, and cooling it. The snow-like dry ice obtained by the effect is compressed, molded, cut, and processed into products through automatic packaging. A common table manufacturing method was to return the gas generated in the molding machine to the suction side of the compressor, recompress it, and liquefy it.

この従来方法においては、原料炭酸ガスを精製し先後、
約jOから70 ataに圧縮し、これを冷凍機により
冷却して液化炭酸ガスを□製造し、又この液化炭酸ガス
を加圧成型機中に減圧噴出させ固体炭酸ガスを製造する
工程であるために、消費動力も大きく、圧縮機および冷
凍機などの設備投資が必要となるうえに、近年の電気料
金の高騰により運転費も看過しがたいものになってきて
いる。そこでこれらの消費動力、設備投資豐および運転
費などの節減を計るために、LNGの冷熱を利用した液
化炭酸ガスおよび固体炭酸ガスの製造方法についての検
討がされており、一部の方法はすでに実施に移されてい
る。次にそれらについて述べる。
In this conventional method, the raw carbon dioxide gas is purified and then
This is a process in which liquefied carbon dioxide is produced by compressing from about jo to 70 ata, and this is cooled by a refrigerator, and this liquefied carbon dioxide is ejected under reduced pressure into a pressure molding machine to produce solid carbon dioxide. In addition, power consumption is large, requiring investment in equipment such as compressors and refrigerators, and operating costs have become difficult to overlook due to the recent rise in electricity rates. Therefore, in order to reduce power consumption, capital investment, and operating costs, methods for producing liquefied carbon dioxide and solid carbon dioxide using the cold energy of LNG are being studied, and some methods have already been developed. It is being implemented. I will discuss them next.

衆知の如く、我が国においてLNGの消費量が増大する
につれて、LNGの有する冷熱を有効に利用しようとす
る分野の開発が活発に進められてきており、固体炭酸ガ
ス、および、液化炭酸ガスの製造にもLNGの冷熱利用
が検討されはじめ、これらに関する報告が多く紹介され
ている。LNGの冷熱を利用した固体炭酸ガス、および
、液化炭酸ガスの製造方法には、概ね次の3方式があげ
られる。
As is well known, as the consumption of LNG increases in Japan, development in the field of effectively utilizing the cold energy of LNG is actively progressing. The use of LNG for cold energy has also begun to be considered, and many reports on this topic have been introduced. There are generally the following three methods for producing solid carbon dioxide gas and liquefied carbon dioxide gas using the cold energy of LNG.

(1)圧縮、精製、液化プロセスは在来法と基本的には
違わないが、LNGの冷熱を利用して、炭酸ガスを3重
点温度近辺まで冷却させる冷凍機を不要とする方法で、
これは従来必要とされた圧縮機動力を軽減可能ならしめ
るもので、LNGの冷熱を利用した方法の中で最も従来
方法に近い液化炭酸ガスの製造方法である。またこの液
化炭酸ガスから固体炭酸ガスが得られる0(2)LNG
冷熱を用い深冷分離装置により製造した液体窒素、液体
酸素を九はその混合物の如き低温冷媒あるいはLNGそ
のものと原料炭酸ガスを常圧状態で直接接触させ固体炭
酸ガスを製造する方法および低温冷媒あるいはI、NG
な分離した固体炭瞭ガスから液化炭酸ガスを製造する方
法。
(1) The compression, purification, and liquefaction processes are basically the same as conventional methods, but this method utilizes the cold energy of LNG and eliminates the need for a refrigerator to cool carbon dioxide to around the triple point temperature.
This allows the compressor power required in the past to be reduced, and among the methods that utilize the cold energy of LNG, this method is the closest to the conventional method for producing liquefied carbon dioxide. In addition, 0(2) LNG is used to obtain solid carbon dioxide from this liquefied carbon dioxide.
A method for producing solid carbon dioxide by directly contacting liquid nitrogen or liquid oxygen produced by a cryogenic separation device using cold heat with a low-temperature refrigerant such as a mixture thereof or LNG itself and raw carbon dioxide under normal pressure, and a low-temperature refrigerant or I,NG
A method for producing liquefied carbon dioxide gas from separated solid coal gas.

(3)熱交換器を用いて低温冷媒、あるいは、LNGと
5.2j at&未満の低圧の原料炭酸ガスとを熱交換
させることにより、伝熱面に固体炭酸ガスを生成させ、
これを取り出す製造方法および固体炭酸ガスから液化炭
酸ガスを製造する方法。
(3) Generate solid carbon dioxide gas on the heat transfer surface by exchanging heat between low-temperature refrigerant or LNG and low-pressure raw carbon dioxide gas of less than 5.2 J at& using a heat exchanger,
A production method for extracting this and a method for producing liquefied carbon dioxide from solid carbon dioxide.

これらのうち(2)および(5)の製造方法は、LNG
などの冷熱を用い原料炭酸ガスを圧縮機や冷凍機を用い
ずに、3重点以下の圧力で直接tた紘間接的に冷却を行
ない、固体炭酸ガスを製造し、またこれから液化炭酸ガ
スを製造せんとするものである。
Among these, manufacturing methods (2) and (5) are based on LNG
The raw carbon dioxide is directly and indirectly cooled at a pressure below the triple point without using a compressor or refrigerator using the cold heat of the gas to produce solid carbon dioxide, and from this, liquefied carbon dioxide is produced. This is what I am trying to do.

これらのLNGの冷熱を用いた固体炭酸ガスおよび液化
炭酸ガスの製造方法は、実用化に際してそれぞれ短所を
有している。即ち(1)の製造方法である原料炭酸ガス
を加圧した後、精製してLNGの冷熱を用いて冷却する
方法については、冷凍機は不要になるが、原料炭酸ガス
を3重点圧力!、コ1ata以上に加圧するだめの動力
が必要である。一方(2)の方法においては1.低温冷
媒である液体窒素および液体酸素などは、設備費および
運転費の高騰により製造コストが高価となるほか、製造
するための溝管電力も大きい。また、これらの媒体は循
環使用が困難であるので、単位固体炭酸ガスを製造する
ための媒体の消費量が多くなり、固体炭酸ガスの製造コ
ストは高価になる。又LNGと直接接触して固体炭酸ガ
スを製造する方法に関しては、原料炭酸ガスが常圧程度
の4のであるので、I、NG4常圧程度のものを必要と
するが、LNGはガス化して遠距離圧送する必要から出
荷時には通常ioから’10 ataのガス圧が必要と
されている。
These methods of producing solid carbon dioxide gas and liquefied carbon dioxide gas using the cold energy of LNG each have disadvantages when put into practical use. In other words, in the production method (1), which pressurizes the raw carbon dioxide gas, refines it, and cools it using the cold energy of LNG, a refrigerator is not required, but the raw carbon dioxide gas is kept under triple pressure! , power is required to pressurize to more than 1ata. On the other hand, in method (2), 1. Low-temperature refrigerants such as liquid nitrogen and liquid oxygen are expensive to manufacture due to rising equipment and operating costs, and also require a large amount of electric power to manufacture. Furthermore, since it is difficult to recycle these media, the amount of media consumed to produce unit solid carbon dioxide increases, and the cost of producing solid carbon dioxide increases. Regarding the method of producing solid carbon dioxide by direct contact with LNG, since the raw material carbon dioxide is at about normal pressure, I, NG4 is required at about normal pressure, but LNG is gasified and transported far away. Due to the need for pressure-feeding over a distance, a gas pressure of io to 10 ata is normally required at the time of shipment.

このためにLNGを常圧で使用した後、気化ガスを昇圧
することは、昇圧設備および昇圧の九めの動力が必要に
なり、LNGの状態でゲンブで昇圧する場合に比べ動力
的に見て不利である。逆に高圧下にあるLNGと原料炭
酸ガスとを直接接触させる場合も、原料炭酸ガスを昇圧
する必要が生じ同様に不利となる。
For this reason, boosting the pressure of vaporized gas after using LNG at normal pressure requires pressure boosting equipment and power for boosting the pressure. It is disadvantageous. Conversely, when LNG under high pressure and raw carbon dioxide gas are brought into direct contact, it is necessary to increase the pressure of raw carbon dioxide gas, which is similarly disadvantageous.

更K(5)の方法では、低温冷媒として液体窒素および
液体酸素を用いる場合は、前記の(2)と同様冷媒の価
格上の問題がある。又冷媒KLNGを用いる場合には、
間接熱交換器の伝熱面への固体炭酸ガスの付着により熱
伝導率が低下するため、それを除去することが必要とな
り、そのため設備的に璽雑になり、除去の丸めの動力も
必要となる。
Furthermore, in the method (5), when liquid nitrogen and liquid oxygen are used as the low-temperature refrigerant, there is a problem in the cost of the refrigerant, as in (2) above. Also, when using refrigerant KLNG,
As solid carbon dioxide adheres to the heat transfer surface of an indirect heat exchanger, the thermal conductivity decreases, so it is necessary to remove it, which makes the equipment complex and requires power to remove it. Become.

本発明は以上の製造方法に見られる如き種々の欠点を克
服するためになされたもので、次の2つより構成される
The present invention has been made to overcome the various drawbacks seen in the above manufacturing methods, and is composed of the following two parts.

(1)  液体窒素や液体酸素の如き高価かつ回収困難
な冷媒を使用することなく、又出荷時に高圧状態を必要
とされるLNGを直接使用することなく、LNGの冷熱
と間接的に熱交換して得られた低温の中間冷媒と原料炭
酸ガスとを相変化器などの中で直接接触させ、原料炭酸
ガスを固化生成せしめること。
(1) Without using expensive and difficult-to-recover refrigerants such as liquid nitrogen or liquid oxygen, and without directly using LNG, which requires a high pressure state during shipping, heat can be exchanged indirectly with the cold energy of LNG. The obtained low-temperature intermediate refrigerant and the raw material carbon dioxide are brought into direct contact in a phase changer or the like to solidify the raw material carbon dioxide.

(2)  中間冷媒中に析出した固体炭酸ガスを中間冷
媒と共に加熱昇温し、3重点以上の圧力に昇、圧し固体
炭酸ガスを液化してしかる後に比重差などにより中間冷
媒と分離して液化炭酸ガスを取り出すこと。
(2) The solid carbon dioxide precipitated in the intermediate refrigerant is heated and heated together with the intermediate refrigerant, and the pressure is increased to the triple point or higher, and the solid carbon dioxide is compressed to liquefy the solid carbon dioxide.Then, it is separated from the intermediate refrigerant due to the difference in specific gravity, etc., and liquefied. To extract carbon dioxide gas.

以下に本発明の実施例を具体的に説明する。Examples of the present invention will be specifically described below.

最初に固体炭酸ガス製造の実施例の説明を第1図にもと
づき行なう。lは、例えば70ン/J 、エチレンなど
の中間冷媒貯蔵タンクで、断熱された耐圧容器よりなり
、−の断熱パイプにより相変化@Jと結ばれており、そ
の間に中間冷−圧送用ボンプ参とパルプ!が配置されて
いる。該相変化器Jは断熱され九耐圧容器で、固体炭酸
ガスを生成する装置である。中間冷媒貯蔵タンクlに貯
蔵されていた70ン/J 、エチレンなどの中間冷媒は
、パルプjを通じ中間冷媒圧送用lンプダにより相変化
IIJ内に華道され、所定置溝たされる。ここでf間冷
媒移送後中間冷媒圧送用ポンプ参を停止し、パルプ!を
閉状11にする。一方中間冷媒の冷却は、LNG熱交換
114により行なわれる。該LliG熱交換器≦はLN
Gの保有する冷熱と中間冷媒との熱交換を行なうもので
、断熱パイプ7により相変化器3とループ状に結合され
ており、その間に中間冷媒循環ポンプlおよびバルブ9
,10が配置されている。所定量の中間冷媒が相変化器
3の中に注入された後、中間冷媒循環ポンプlによりL
NG熱交換器6内を通過することによりLNGの保有す
る冷熱で−/IIO℃程度まで冷却される。この中間冷
媒の冷却は、固体炭酸ガスの生成過程中連続的に行なわ
れる。この間はバルブ9.IQを開状態にする。相変化
器3中の中間冷媒がLNG熱交換器4により冷却された
時点で、炭酸ガス用パイプ//およびバルブ12を通じ
て送風機13から洗滌。
First, an example of solid carbon dioxide production will be explained based on FIG. 1 is an intermediate refrigerant storage tank such as 70 N/J, ethylene, etc., which is made of an insulated pressure-resistant container, and is connected to the phase change @J by an insulated pipe. And pulp! is located. The phase changer J is a heat-insulated, pressure-resistant container, and is a device for producing solid carbon dioxide gas. An intermediate refrigerant such as 70 g/J, ethylene, etc., stored in the intermediate refrigerant storage tank 1, is forced into the phase change IIJ by a pumper for pumping the intermediate refrigerant through the pulp j, and is formed into a predetermined groove. After transferring the refrigerant between f, the pump for pumping the intermediate refrigerant is stopped, and the pulp! Make it a closed shape 11. On the other hand, the intermediate refrigerant is cooled by LNG heat exchange 114. The LliG heat exchanger≦LN
It exchanges heat between the cold energy held by G and the intermediate refrigerant, and is connected to the phase changer 3 in a loop through an insulated pipe 7, between which an intermediate refrigerant circulation pump l and a valve 9 are connected.
, 10 are arranged. After a predetermined amount of intermediate refrigerant is injected into the phase changer 3, the intermediate refrigerant circulation pump l
By passing through the NG heat exchanger 6, the LNG is cooled down to about -/IIO°C by the cold heat possessed by the LNG. This intermediate refrigerant is continuously cooled during the solid carbon dioxide generation process. During this time, valve 9. Open your IQ. When the intermediate refrigerant in the phase changer 3 is cooled by the LNG heat exchanger 4, it is washed from the blower 13 through the carbon dioxide pipe//and valve 12.

脱硫脱湿され九原料炭酸ガスが相変化器3内に連続送入
する。lll11変化器3の中において、原料炭酸ガス
は低温の中間冷媒と直接接触して約−10℃まで冷却さ
れて固体炭酸ガスに昇華する。相変化器3中にて固体炭
酸ガスの生成が完了した時点で、バルブ12を閉状態に
し原料炭酸ガスの送入を停止し、同時に中間冷媒循環ポ
ンプtも停止させ、バルブ9,10を閉状態にする。相
変化器3の中で生成された固体炭酸ガスは、バルブ/4
1を開くことにより固体炭酸ガスと中間冷媒の混合物と
して分離器t3に移される。該分離器t1.社断熱がほ
どこされ、その内部に目の細かいフィルタ分離板などを
そなえ九容器で、内部で固体炭酸ガスと中間冷媒の分離
を行なう。尚相変化器Jより固体炭酸ガスと中間冷媒の
混合物を抜き出す場合には、送風機/Jと相愛化器Jの
上部を結ぶ炭酸ガス用パイプl≦の間に設置されている
バルブ17を開くことにより、原料炭酸ガスを相変化器
3に送入する。混合物の抜き出しが完了した時点で、該
バルブ17を閉状態にし送風機13を停止する。分離器
lS内部において固体炭酸ガスと中間冷媒の分離が行な
われ、底部にたまった中間冷媒は、該分離器/jiと中
間冷媒貯蔵タンクlを結ぶ断熱パイプ/I 、バルブ1
9を通じて中間冷媒戻し用ポンプ〃の作動により中間冷
媒貯蔵タンクlにもどされる。分離器/3中の中間冷媒
が完全にもどされた時点で、中間冷媒戻し用ポンプXを
停止しバルブ19を閉状態にする。尚分離器Ij内に残
された固体炭酸ガスにわずかな中間冷媒が残留する場合
は、沸点差により中間冷媒のみを気化せしめ、バルブJ
を開いて系外へ放出する。
The desulfurized and dehumidified carbon dioxide gas is continuously fed into the phase changer 3. In the converter 3, the raw carbon dioxide gas is cooled down to about -10°C in direct contact with a low-temperature intermediate refrigerant and sublimated into solid carbon dioxide gas. When the generation of solid carbon dioxide gas is completed in the phase changer 3, the valve 12 is closed to stop feeding the raw carbon dioxide gas, and at the same time, the intermediate refrigerant circulation pump t is also stopped, and the valves 9 and 10 are closed. state. The solid carbon dioxide gas generated in the phase changer 3 is transferred to the valve/4
1, the mixture of solid carbon dioxide and intermediate refrigerant is transferred to the separator t3. The separator t1. The nine containers are thermally insulated and equipped with fine-mesh filter separation plates, etc., to separate solid carbon dioxide from intermediate refrigerant. In addition, when extracting the mixture of solid carbon dioxide gas and intermediate refrigerant from the phase changer J, open the valve 17 installed between the carbon dioxide pipe l≦ connecting the blower/J and the upper part of the phase changer J. As a result, raw carbon dioxide gas is fed into the phase changer 3. When the extraction of the mixture is completed, the valve 17 is closed and the blower 13 is stopped. Solid carbon dioxide gas and intermediate refrigerant are separated inside the separator IS, and the intermediate refrigerant accumulated at the bottom is transferred to an insulated pipe /I connecting the separator /ji and the intermediate refrigerant storage tank l, valve 1.
9, the intermediate refrigerant is returned to the intermediate refrigerant storage tank 1 by the operation of the intermediate refrigerant return pump. When the intermediate refrigerant in the separator/3 is completely returned, the intermediate refrigerant return pump X is stopped and the valve 19 is closed. If a small amount of intermediate refrigerant remains in the solid carbon dioxide gas left in separator Ij, only the intermediate refrigerant is vaporized due to the boiling point difference, and valve J
Open it and release it out of the system.

放出後バルブ1は閉じる。その後分離器/jjより固体
次階ガスを取り出す。
After discharge, valve 1 is closed. Thereafter, solid secondary gas is taken out from the separator/jj.

以上が画体炭酸ガス製造の実施例である。The above is an example of producing carbon dioxide gas from an image body.

つぎに液化炭酸ガス製造の実施例の説明を第2図に%と
づき行なう。
Next, an example of producing liquefied carbon dioxide gas will be explained in terms of percentages in FIG. 2.

相変化WjJ内にそれぞれ所定量の気体状の炭酸ガスと
中間冷媒(本実施例ではプロパンとする)が入っている
状態から説明をはじめる。バルブ9゜10および12の
み開の状態とし、中間冷媒循環ポンプIKよ少LNG熱
交換器4内にプロパンを通過させ、LlNGの保有する
冷熱で−l参〇C@gまで冷却する。仁のプロパンは固
体炭酸ガス゛の生成過程中連続的に冷却され、断熱パイ
プ7を通して相変化器3へ循環供給される。これと同時
に1炭讃ガス用パイプ//および12を通じて送風機1
3から、洗滌、脱硫、脱湿のなされた原料炭酸ガスが相
変化llJ内に連続注入される。該相変化llJの中に
おいて、原料炭酸ガスは低温のプロパンと直接接触して
約−101:まで冷却され、固体炭酸ガスに昇華する。
The explanation will begin from a state in which a predetermined amount of gaseous carbon dioxide gas and an intermediate refrigerant (propane in this embodiment) are contained in the phase change WjJ. Only the valves 9, 10 and 12 are open, and propane is passed through the LNG heat exchanger 4 with less propane than the intermediate refrigerant circulation pump IK, and is cooled down to -1C@g using the cold energy held by the LNG. The solid propane is continuously cooled during the production process of solid carbon dioxide gas, and is circulated and supplied to the phase changer 3 through an insulated pipe 7. At the same time, the blower 1 is connected through the 1 charcoal gas pipe// and 12.
From step 3, raw carbon dioxide gas that has been washed, desulfurized, and dehumidified is continuously injected into the phase change chamber 11J. In the phase change 11J, the raw carbon dioxide gas is cooled to about -101: by direct contact with low-temperature propane, and sublimated into solid carbon dioxide gas.

相変化器3中にて固体炭酸ガスの生成が完了した時点で
、パルプlλは閉状態になり、原料炭酸ガスの注入は完
了し、同時に中間冷媒lンブlが停止するとともにパル
ブタ、/θも閉状態になる0 つづいて、相変化器3の中で密閉された約−10℃のプ
ロパンおよび固体炭酸ガスを加熱昇温し、昇圧させるた
めに1パルプlを開けて相変化器3内の加熱管1の中へ
熱媒体を流す。相変化器3内の温度は上昇しはじめ、温
度計〃およびnが−j≦、≦℃を示し、圧力計Sがj、
′コt ataを示す。
When the generation of solid carbon dioxide gas is completed in the phase changer 3, the pulp lλ is closed, the injection of the raw carbon dioxide gas is completed, and at the same time, the intermediate refrigerant l is stopped and the pulp filter /θ is also closed. Closed state 0 Next, in order to heat and raise the temperature and pressure of propane and solid carbon dioxide sealed at about -10°C in the phase changer 3, one pulp liter is opened and the inside of the phase changer 3 is heated. A heat medium is caused to flow into the heating tube 1. The temperature inside the phase changer 3 begins to rise, the thermometer and n show -j≦, ≦℃, and the pressure gauge S shows j,
’ indicates kot ata.

(このS*と圧力の状態が炭酸ガスの3重点である。)
この状態でさらに加熱を続けると、温度。
(This state of S* and pressure is the triple point of carbon dioxide.)
If you continue heating in this state, the temperature will increase.

圧力ともにこの値をしばらくの間保持した後、温度およ
び圧力が上昇しはじめる。この時点で固体炭酸ガスはす
べて液化炭酸ガスになる。濃度および圧力が、たとえば
−jf ℃、 j、りataになった時点で、パルプl
を閉めて加熱を完了する。このとき相変化器3の中では
、プロパン、炭酸ガスともに液体状態になっており、液
体炭酸ガスの比重が/、/7であり、プロパンの比重が
0.6なので相変化[97の上方にプロパンが1、下方
に液化炭酸ガスが分けられる。即ち、比重差による分離
手段である。
After holding this value together with the pressure for a while, the temperature and pressure begin to rise. At this point, all solid carbon dioxide becomes liquefied carbon dioxide. When the concentration and pressure are, for example, −jf °C, j, r ata, the pulp l
Close to complete heating. At this time, in the phase changer 3, both propane and carbon dioxide are in a liquid state, and the specific gravity of liquid carbon dioxide is /, /7, and the specific gravity of propane is 0.6, so the phase change occurs above [97]. Propane is divided into 1 and liquefied carbon dioxide gas is divided downward. That is, it is a separation means based on a difference in specific gravity.

つぎに中間冷媒圧送用〆ンプlを作動させ、パルプ!を
開けて中間冷媒貯蔵タンクl内のプロパンを断熱パイプ
コを経て相変化器3へ圧送する操作を行なうと同時に、
パルプl#を開けて相変化器J内で製造した液化炭酸ガ
スを、断熱パイプBを通して液化炭酸ガス貯蔵タンクぶ
へ送り出す。
Next, operate the intermediate refrigerant pressure pump l, and the pulp! At the same time, the propane in the intermediate refrigerant storage tank 1 is forced to be sent to the phase changer 3 through the insulated pipe.
Pulp I# is opened and the liquefied carbon dioxide produced in the phase changer J is sent through the insulated pipe B to the liquefied carbon dioxide storage tank.

(この状態で中間冷媒貯蔵タンクl内の圧力は窒素ガス
が膨張しているので低圧状態になる。)相変化器3内で
製造された液化炭酸ガスを液化炭酸ガス貯蔵タンクスへ
所定量送り出した後、パルプ!およびlりを閉めるとと
もに中間冷媒圧送用ボンプダを停止する。
(In this state, the pressure inside the intermediate refrigerant storage tank 1 becomes low because the nitrogen gas is expanding.) A predetermined amount of liquefied carbon dioxide produced in the phase changer 3 was sent to the liquefied carbon dioxide storage tank. After that, Pulp! At the same time, the pumper for pumping the intermediate refrigerant is stopped.

つぎに、相変化器3内の所定量のプロパンを、断熱パイ
プ/Iを経て中間冷媒貯蔵タンクlへ戻すべくパルプ/
1を開け、中間冷媒戻し用ポンプXを作動させるととも
に1パルプnを開けて原料炭酸ガスを炭酸ガス用パイプ
/1を経て相変化器3内へ所定量だけ吸入させる。その
後、パルプ17および19を閉めるとともに中間冷媒戻
し用〆ンプXを停止する。(この状態で中間冷媒貯蔵タ
ンクl内の圧力は窒素が圧縮され高圧状態になゐ。)以
上の操作をくり返すことにより液化炭酸ガスを製造する
O 尚この実施例では、生成された液化炭酸ガスとプロパン
とを比重差により分散し、液化炭酸ガスをこの比重差を
利用して貯蔵タンクb内へ回収するようにしたが、例え
ば、中間媒体であるプロパンを磁気流体とし、相変化@
J−40外側に電磁石を可動自在に配設せしめ、該電磁
石の励磁作用を利用して分離することがで龜るし、また
、現在工業されている膜分離プロセス、詳しくは、電気
を用いる電気透析法、圧力で液体を膜透過分離する精密
r適法、限外r過法、逆浸透法などの分離手段も用いら
れることから、この分離手段として、比1差分離に何ら
特定されることはない。
Next, a predetermined amount of propane in the phase changer 3 is returned to the intermediate refrigerant storage tank l via the insulated pipe /I.
1 is opened, the intermediate refrigerant return pump Thereafter, the pulps 17 and 19 are closed, and the intermediate refrigerant return pump X is stopped. (In this state, the pressure inside the intermediate refrigerant storage tank 1 becomes a high pressure state as the nitrogen is compressed.) By repeating the above operations, liquefied carbon dioxide gas is produced. The gas and propane are dispersed based on the difference in specific gravity, and the liquefied carbon dioxide gas is recovered into the storage tank b using this difference in specific gravity.
An electromagnet is movably disposed on the outside of the J-40, and the excitation effect of the electromagnet is used to facilitate separation. Separation methods such as the dialysis method, the precision method that uses pressure to separate liquids through membranes, the ultrafiltration method, and the reverse osmosis method are also used, so there is no need to specify ratio 1 difference separation as this separation method. do not have.

このように本発明によれば、固体炭酸ガスおよび液化炭
酸ガスの製造方法は、実施例の説明から理解できるよう
に、従来からの製造方法、および、これまでのLNG冷
熱などを利用した製造方法における欠点を完全に解消す
ることができ、画期的外発明である。
As described above, according to the present invention, methods for producing solid carbon dioxide gas and liquefied carbon dioxide gas include conventional production methods and conventional production methods using LNG cold energy, etc., as can be understood from the description of the embodiments. This is a non-groundbreaking invention as it can completely eliminate the drawbacks of .

即ち、炭酸ガス圧縮機や冷凍機設備が不要となり、設備
費の低減が計れるとともに据付面積も少くて済み、また
直接接触用の中間冷媒は汎用の安価な炭化水素系などの
もので間に合うばかりでなく、循環使用することができ
る7ことから消費量はきわめて少い。更にLNG圧力□
の影響をうけず、装置も簡単で、運転費も安いなど優れ
た特長を有するものである。
In other words, there is no need for a carbon dioxide compressor or refrigerator equipment, which reduces equipment costs and requires less space for installation, and the intermediate refrigerant for direct contact can be replaced with a general-purpose, inexpensive hydrocarbon-based one. The amount consumed is extremely small because it can be recycled and used7. Furthermore, LNG pressure □
It has excellent features such as being unaffected by environmental factors, the equipment is simple, and operating costs are low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固体炭酸ガスの製造方法を実施するための装置
の説明図、第2図は液化炭酸ガスの製造方法を実施する
ための説明図であるO 出願人 川崎重工業株式会社
Figure 1 is an explanatory diagram of an apparatus for implementing the method for producing solid carbon dioxide, and Figure 2 is an explanatory diagram for implementing the method for producing liquefied carbon dioxide.Applicant: Kawasaki Heavy Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)液化天然ガス(LNG)などの冷熱源と熱交換を
行って得た低温の中間冷媒と、炭酸ガスの3重点圧力で
あるs 、 2r Ky/cWL2未満の低い圧力の炭
酸ガスとを相変化器中において直接接触させ、固体炭酸
ガスを析出せしめることを特徴とする固体炭酸ガスの製
造方法。
(1) Low-temperature intermediate refrigerant obtained by heat exchange with a cold source such as liquefied natural gas (LNG) and carbon dioxide gas at a low pressure less than the triple point pressure of carbon dioxide gas, s, 2r Ky/cWL2. A method for producing solid carbon dioxide, which comprises direct contact in a phase changer to precipitate solid carbon dioxide.
(2)液化天然ガス(I、NG)などの冷熱源と熱交換
を行って得た低温の中間冷媒と、炭酸ガスの3重点圧力
であるよ、−1Kp/cz’未満の低い圧力の炭酸ガス
とを相変化器中において直接接触させて析出生成した固
体炭酸ガスを、低温の中間冷媒とともに加熱昇温させ、
炭酸ガスの3重点以上の圧力で液化炭酸ガスを生成せし
め、これを比重差などの分離手段により低温の中間冷媒
と分離し摘出することを特徴とする液化炭酸ガスの製造
方法。
(2) A low-pressure intermediate refrigerant obtained by heat exchange with a cold heat source such as liquefied natural gas (I, NG) and carbon dioxide at a low pressure of less than -1 Kp/cz', which is the triple point pressure of carbon dioxide gas. The solid carbon dioxide precipitated by direct contact with gas in a phase changer is heated to raise its temperature together with a low-temperature intermediate refrigerant.
A method for producing liquefied carbon dioxide gas, which comprises generating liquefied carbon dioxide gas at a pressure equal to or higher than the triple point of carbon dioxide gas, and separating the liquefied carbon dioxide gas from a low-temperature intermediate refrigerant using a separation means such as a difference in specific gravity.
JP57057760A 1982-04-06 1982-04-06 Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas Granted JPS58176113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057760A JPS58176113A (en) 1982-04-06 1982-04-06 Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057760A JPS58176113A (en) 1982-04-06 1982-04-06 Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas

Publications (2)

Publication Number Publication Date
JPS58176113A true JPS58176113A (en) 1983-10-15
JPS6327285B2 JPS6327285B2 (en) 1988-06-02

Family

ID=13064829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057760A Granted JPS58176113A (en) 1982-04-06 1982-04-06 Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas

Country Status (1)

Country Link
JP (1) JPS58176113A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140808A (en) * 1984-07-31 1986-02-27 Central Res Inst Of Electric Power Ind Process for preparing solid carbon dioxide
JPH01320213A (en) * 1988-06-21 1989-12-26 Osaka Gas Co Ltd Production of solid carbon dioxide having excellent transparency and device of same
JPH0317490A (en) * 1989-06-15 1991-01-25 Mitsubishi Heavy Ind Ltd Production method of liquefied co2
JPH0477308A (en) * 1990-07-16 1992-03-11 Chugoku Electric Power Co Inc:The Method and device for recovering co2
JPH0594237U (en) * 1993-02-24 1993-12-24 財団法人電力中央研究所 Solid carbon dioxide production equipment
JP2016517948A (en) * 2013-03-27 2016-06-20 ハイヴュー・エンタープライゼズ・リミテッド Method and apparatus in a cryogenic liquefaction process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140808A (en) * 1984-07-31 1986-02-27 Central Res Inst Of Electric Power Ind Process for preparing solid carbon dioxide
JPH01320213A (en) * 1988-06-21 1989-12-26 Osaka Gas Co Ltd Production of solid carbon dioxide having excellent transparency and device of same
JPH0317490A (en) * 1989-06-15 1991-01-25 Mitsubishi Heavy Ind Ltd Production method of liquefied co2
JPH0477308A (en) * 1990-07-16 1992-03-11 Chugoku Electric Power Co Inc:The Method and device for recovering co2
JPH0594237U (en) * 1993-02-24 1993-12-24 財団法人電力中央研究所 Solid carbon dioxide production equipment
JP2016517948A (en) * 2013-03-27 2016-06-20 ハイヴュー・エンタープライゼズ・リミテッド Method and apparatus in a cryogenic liquefaction process
US11408675B2 (en) 2013-03-27 2022-08-09 Highview Enterprises Limited Method and apparatus in a cryogenic liquefaction process

Also Published As

Publication number Publication date
JPS6327285B2 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
CA2574034C (en) Process and apparatus for the liquefaction of carbon dioxide
US3312073A (en) Process for liquefying natural gas
AU2008274901B2 (en) Boil-off gas treatment process and system
RU2205337C2 (en) Updated method of liquefaction of natural gas
RU2423654C2 (en) Method and plant to liquefy flow of natural gas
EP1539329A1 (en) Configurations and methods of acid gas removal
CN101460801A (en) Carbon dioxide purification method
JP2013519522A (en) Composition and method of high pressure acid gas removal in the production of ultra low sulfur gas
CN107642949A (en) Liquefaction lean gas removes heavy hydrocarbon system
CN110455038A (en) A helium extraction unit, a helium extraction device and a system for co-producing helium
JP4687184B2 (en) Method and apparatus for purifying mixed gas containing acid gas
AU2015388393B2 (en) Natural gas production system and method
JPS58176113A (en) Preparation of solid carbon dioxide gas and liquefied carbon dioxide gas
CA2998529C (en) A method of preparing natural gas to produce liquid natural gas (lng)
CN112811402A (en) Integrated helium extraction device adopting hydrate method
JPS63271085A (en) Method for producing liquid air using LNG refrigeration and expander cycle
KR102342162B1 (en) Gas Hydrate based Seawater Desalination Apparatus of Waste Heat Recovery type and method thereof
CN105157350A (en) Technology and system for removing heavy hydrocarbons in natural gas
KR20240135959A (en) Neon Separation Device Using Split Distillation
JPS63271084A (en) Method for producing liquid air using LNG cooling and heating and reverse Rankine cycle
KR20200037706A (en) Raw material gas liquefaction treatment method