[go: up one dir, main page]

JPS5817535B2 - Epoxy resin composition for carbon fiber reinforcement - Google Patents

Epoxy resin composition for carbon fiber reinforcement

Info

Publication number
JPS5817535B2
JPS5817535B2 JP14113278A JP14113278A JPS5817535B2 JP S5817535 B2 JPS5817535 B2 JP S5817535B2 JP 14113278 A JP14113278 A JP 14113278A JP 14113278 A JP14113278 A JP 14113278A JP S5817535 B2 JPS5817535 B2 JP S5817535B2
Authority
JP
Japan
Prior art keywords
parts
epoxy resin
curing
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14113278A
Other languages
Japanese (ja)
Other versions
JPS5569616A (en
Inventor
邦朗 戸袋
洋七 萩原
肇 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14113278A priority Critical patent/JPS5817535B2/en
Publication of JPS5569616A publication Critical patent/JPS5569616A/en
Publication of JPS5817535B2 publication Critical patent/JPS5817535B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 本発明は低温硬化性で貯蔵安定性に優れ、しかも難燃性
を有する炭素繊維強化用エポキシ樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epoxy resin composition for reinforcing carbon fibers that is curable at low temperatures, has excellent storage stability, and is flame retardant.

ゴルフクラブシャフトや釣竿などのプレミアスポーツ用
品に広(使用されている円筒形状の炭素繊維強化プラス
チック(以下CFRPという)は近年その生産性の向上
もしくは作業環境の改善などの観点からフィラメントワ
インディング成形法に代ってプリプレグを使用する乾式
積層法による成形が採用されてきている。
The cylindrical carbon fiber reinforced plastic (hereinafter referred to as CFRP), which is widely used in premium sports products such as golf club shafts and fishing rods, has recently been replaced by filament winding molding method from the viewpoint of improving productivity and working environment. Instead, molding using a dry lamination method using prepreg has been adopted.

CFRPのマトリックス樹脂としては炭素繊維に対する
接着性の優れたエポキシ樹脂、たとえばビスフェノール
Aジグリシジルエーテル型エポキシ樹脂である゛エピコ
ート“828(シェル化学■製)をDDSで予備重合し
たもの(゛エピコー)”DX210として市販されてい
る)などが知られており、このエポキシ樹脂の硬化剤と
しては3弗化ホウ素モノエチルアミン(BF3−MEA
)が広く使用されている。
The matrix resin for CFRP is an epoxy resin with excellent adhesion to carbon fibers, such as a bisphenol A diglycidyl ether type epoxy resin, ``Epicort 828'' (manufactured by Shell Chemical Co., Ltd.), which is prepolymerized with DDS (``Epicort''). Commercially available products such as DX210) are known, and boron trifluoride monoethylamine (BF3-MEA) is known as a curing agent for this epoxy resin.
) are widely used.

しかしながら、この樹脂組成物は貯蔵安定性は良好であ
るが硬化温度が高く、通常150℃以上の温度で硬化さ
せなげればならず、炭素繊維のように加熱によってほと
んど膨張しないか場合によっては若干収縮する繊維にお
いては成形時の残留応力が大きくなり、繊維の配列のわ
ずかな乱れによって湾曲、クラックなどの欠陥が成形品
に生じやす(、成形時のトラブルの発生原因となり、収
率を低下させるという問題があった。
However, although this resin composition has good storage stability, it has a high curing temperature and usually must be cured at a temperature of 150°C or higher, and unlike carbon fiber, it hardly expands when heated, or in some cases it expands slightly. Shrinking fibers have a large residual stress during molding, and slight disturbances in the fiber arrangement can easily cause defects such as curvature and cracks in the molded product (causing problems during molding and reducing yield). There was a problem.

しかもBF3−ME A を硬化剤として用いると硬
化したエポキシ樹脂の伸びが小さくなるためCFRPの
層間剪断強度(以下ILSSと略す)が低く、耐衝撃性
が不十分であり、釣竿のように先端部を小口径に成形し
なければならないものは強度的に成形を難しくするとい
われている。
Moreover, when BF3-ME A is used as a curing agent, the elongation of the cured epoxy resin becomes small, resulting in low interlaminar shear strength (hereinafter abbreviated as ILSS) of CFRP, insufficient impact resistance, and the tip of a fishing rod. It is said that those that must be molded into small diameters are difficult to mold in terms of strength.

該エポキシ樹脂の硬化温度を低下させるものとして、ジ
シアンジアミドが知られているがこのジシアンジアミド
単独では貯蔵安定性は問題ないがBF3−MEA 同
様に硬化温度が高く、ジシアンジアミドと適城な硬化促
進剤を併用することにより硬化温度を低下させる試みが
ためされている。
Dicyandiamide is known as a substance that lowers the curing temperature of the epoxy resin, but dicyandiamide alone has no problem with storage stability, but like BF3-MEA, the curing temperature is high, so dicyandiamide and an appropriate curing accelerator are used in combination. Attempts have been made to lower the curing temperature by

しかしながら、ジシアンアミドと硬化促進剤を併用する
とエポキシ樹脂から得られる硬化物の耐熱性の低下が著
しく、前記゛エピコー)”DX−210の場合その耐熱
性は80℃にも達しないといわれている。
However, when dicyanamide and a curing accelerator are used in combination, the heat resistance of the cured product obtained from the epoxy resin is significantly reduced, and in the case of the above-mentioned "Epicor" DX-210, the heat resistance is said to not even reach 80°C.

本発明の目的とするところは前記欠点がなく低温硬化性
で優れた貯蔵安定性を有し、耐熱性に優れたCFRP用
エポキシ樹脂組成物を提供するにあり、他の目的は成形
性に優れ、炭素繊維の有する卓越した強化繊維特性を反
映したCFRPを提供するにある。
The purpose of the present invention is to provide an epoxy resin composition for CFRP which does not have the above-mentioned drawbacks, has low temperature curability, excellent storage stability, and excellent heat resistance, and another purpose is to provide an epoxy resin composition for CFRP that has excellent moldability. The object of the present invention is to provide a CFRP that reflects the excellent reinforcing fiber properties of carbon fiber.

このような本発明の目的は前記特許請求の範囲に記載し
たように、エポキシ樹脂としてフェノールノボラック型
およびビスフェノールAジグリシジルニーデル型樹脂の
少なくとも2種のエポキシ樹脂を用い、このエポキシ樹
脂にトリグリシジル−m−−アミノフェノールおよびジ
シアンジアミドと硬化促進剤を配合することによって達
成することができる。
The object of the present invention is to use at least two types of epoxy resins, a phenol novolak type resin and a bisphenol A diglycidyl needle type resin, as an epoxy resin, and to add triglycidyl to this epoxy resin. This can be achieved by blending -m--aminophenol and dicyandiamide with a curing accelerator.

本発明においてA成分のフェノールノボラック型エポキ
シ樹脂とは(1)式で示される多官能エポキシ化合物を
主成分とする反応生成物であり、具体的には、シェル化
学■より市販されている゛エピコート” 152 (以
下Ep−152と略す)、゛エピツー1− ” 154
(以下EP−154と略す)・などを例示することが
できる。
In the present invention, the phenol novolac type epoxy resin as component A is a reaction product whose main component is a polyfunctional epoxy compound represented by the formula (1). ” 152 (hereinafter abbreviated as Ep-152), “Epitsu 1-” 154
(hereinafter abbreviated as EP-154).

また、両画N成分のエポキシ樹脂と併用される(B)成
分のビスフェノールAジグリシジルエーテル型エポキシ
樹脂とは(2)式で示されるエポキシ化合物を主成分と
する反応生成物であり、具体的にはシェル化学■製のE
p−sos、EP−827、】Ep−828、Ep−1
001、Ep−1002、Ep−1004、EP−10
07、Ep−1−009などを挙げることができ、これ
らは単独もしくは併用することができる。
In addition, the bisphenol A diglycidyl ether type epoxy resin of the component (B) used together with the epoxy resin of the component N in both images is a reaction product whose main component is an epoxy compound represented by the formula (2). E made by Shell Chemical ■
p-sos, EP-827, ]Ep-828, Ep-1
001, Ep-1002, Ep-1004, EP-10
07, Ep-1-009, etc., and these can be used alone or in combination.

(C)成分のN−N−0−)リグリシジル−m−アミン
フェノールは(3)式で示される化合物を主成分とする
反応生成物である。
Component (C) N-N-0-)liglycidyl-m-aminephenol is a reaction product containing the compound represented by formula (3) as a main component.

さらに旧成分のジシアンジアミドと併用される硬化促進
剤としては、モノもしくはジクロロフェニルト1−ジメ
チルウレア、イミダゾール、イミダゾール誘導体などを
挙げることができるが、好ましくはモノまたはジクロロ
フェニルト1−ジメチルウレアがよい。
Furthermore, examples of the curing accelerator used in combination with the old component dicyandiamide include mono- or dichlorophenyl-1-dimethylurea, imidazole, imidazole derivatives, etc., but mono- or dichlorophenyl-1-dimethylurea is preferred.

本発明のエポキシ樹脂組成物を構成する(A、(B)、
(qおよび[F]酸成分配合割合としては、(A)成分
100重量部に対して(B)成分を25〜100重量部
、(A)および(B)成分100重量部当り(q成分を
6〜40重量部、さらに(Y33成団人、(B)および
(q成分100重量部当りジシアンジアミドを3〜9重
量部、硬化促進剤を4〜8重量部の範囲内で配合するの
がよい。
Constituting the epoxy resin composition of the present invention (A, (B),
(The mixing ratio of the acid components q and [F] is 25 to 100 parts by weight of the component (B) per 100 parts by weight of the component (A), 6 to 40 parts by weight, and preferably 3 to 9 parts by weight of dicyandiamide and 4 to 8 parts by weight of a curing accelerator per 100 parts by weight of components (Y33, (B) and (q). .

すなわち、(B)成分の配合割合が前記範囲外の25重
量部より少なくなると硬化後の樹脂の伸びが改良されな
いし、また100重量部を越えると耐熱性の低下が著し
くなるので好ましくない。
That is, if the blending ratio of component (B) is less than 25 parts by weight, which is outside the above range, the elongation of the cured resin will not be improved, and if it exceeds 100 parts by weight, the heat resistance will deteriorate significantly, which is not preferable.

また、(B)成分の分子量を調節することによってプリ
プレグの粘着性および可撓性をコントロールすることが
できる。
Furthermore, the adhesiveness and flexibility of the prepreg can be controlled by adjusting the molecular weight of component (B).

(q成分の配合割合が(A)と(B)両成分100重量
部当り6重量部より少なくなると低温硬化性の改善が不
十分となり、一方40重量部を越えると得られるCFR
Pの耐水性が低下し、たとえば釣竿などの用途では実用
性能上問題になるため好ましくない。
(If the blending ratio of component q is less than 6 parts by weight per 100 parts by weight of both components (A) and (B), the improvement in low temperature curability will be insufficient; on the other hand, if it exceeds 40 parts by weight, the resulting CFR
This is not preferable because the water resistance of P decreases, which poses a problem in terms of practical performance in applications such as fishing rods.

さらに(D)成分中のジシアンジアミドおよび硬化促進
剤は前記A、(B)、および(C)の3成分100重量
部当り3および4重量部以下の配合割合になると低温硬
化性がなくなり150°C以下の温度で硬化しなくなる
Furthermore, if the dicyandiamide and curing accelerator in component (D) are blended at a ratio of 3 or 4 parts by weight or less per 100 parts by weight of the three components A, (B), and (C), the low temperature curing property will be lost and the temperature will rise to 150°C. It will not harden at temperatures below.

また、それぞれ9および8部を越えるとプリプレグのシ
ェルフライフが短くなる一方、成形性が悪くなる。
Moreover, if the content exceeds 9 and 8 parts, respectively, the shelf life of the prepreg will be shortened, and the moldability will deteriorate.

本発明になる樹脂組成物は前記囚、(B)、(qおよび
(Dの4成分を組合せることによりCF’RP用樹脂組
成物として必要な樹脂特性を付与したものであり、各成
分の作用効果を個別に説明し得ないが(A)成分に(D
成分を配合しただけのものは130〜150℃で硬化可
能で、CFRPの物性もかなり良好である。
The resin composition of the present invention has the resin properties necessary as a resin composition for CF'RP by combining the above-mentioned four components, (B), (q, and (D). Although the action and effect cannot be explained individually, (A) component (D
CFRP containing just the ingredients can be cured at 130 to 150°C, and the physical properties of CFRP are quite good.

しかしこの場合樹脂硬化物の伸びが小さく脆くなり、し
かもプリプレグにすると粘着性が太きすぎる欠改がある
However, in this case, the elongation of the cured resin product is small and it becomes brittle, and when it is made into a prepreg, the adhesiveness is too thick.

また、樹脂硬化物の伸び乃至可撓性を改良するために、
一般に行なわれているポリアミドや反応性ニジストマー
を配合すると硬化物の耐熱性の低下を避けることができ
ず、粘着性もかえって増大するので好ましくない。
In addition, in order to improve the elongation and flexibility of the cured resin,
If a polyamide or a reactive nidistomer, which is commonly used, is blended, the heat resistance of the cured product will inevitably decrease, and the tackiness will even increase, which is not preferable.

これに対して本発明は(B)成分の配合によって、硬化
物の耐熱性を実質的に損うことなく、可撓性ならびに粘
着性を同時に改良することができる。
In contrast, in the present invention, by blending component (B), flexibility and adhesiveness can be simultaneously improved without substantially impairing the heat resistance of the cured product.

特にプリプレグの可撓性と粘着性の改良には前記Ep−
808、Ep−827、Ep−828(これらはいずれ
も液状である)と固形のEp−1001、EP−100
2、EP−1004、EP−1,007、Ep−100
9とを混合使用するのがよい。
In particular, to improve the flexibility and adhesiveness of prepreg,
808, Ep-827, Ep-828 (all of which are liquid) and solid Ep-1001, EP-100.
2, EP-1004, EP-1,007, EP-100
It is better to use it in combination with 9.

一方、本質的に硬化温度の高い(A)成分の硬化温度を
低下させるためには(q成分の配合が必要であり、(C
)成分の配合によって硬化温度の低下と併せてコンポジ
ット物性、特にILSSを著しく向上させることができ
る。
On the other hand, in order to lower the curing temperature of component (A), which inherently has a high curing temperature, it is necessary to mix component (q), and (C
) By blending the components, it is possible to lower the curing temperature and to significantly improve the physical properties of the composite, especially the ILSS.

さらに(I)成分は本発明の樹脂組成物の硬化剤として
機能するがジシアンジアミド単独では硬化温度を十分低
下させることが困難であり、硬化促進剤として前記尿素
系化合物を併用することにより硬化温度を低下させ、か
つ耐熱性の低下を抑制することができる。
Furthermore, component (I) functions as a curing agent for the resin composition of the present invention, but it is difficult to sufficiently lower the curing temperature with dicyandiamide alone, and the curing temperature can be lowered by using the urea-based compound as a curing accelerator. It is possible to reduce the heat resistance and suppress a decrease in heat resistance.

かくして本発明になるエポキシ樹脂組成物は(1)12
0℃以下の温度で硬化し、20°Cで少な(とも1.5
ケ月以上の貯蔵安定性を有する。
Thus, the epoxy resin composition of the present invention has (1) 12
It hardens at temperatures below 0°C, and hardens at 20°C (both 1.5
It has a storage stability of more than several months.

したがってプリプレグなどの成形、特に乾式積層法によ
る成形が容易で、収率、生産性を向上させることができ
る。
Therefore, it is easy to mold a prepreg or the like, especially by a dry lamination method, and the yield and productivity can be improved.

(2)低温硬化が可能であるにもかかわらず、炭素繊維
に対する優れた接着性を保持し、本発明の; 樹脂組成
物をマトリックスに用いたCFRPは優れれコンポジッ
ト特性、特に少なくとも100℃の耐熱性を有し、硬化
後の樹脂は適正な伸びまたは可撓性を示すので、LIS
Sが大きく、耐衝撃性に優れている。
(2) Although it can be cured at low temperatures, it retains excellent adhesion to carbon fibers, and the CFRP using the resin composition of the present invention as a matrix has excellent composite properties, especially heat resistance at at least 100°C. LIS
It has a large S and has excellent impact resistance.

(3)プリプレグに用いると樹脂の粘着性が低く可撓性
のある成形性、取扱性のよいプリプレグが得られる。
(3) When used in prepreg, a prepreg with low resin tackiness, flexibility, moldability, and ease of handling can be obtained.

という特徴を有しており、CFRP用樹脂組成物として
きわめて有用である。
This feature makes it extremely useful as a resin composition for CFRP.

しかも、トリグリシジル−m−アミンフェノールの添加
によりコンポジット物性とくにILSSの向上が顕著に
認められた。
Moreover, the addition of triglycidyl-m-amine phenol significantly improved the physical properties of the composite, especially the ILSS.

Cの添加量は(A+B)100重量部に対して6〜40
重量部の範囲が望ましい。
The amount of C added is 6 to 40 parts by weight per 100 parts by weight of (A+B).
A range of parts by weight is desirable.

Cの添加量が6重量部以下では硬化性改善効果が認めら
れないし、添加量が40重量部以上になるとCFRPの
耐水性が低下し釣竿等で実用上問題となるためCの添加
量は(A十B)100重量部に対して6〜40重量部の
範囲が望ましい。
If the amount of C added is less than 6 parts by weight, no effect on improving hardenability will be observed, and if the amount added is more than 40 parts by weight, the water resistance of CFRP will decrease, causing a practical problem in fishing rods, etc. Therefore, the amount of C added is ( The preferred range is 6 to 40 parts by weight per 100 parts by weight of A and B).

また硬化剤としてのジシアンジアミドは(A十B十〇)
1oo重量部に対して3〜9重量部、硬化促進剤は4〜
8重量部の範囲が望ましく、硬化促進剤としてはモノ(
またはジ)クロロフェニルト1−ジメチルウレアがもつ
とも適している。
Also, dicyandiamide as a hardening agent is (A0B10)
3 to 9 parts by weight per 10 parts by weight, 4 to 9 parts by weight of curing accelerator
The range of 8 parts by weight is desirable, and the curing accelerator is mono(
Alternatively, di)chlorophenylto-1-dimethylurea is also suitable.

なお、本発明を実施するに当っては本発明の目的を害し
ない範囲で、他のエポキシ樹脂、無水シリカ、熱可塑性
ポリマー等を添加してもさしつかえない。
In carrying out the present invention, other epoxy resins, anhydrous silica, thermoplastic polymers, etc. may be added as long as the purpose of the present invention is not impaired.

さらに本発明は炭素繊維の他にガラス繊維、有機繊維な
ど炭素繊維以外の他の補強繊維が含まれていてもさしつ
かえない。
Furthermore, in the present invention, reinforcing fibers other than carbon fibers such as glass fibers and organic fibers may be included in addition to carbon fibers.

また本発明に使用する炭素繊維はレーヨン系、ポリアク
リルニトリル系、ピッチ系など、いずれの炭素繊維であ
ってもさしつかえない。
Further, the carbon fiber used in the present invention may be any carbon fiber such as rayon-based, polyacrylonitrile-based, pitch-based, etc.

以下、実施例によって本発明の内容をさらに詳細に説明
する。
Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.

実施例 1 シェル化学■製EP−154を61部、EP−828/
EP〜1009(1:1混合物)を39部、住友化学工
業■製トリグリシジル−m−アミンフェノールELM−
120を11部加熱ソーグーに入れて十分攪拌混合した
後、ジシアンジアミド7部、ジクロロフェニル−1・1
−ジメチルウレア5部を添加して十分攪拌混合してプリ
プレグ用エポキシ樹脂組成物を得た。
Example 1 61 parts of EP-154 manufactured by Shell Chemical ■, EP-828/
39 parts of EP-1009 (1:1 mixture), triglycidyl-m-aminephenol ELM- manufactured by Sumitomo Chemical
11 parts of 120 were added to the heated Sogou, stirred and mixed thoroughly, and then 7 parts of dicyandiamide and dichlorophenyl-1.1 were added.
- 5 parts of dimethylurea was added and thoroughly stirred and mixed to obtain an epoxy resin composition for prepreg.

次にアクリルニ) IJル繊維を焼成して表面処理して
作られた炭素繊維゛トレカ”T−300を一方向に引揃
えた後、前記樹脂組成物に加熱溶融して含浸させて一方
向プリプレグを得た。
Next, the carbon fiber "Train Card" T-300 made by firing and surface-treating the acrylic resin IJ fiber was aligned in one direction, and then heated and melted and impregnated with the resin composition to form a unidirectional prepreg. I got it.

得られたプリプレグは適当な粘着性と可撓性を有してい
た。
The obtained prepreg had appropriate adhesiveness and flexibility.

また20℃で1.5ケ月保管した後のプリプレグの粘着
性や可撓性の変化も少なく、良好な貯蔵安定性を有して
いた。
Further, after being stored at 20°C for 1.5 months, there was little change in the adhesiveness or flexibility of the prepreg, and it had good storage stability.

実施例 2 実施例1で得られたプリプレグを長さ30へ巾20CI
rLに裁断したものを、繊維方向が同一方向になるよう
に積層してテトロンタックで包み、さらに2枚のテトロ
ンフィルム間に挿入して120℃に加熱されたプレスに
入れて7kg/caに加圧して60分硬化させた。
Example 2 The prepreg obtained in Example 1 was made into a length of 30 and a width of 20 CI.
The pieces cut into rL were laminated so that the fiber directions were in the same direction, wrapped with Tetron tack, and then inserted between two Tetron films and placed in a press heated to 120°C and heated to 7 kg/ca. It was pressed and cured for 60 minutes.

ついで130°Cのオーブン中に入れて2時間アフター
キュアーを行ない、完全硬化させて厚さ2mmのCFR
P板を得た。
Then, it was placed in an oven at 130°C for 2 hours of after-curing to completely cure the CFR to a thickness of 2 mm.
A P plate was obtained.

次に得られたCFRP板の曲げ強度ならびにILSSを
ASTM D−2344ならびにASTM D−7
90に準じて測定した。
Next, the bending strength and ILSS of the obtained CFRP board were measured according to ASTM D-2344 and ASTM D-7.
Measured according to 90.

得られ・た結果は表1に示したように優れたコンポジッ
ト物性と良好な耐熱性を有していた。
As shown in Table 1, the obtained composite had excellent physical properties and good heat resistance.

実施例 3 実施例1で得られたプリプレグを0°/±30゜ノ構成
テ、長さ1m20CrrLのテーパー付マンドレル(直
径は一端が8mmで他端は3mm)に積層した後離型剤
を塗布したテトロンフィルムを巻き、120℃のオーブ
ンに入れて60分間硬化させた後マンドレルから引抜き
、さらに130℃のオーブンに入れて2時間アフターキ
ュアーを行なって円筒形中空パイプを得た。
Example 3 The prepreg obtained in Example 1 was laminated on a tapered mandrel (diameter: 8 mm at one end and 3 mm at the other end) with a length of 1 m20 CrrL with a configuration of 0°/±30°, and then a release agent was applied. The resulting Tetron film was wound, placed in an oven at 120°C, cured for 60 minutes, pulled out from the mandrel, and placed in an oven at 130°C for after-curing for 2 hours to obtain a cylindrical hollow pipe.

得られた製品には曲りやクラック等の欠点のあるものは
1つもなく、すべて外観、強度とも良好であった。
None of the obtained products had defects such as bends or cracks, and all had good appearance and strength.

比較例 1 実施例1のエポキシ樹脂の代りに、EP−154を6,
1部、EP−828を19.5部、EP−1009を1
9.5部加熱ニーダ−に入れて十分攪拌混合した後、ジ
シアンジアミドを6.3部、ジクロロフェニル−1・1
−ジメチルウレアヲ4.5部用いた他は、実施例1と同
様の条件で一方向の炭素繊維プリプレグを作った。
Comparative Example 1 In place of the epoxy resin in Example 1, 6% of EP-154 was used.
1 copy, 19.5 copies of EP-828, 1 copy of EP-1009
After putting 9.5 parts into a heating kneader and thoroughly stirring and mixing, add 6.3 parts of dicyandiamide and 1.1 parts of dichlorophenyl.
- A unidirectional carbon fiber prepreg was produced under the same conditions as in Example 1, except that 4.5 parts of dimethyl urea was used.

得られたプリプレ′グの粘着性や可撓性は実施例1のプ
リプレグとほとんど差がなく、また20℃での貯蔵安定
性も1.5ケ月あり良好であった。
The adhesiveness and flexibility of the obtained prepreg were almost the same as those of Example 1, and the storage stability at 20° C. was good for 1.5 months.

しかし、DSCで硬化挙動を調べたところ、実施例1の
プリプレグの発熱ピーク温度が145℃、発熱開始温度
が114℃であるのに対して、比較例1のプリプレグの
発熱ピーク温度は153℃、発熱開始温度は125℃と
実施例10プリプレゲに比べて高温になっていた。
However, when the curing behavior was investigated by DSC, the exothermic peak temperature of the prepreg of Example 1 was 145°C and the exothermic start temperature was 114°C, whereas the exothermic peak temperature of the prepreg of Comparative Example 1 was 153°C, The exothermic start temperature was 125° C., which was higher than that of Example 10 Preprege.

そこで120℃〜150℃の範囲で温度を10℃ずつ変
更して60分間硬化させて60分で硬化する温度を求め
たところ140℃の硬化温度が必要なことが分った。
Therefore, by changing the temperature in 10°C increments within the range of 120°C to 150°C and curing for 60 minutes, we determined the temperature at which it would harden in 60 minutes, and found that a curing temperature of 140°C was required.

さらに完全硬化させるためには150℃で2時間アフタ
ーキュアーさせる必要があることが分つf為そこで実施
例2と同様にして厚さ2mmの一方向強化板を作り、物
性を測定した結果を表2に示した。
Furthermore, in order to completely cure it, it was found that it was necessary to carry out after-curing at 150°C for 2 hours.Therefore, a unidirectionally reinforced plate with a thickness of 2 mm was made in the same manner as in Example 2, and the results of measuring the physical properties are shown below. Shown in 2.

実施例2に比べて若干強度が低いほか、ILSSが特に
低かった。
In addition to being slightly lower in strength than Example 2, the ILSS was also particularly low.

比較例 2 シェル化学■製EP−154を100部とジシアンジア
ミド6、3 部、ジクロロフェニル−1・1−ジメチル
ウレア45部を加熱ニーグーに入れて十分攪拌混合して
エポキシ樹脂組成物を得たほかは、実施例1と同様にし
て一方向炭素繊維プリプレグを得た。
Comparative Example 2 An epoxy resin composition was obtained by adding 100 parts of EP-154 manufactured by Shell Chemical ■, 6.3 parts of dicyandiamide, and 45 parts of dichlorophenyl-1,1-dimethylurea to a heated niegu and stirring and mixing thoroughly. A unidirectional carbon fiber prepreg was obtained in the same manner as in Example 1.

得られたプリプレグの硬化性を調べたところ140°C
で60分硬化した後、1−50℃で2時間アフターキュ
アーが必要なことが分ったので硬化条件のみ上記の条件
にして他は実施例2と同様にして厚さ2mrnの一方向
強化板を作製した。
The curing properties of the obtained prepreg were investigated and found to be 140°C.
After curing for 60 minutes, it was found that after-curing for 2 hours at 1-50°C was required, so a unidirectional reinforced plate with a thickness of 2 mrn was made using the same curing conditions as in Example 2 except for the curing conditions above. was created.

得られたCFRP板の物性は表3に示したとおりで、コ
ンポジット物性、特にILSSが著しく低かった。
The physical properties of the obtained CFRP board are shown in Table 3, and the composite physical properties, especially ILSS, were extremely low.

なお得られたCFRP板のDSCによるT2は170℃
で良好な耐熱性を示した。
The T2 of the obtained CFRP board measured by DSC is 170°C.
It showed good heat resistance.

そこでEP−1,54を70部に減らし、代りに東しチ
オコール■製チオコールLP−3を30部添加し、ジシ
アンジアミド6.3部、ジクロロフェニル−1・1−ジ
メチルウレア4,5部を添加して十分攪拌混合した後1
40℃で1時間硬化させた後150℃で2時間アフター
キュアーさせて完全硬化物を得た。
Therefore, EP-1,54 was reduced to 70 parts, and 30 parts of Thiokol LP-3 manufactured by Toshi Thiokol ■ was added instead, and 6.3 parts of dicyandiamide and 4.5 parts of dichlorophenyl-1,1-dimethylurea were added. After stirring and mixing thoroughly,
After curing at 40°C for 1 hour, the product was after-cured at 150°C for 2 hours to obtain a completely cured product.

得られた硬化物のT3は1.05℃となり、著しく耐熱
性が低下した。
The T3 of the obtained cured product was 1.05°C, and the heat resistance was significantly lowered.

比較例 3 シェル化学■製エピコー)DX210ヲ100部とBF
3・MEA3部をメチルエチルケトンに溶解し、樹脂濃
度40重量%の樹脂溶液を得た。
Comparative Example 3 100 parts of Shell Chemical Co., Ltd. Epicor) DX210 and BF
Three parts of 3.MEA were dissolved in methyl ethyl ketone to obtain a resin solution with a resin concentration of 40% by weight.

次に゛トレカ”T−300を一方向に引揃えた後、前記
樹脂溶液を含浸させ、ついで120℃で3分間加熱乾燥
して一方向プリプレグを得た。
Next, the "Trading Card" T-300 was aligned in one direction, impregnated with the resin solution, and then heated and dried at 120° C. for 3 minutes to obtain a unidirectional prepreg.

得られたプリプレグは粘着性が少なくやや硬い感じのも
のであったが、室温での貯蔵安定性は2ケ月以上:あり
、良好であった。
The obtained prepreg had little tackiness and felt a little hard, but had good storage stability at room temperature for more than 2 months.

そこで実施例2と同様の方法で、硬化温度のみ170℃
×1時間+190℃×2時間に変更してCFRP板を作
製し、物性を測定した結果を表4に示した。
Therefore, using the same method as in Example 2, only the curing temperature was 170°C.
Table 4 shows the results of measuring the physical properties of a CFRP board produced by changing the temperature to x1 hour + 190°C x 2 hours.

実施例1に比べて強度ILSSとも著しく低かった。Compared to Example 1, the strength ILSS was also significantly lower.

また実施例3と同様の方法で、硬化温度を170℃に、
アフターキュア一温度を180℃に変更して円筒形中空
パイプを製作したところ、曲りが23%も発生した。
In addition, in the same manner as in Example 3, the curing temperature was set to 170°C.
When a cylindrical hollow pipe was manufactured by changing the after-cure temperature to 180°C, 23% of the bending occurred.

Claims (1)

【特許請求の範囲】 1 次の(A)、(B)、(C)および口を必須成分と
して含有してなる炭素繊維強化用樹脂組成物。 (A) フェノールノボラック型エポキシ樹脂(B)
ビスフェノールAジグリシジルエーテル型エポキシ
樹脂 (C)N−N−0−トリグリシジル−m−アミノフェノ
ール 低 ジシアンジアミドおよび硬化促進剤。
[Scope of Claims] 1. A carbon fiber reinforced resin composition comprising the following (A), (B), (C) and the following as essential components. (A) Phenol novolac type epoxy resin (B)
Bisphenol A diglycidyl ether type epoxy resin (C) N-N-0-triglycidyl-m-aminophenol dicyandiamide and curing accelerator.
JP14113278A 1978-11-17 1978-11-17 Epoxy resin composition for carbon fiber reinforcement Expired JPS5817535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14113278A JPS5817535B2 (en) 1978-11-17 1978-11-17 Epoxy resin composition for carbon fiber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14113278A JPS5817535B2 (en) 1978-11-17 1978-11-17 Epoxy resin composition for carbon fiber reinforcement

Publications (2)

Publication Number Publication Date
JPS5569616A JPS5569616A (en) 1980-05-26
JPS5817535B2 true JPS5817535B2 (en) 1983-04-07

Family

ID=15284902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14113278A Expired JPS5817535B2 (en) 1978-11-17 1978-11-17 Epoxy resin composition for carbon fiber reinforcement

Country Status (1)

Country Link
JP (1) JPS5817535B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167625A (en) * 1982-03-26 1983-10-03 Toho Rayon Co Ltd Prepreg
JPS58183723A (en) * 1982-04-21 1983-10-27 Toho Rayon Co Ltd Epoxy resin composition and prepreg
JPS59121020A (en) * 1982-12-28 1984-07-12 Ricoh Co Ltd Zoom lens
DE3689783T2 (en) * 1985-09-27 1994-08-25 Sumitomo Chemical Co Low viscosity epoxy resin, this resin-containing composition and fiber-containing composite based on this hardened composition.
JPH0610249B2 (en) * 1986-06-30 1994-02-09 三菱レイヨン株式会社 Epoxy resin composition
JPH0751616B2 (en) * 1987-06-05 1995-06-05 三菱レイヨン株式会社 Epoxy resin composition
JPH0751615B2 (en) * 1987-06-05 1995-06-05 三菱レイヨン株式会社 Epoxy resin composition
US5955184A (en) * 1995-09-29 1999-09-21 Toshiba Chemical Corporation Halogen-free flame-retardant epoxy resin composition as well as prepreg and laminate containing the same
US6214455B1 (en) 1995-09-29 2001-04-10 Toshiba Chemical Corporation Bisphenol A and novolak epoxy resins with nitrogen-containing phenolic resin

Also Published As

Publication number Publication date
JPS5569616A (en) 1980-05-26

Similar Documents

Publication Publication Date Title
KR0166977B1 (en) Epoxy resin composition for fiber reinforced plastic
US4714648A (en) Prepregs and method for production thereof
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JPS5817535B2 (en) Epoxy resin composition for carbon fiber reinforcement
JPH0639519B2 (en) Epoxy resin composition and prepreg
JP2017066218A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH06166765A (en) Prepreg
JPS6143616A (en) Epoxy resin composition
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JPH01201321A (en) Matrix resin composition
JPS62177016A (en) Epoxy resin composition
JPH072975A (en) Epoxy resin composition and prepreg
JPS59174616A (en) Epoxy resin composition and prepreg
JP7550138B2 (en) Improvements in or relating to hardeners
JP3342710B2 (en) Epoxy resin composition and prepreg for composite material therefrom
JP3349556B2 (en) Epoxy resin composition and prepreg
JP2009013254A5 (en)
JPH0440378B2 (en)
JPS63221139A (en) Prepreg and its production
JPH069802A (en) Prepreg
JP3342709B2 (en) Epoxy resin composition and prepreg therefrom
JPS6133853B2 (en)
JPS6140687B2 (en)
JP2019116545A (en) Method for curing epoxy resin composition
JPS6058420A (en) Epoxy resin composition for carbon fiber reinforcement