JPS58174821A - Device for measuring temperature of lower surface of steel in heating furnace - Google Patents
Device for measuring temperature of lower surface of steel in heating furnaceInfo
- Publication number
- JPS58174821A JPS58174821A JP57057979A JP5797982A JPS58174821A JP S58174821 A JPS58174821 A JP S58174821A JP 57057979 A JP57057979 A JP 57057979A JP 5797982 A JP5797982 A JP 5797982A JP S58174821 A JPS58174821 A JP S58174821A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- optical fibers
- heating furnace
- radiation
- place
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/061—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0044—Furnaces, ovens, kilns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/041—Mountings in enclosures or in a particular environment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0818—Waveguides
- G01J5/0821—Optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は加熱炉における炉内鋼材下面の温度測定装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring device for the lower surface of a steel material in a heating furnace.
従来の加熱炉内における鋼材の温度は、炉壁土部に設置
した放射温度計により鋼材の上面のみを測定していた。In the conventional heating furnace, the temperature of the steel material was measured only on the upper surface of the steel material using a radiation thermometer installed in the furnace wall soil.
しかしながら、スキド・マーク等による温度分布はむし
ろ下5部の方が大きい、このため下部の温度を知ること
は熱間圧延において重要々ものである。However, the temperature distribution due to skid marks and the like is rather larger in the lower part, so knowing the temperature in the lower part is important in hot rolling.
しかるに、現在はその測定手段がなく、本発明において
、光ファイバーを利用することにょシ、好結果が得られ
ることを見出し、本発明として提案したものである。However, there is currently no means for measuring this, and in the present invention, we have discovered that good results can be obtained by using optical fibers, and have proposed the present invention.
本発明の構成を図面に示す実施例に基き詳細に説明する
と、加熱炉の炉壁1に穿孔した測定口2から冷却筒3を
挿入し、冷却筒3内に設置した2個の光ファイバー4,
4′を用いて鋼材5の下面を測定するようになっている
。The structure of the present invention will be explained in detail based on the embodiment shown in the drawings.A cooling tube 3 is inserted through a measurement port 2 drilled in a furnace wall 1 of a heating furnace, and two optical fibers 4,
4' is used to measure the lower surface of the steel material 5.
冷却筒3は第1,2図に示すように外筒6と内筒7とか
ら構成され、内外筒7,6の先端間を先端蓋8で密閉し
、後端は内筒7を長く形成して内外筒7,6間を後端蓋
9で密閉している。そして、内筒7の先端は、シール材
10を介して内筒蓋11により密閉している。又、外筒
6の後端には冷却水排出口12を設け、後端蓋9から冷
却水導入管13を冷却筒3の先端近傍まで挿入して内外
筒7゜6間に冷却水路14を形成する。又、内外筒7゜
6の上面に位置した2個所には放射光導入孔15゜15
′を連通ずるように設け、両数射光導入孔15゜15′
の冷却水路14に位置した個所は筒体16を内外筒7,
6間に固定することにより夫々冷却水路14の一部を連
間し、冷却水を漏洩させ々いように構成している。As shown in FIGS. 1 and 2, the cooling cylinder 3 is composed of an outer cylinder 6 and an inner cylinder 7. The tips of the inner and outer cylinders 7 and 6 are sealed with a tip lid 8, and the inner cylinder 7 is formed long at the rear end. The space between the inner and outer cylinders 7 and 6 is sealed with a rear end cover 9. The tip of the inner cylinder 7 is hermetically sealed with an inner cylinder lid 11 via a sealing material 10. Further, a cooling water outlet 12 is provided at the rear end of the outer cylinder 6, and a cooling water inlet pipe 13 is inserted from the rear end cover 9 to near the tip of the cooling cylinder 3 to form a cooling water channel 14 between the inner and outer cylinders 7°6. Form. In addition, there are synchrotron radiation introduction holes 15°15 at two locations located on the top surface of the inner and outer cylinders 7°6.
' are provided so as to communicate with each other, and both beam introduction holes 15° and 15'
At the location located in the cooling water channel 14, the cylindrical body 16 is connected to the inner and outer cylinders 7,
By fixing between the cooling water channels 6 and 6, a part of the cooling water channel 14 is connected to each other, and the cooling water is configured to be prevented from leaking.
又、内筒7内には第2,3図に示すように断面半円形を
した光フアイバー固定具17を挿入固定している。光フ
アイバー固定具17は先端に半円形の固定板18を設け
、この固定板18に複数のネジ孔19.19を設けて前
記内筒蓋11にボルト (図示省略)で着脱自在に固定
する。又、光フアイバー固定具17の後端は外周に取伺
片2oを突設し、との取伺片20にも複数個のネジ孔2
1゜・・・・・・・・・を設けて内筒7の後端に設けた
フランジ22にボルト(図示省略)で着脱自在に固定す
る。又、光フアイバー固定具17に対向する上面2個所
に夫々取付片23 、23’を水平に固定し、L字形に
形成した光ファイバー4,4′を固定した支持板24
、24’を夫・々固定し、光ファイバー4,4′の先端
を前記両数射光導入孔] 5 、 ] 5’の下方に位
置させている。Further, an optical fiber fixture 17 having a semicircular cross section is inserted and fixed into the inner tube 7 as shown in FIGS. 2 and 3. The optical fiber fixing device 17 is provided with a semicircular fixing plate 18 at its tip, a plurality of screw holes 19 and 19 are provided in the fixing plate 18, and the fixing plate 17 is removably fixed to the inner cylinder lid 11 with bolts (not shown). Further, the rear end of the optical fiber fixture 17 has a protruding piece 2o protruding from the outer periphery, and the protruding piece 20 also has a plurality of screw holes 2.
It is removably fixed to a flange 22 provided at the rear end of the inner cylinder 7 with a bolt (not shown) with a 1° angle. In addition, mounting pieces 23 and 23' are fixed horizontally to two locations on the upper surface facing the optical fiber fixture 17, respectively, and a supporting plate 24 has L-shaped optical fibers 4 and 4' fixed thereto.
.
光ファイバー4,4′の夫々先端にはレンズ26を設け
ており、後端は前記内筒7のフラン/22に連結した保
護ケース27(第1,4図参照)内に活着し、保護ケー
ス27内に設置した放射温度計28 、28’に夫々接
続している。A lens 26 is provided at the tip of each of the optical fibers 4, 4', and the rear end is attached to a protective case 27 (see FIGS. 1 and 4) connected to the flange/22 of the inner tube 7. They are respectively connected to radiation thermometers 28 and 28' installed inside.
前記保護ケース27と内筒7の後端部は支持脚29 、
29’を介して台車3oで支持され、台車3゜は炉外に
設置したレール3,1上を走行できるようになっている
。The protective case 27 and the rear end of the inner cylinder 7 are provided with support legs 29,
It is supported by a trolley 3o via 29', and the trolley 3° can run on rails 3 and 1 installed outside the furnace.
尚、第1図中320ま内筒7に設けたN2ガス導入管で
ある。Note that 320 in FIG. 1 is the N2 gas introduction pipe provided in the inner cylinder 7.
本実施例は前記のように構成したもので、台車30をレ
ール31の案内で移動させ、測定口2から冷却筒3を装
入し、炉内にある調料5の所定場所に位置させる。そし
て、鋼材5下面のスキッドマークのある位置と、スキッ
ドマークの中間位置に両光ファイバー4,4′測定部を
位置させ、鋼材下面からの放射光を両数射光導入孔15
、15’から受光し、最小値水準と最大値水準とを放
射温度計28 、28’で測定し、図示を省略した表示
記録装置に測定値を記録する。The present embodiment is constructed as described above, and the trolley 30 is moved by the guide of the rails 31, the cooling cylinder 3 is inserted through the measurement port 2, and is positioned at a predetermined location of the preparation 5 in the furnace. Then, both the optical fibers 4 and 4' measurement parts are positioned at the position where the skid mark is located on the lower surface of the steel material 5 and the intermediate position between the skid marks, and the emitted light from the lower surface of the steel material is transmitted to the two radiation light introduction holes 15.
, 15', and measure the minimum value level and maximum value level with radiation thermometers 28 and 28', and record the measured values on a display/recording device (not shown).
一方、冷却水導入管13からは冷却水を導入して冷却水
通路14内に冷却水を通し、冷却水排出口12から排出
させる冷却水の循環により光ファイバー4,4′を加熱
炉の高温の影響を受け々いようにする。又、N、ガス導
入管からN2ガスを内筒7内に導入し、放射光導入孔1
5 、15’から排出させて落下物が放射光導入孔15
、15’か・ら進入するのを防止している。On the other hand, cooling water is introduced from the cooling water inlet pipe 13, passes through the cooling water passage 14, and is discharged from the cooling water outlet 12. By circulating the cooling water, the optical fibers 4, 4' are connected to the high temperature of the heating furnace. Avoid being influenced. In addition, N2 gas is introduced into the inner cylinder 7 from the N gas introduction pipe, and the synchrotron radiation introduction hole 1 is
5, the falling objects are discharged from the synchrotron radiation introduction hole 15'.
, 15'.
尚、前記実施例においては2個の光ファイバーを夫々放
射温度計28 、28’に接続するように説明しだが、
1個の放射温度計に接続し、スイッチにより順次切換え
るようにしてもよいものである。In the above embodiment, two optical fibers are connected to the radiation thermometers 28 and 28', respectively.
It may be connected to one radiation thermometer and switched sequentially using a switch.
このような切換え手段を設ければ、光ファイバーは2個
ではなく、多数用いることができ、多数点の温度を監視
することができる。If such a switching means is provided, a large number of optical fibers can be used instead of two, and temperatures at multiple points can be monitored.
又、1個の光ファイバーを用い、台車30により冷却筒
3を走行さ・せるこ七により鋼材下面の温度分布を測定
することもできるものである。It is also possible to measure the temperature distribution on the lower surface of the steel material by using one optical fiber and running the cooling cylinder 3 with the trolley 30.
又、放射光導入孔15 、15’及び光ファイバー4.
4′を夫々垂直ではなくやや傾斜させて設ければ、落下
物の進入を防止及び冷却筒3の挿入長さを短縮すること
ができる。Furthermore, the synchrotron radiation introduction holes 15 and 15' and the optical fiber 4.
If the cooling tubes 4' are provided not vertically but slightly inclined, it is possible to prevent falling objects from entering and shorten the insertion length of the cooling cylinder 3.
本発明は前記のような構成、作用を有するから落下物2
等の外乱の影響を受けにくく、鋼材下面の温度を安定し
た状態で測定することができる。Since the present invention has the above-described configuration and operation, it is possible to prevent falling objects 2.
It is not easily affected by external disturbances such as, and can measure the temperature of the lower surface of the steel material in a stable state.
また、鋼材の温度分布測定に好結果を得るものである。Moreover, good results can be obtained in measuring the temperature distribution of steel materials.
図は本発明に係る加熱炉における炉内鋼材下面の温度測
定装置の一実施例を示すもので、第1図は縦断面図、第
2図は要部の拡大断面図、第3図は光ファイバーの固定
手段を示す斜視図、第4図は保護ケースの断面図である
。
尚、図中3は冷却筒、14は通路、15は放射光導入孔
である。
特許出願人 川崎製鉄株式会社The figures show an embodiment of the temperature measuring device for the lower surface of the steel material in a heating furnace according to the present invention. FIG. 4 is a perspective view showing the fixing means, and FIG. 4 is a sectional view of the protective case. In the figure, 3 is a cooling cylinder, 14 is a passage, and 15 is a synchrotron radiation introduction hole. Patent applicant: Kawasaki Steel Corporation
Claims (1)
ことを特徴とする加熱炉における炉内鋼材下面の温度測
定装置。A device for measuring the temperature of the lower surface of a steel material in a heating furnace, characterized in that a cooling passage is provided in the inner cylinder of a double cooling cylinder provided on the outer periphery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57057979A JPS58174821A (en) | 1982-04-08 | 1982-04-08 | Device for measuring temperature of lower surface of steel in heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57057979A JPS58174821A (en) | 1982-04-08 | 1982-04-08 | Device for measuring temperature of lower surface of steel in heating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58174821A true JPS58174821A (en) | 1983-10-13 |
Family
ID=13071121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57057979A Pending JPS58174821A (en) | 1982-04-08 | 1982-04-08 | Device for measuring temperature of lower surface of steel in heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58174821A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0173548A2 (en) * | 1984-08-22 | 1986-03-05 | ROLLS-ROYCE plc | Radiation probe and method of use |
JPH03125051U (en) * | 1990-03-29 | 1991-12-18 | ||
JPH06174552A (en) * | 1992-12-07 | 1994-06-24 | Nkk Corp | Measuring apparatus for temperature of steel plate between stands of continuous hot press roll |
JP2005315510A (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Metal Ind Ltd | Heating furnace, thermometer, and furnace temperature control method |
CN100422705C (en) * | 2006-01-18 | 2008-10-01 | 宝山钢铁股份有限公司 | Method and device for detecting temperature on inner wall of steel tube not contacted |
JP2017533409A (en) * | 2014-08-26 | 2017-11-09 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | Sealing system for optical sensors in gas turbine engines |
-
1982
- 1982-04-08 JP JP57057979A patent/JPS58174821A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0173548A2 (en) * | 1984-08-22 | 1986-03-05 | ROLLS-ROYCE plc | Radiation probe and method of use |
JPH03125051U (en) * | 1990-03-29 | 1991-12-18 | ||
JPH06174552A (en) * | 1992-12-07 | 1994-06-24 | Nkk Corp | Measuring apparatus for temperature of steel plate between stands of continuous hot press roll |
JP2005315510A (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Metal Ind Ltd | Heating furnace, thermometer, and furnace temperature control method |
JP4552497B2 (en) * | 2004-04-28 | 2010-09-29 | 住友金属工業株式会社 | Heating furnace, thermometer and furnace temperature control method |
CN100422705C (en) * | 2006-01-18 | 2008-10-01 | 宝山钢铁股份有限公司 | Method and device for detecting temperature on inner wall of steel tube not contacted |
JP2017533409A (en) * | 2014-08-26 | 2017-11-09 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | Sealing system for optical sensors in gas turbine engines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES8102265A1 (en) | Cryostat for photon detector and its use in a borehole logging tool. | |
RU2664517C2 (en) | Gas sampling probe and method for operating gas-sampling probe | |
GB1462509A (en) | Photometric instruments | |
JPS58174821A (en) | Device for measuring temperature of lower surface of steel in heating furnace | |
US4452538A (en) | Apparatus for measuring the temperature distribution along the inside walls of narrow, shaft-shaped spaces | |
US3577784A (en) | Method and apparatus for measuring coke oven flue wall temperatures | |
US2366285A (en) | Surface temperature pyrometer | |
SK49799A3 (en) | Measurement device for determining boron concentration | |
IE46449B1 (en) | Absorption spectrophotometry | |
JPS62291521A (en) | Spectral analyzer for converter or other vessel or furnace filled with molten metal | |
Lu et al. | Measurement of transient temperature field within a falling droplet | |
US2831340A (en) | Self-calibrating dilatometer for high temperature use | |
CA1204607A (en) | Gas temperature monitoring device | |
JPH0219754A (en) | Method and apparatus for heat conductivity test of non-plane heat insulating material | |
US3413852A (en) | Radiometer and oxygen lance combination | |
KR20180085703A (en) | Energy detector core protection apparatus and inspection module for liquid crystal display optical alignment apparatus | |
JPH0429987B2 (en) | ||
JPS5673317A (en) | Thermal-type flow meter | |
GB2251680A (en) | Temperature controlled enclosure for a viscoelasticity measuring device | |
JPS63182528A (en) | Ultraviolet illuminance measuring device for ultraviolet irradiator for optical fiber drawing equipment | |
JPS57200827A (en) | Temperature measuring method of combustion chamber in coke oven | |
JP3339233B2 (en) | Ultra high temperature material testing machine | |
JPS6211317B2 (en) | ||
HU192802B (en) | Heat protector structure to devices measuring wall thicknaess of tubes | |
JPH04120429A (en) | Rotating blade vibration measurement device |