[go: up one dir, main page]

JPS58173631A - Preparation of foamed product of hard thermoplastic resin - Google Patents

Preparation of foamed product of hard thermoplastic resin

Info

Publication number
JPS58173631A
JPS58173631A JP57055985A JP5598582A JPS58173631A JP S58173631 A JPS58173631 A JP S58173631A JP 57055985 A JP57055985 A JP 57055985A JP 5598582 A JP5598582 A JP 5598582A JP S58173631 A JPS58173631 A JP S58173631A
Authority
JP
Japan
Prior art keywords
foam
volume
resin
gas
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57055985A
Other languages
Japanese (ja)
Inventor
Takao Kadota
廉田 孝雄
Masayuki Hashimoto
公志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57055985A priority Critical patent/JPS58173631A/en
Publication of JPS58173631A publication Critical patent/JPS58173631A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3403Foaming under special conditions, e.g. in sub-atmospheric pressure, in or on a liquid

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To improve the flexibility, sound insulation and heat insulating capacity, etc. of a foamed product of hard thermoplastic resin by such an arrangement wherein a resin for forming a foamed product of hard thermoplastic resin is caused to foam in a gas of which gas permeability is larger than air, or in a liquid containing such a gas under specific conditions, and after that the foamed product is caused to shrink. CONSTITUTION:A plate of hard thermoplastic resin, sheetlike foaming substance, or a resin for foamed product is heated and caused to foam in a gas of which gas permeability is larger than air, or in a liquid containing such a gas up to more than 1.4 times larger than initial foaming volume and less than 15kg/m<3> of volume density. Next, the foamed resin is caused to shrink into a volume less than 60% of its foaming volume and then it is cured in a drying chamber at a temperature higher than 40 deg.C and lower than the softening temperature of the resin and then caused to expand more than 1.4 times larger the foamed volume at the time of shrinkage and a foamed product of which density is 3-17kg/m<3> is thus obtained. This foamed product has many creases, each of which has one end in a boundary area to be generated by more than 3 adjoining air bubbles and extends in the direction of the central part of an air bubble membrane.

Description

【発明の詳細な説明】 本発明は、超低密度で、柔軟性に富み、遮音性能が高く
且つ、高い断熱性能を有する硬質熱可塑性樹脂で出来た
板状或いはシート状発泡体或いは発泡成形体(以下総じ
て発泡体という)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a plate-like or sheet-like foam or foam molded product made of a hard thermoplastic resin that has ultra-low density, high flexibility, high sound insulation performance, and high heat insulation performance. (hereinafter collectively referred to as foam).

従来、硬質熱可塑性樹脂の発泡体は、その低熱伝導性、
低吸水性、軽量性、加工性等の特性により、一般住居を
始めとする建築物の断熱材として大いに利用されていミ
。しかし、柔軟性に劣るため、例えば建築物の間柱間へ
の充填を行なうには、予め間柱間隔に合わせて裁断し、
特殊金具で固定する必要があり、実際には間柱間隔のバ
ラツキを吸収出来ず、作業性が著しく劣るとともに、気
密な断熱構造が得られていない。また、気密に充填しよ
うとすると、硬質のため、多大な力を必要とし、その結
果気泡が破壊する。更に、発泡体の破断をも生じ、気密
な断熱構造が得られていない。
Traditionally, rigid thermoplastic foams have been used due to their low thermal conductivity,
Due to its characteristics such as low water absorption, light weight, and workability, it is widely used as a heat insulating material for buildings such as general residences. However, because it is less flexible, for example, in order to fill between the studs of a building, it is necessary to cut it in advance to match the stud spacing.
It is necessary to fix it with special metal fittings, and in reality it cannot absorb variations in the spacing between the studs, resulting in extremely poor workability and an airtight insulation structure cannot be obtained. Furthermore, if an attempt is made to fill the material airtight, a great deal of force is required due to its hardness, resulting in the destruction of the bubbles. Furthermore, the foam also breaks, making it impossible to obtain an airtight heat-insulating structure.

一方、昨今の住宅等建築物の高層化に伴ない、特に集合
住宅等の建築物に於いて、上下階の蔽音性が要求される
様になって来ている。この問題を解決する為に、最近、
浮床工法と称し、無機質繊維板を原基体上に配し、その
上に防水層を介してコンクリートモルタルを打設する方
法がとられている。これは、無機質繊維板の柔軟性を利
用し、上下階間の固体伝播音を少なくし、遮音性を高め
ることが出来るものである。この用途に於いても従来の
硬質熱可塑性樹脂の発泡体は、その硬質性の為に充分な
遮音性を得ることが出来ないものである。
On the other hand, as buildings such as residences have become taller in recent years, sound shielding properties between upper and lower floors have come to be required, especially in buildings such as apartment complexes. Recently, in order to solve this problem,
This method, called the floating floor construction method, involves placing inorganic fiberboard on the base material and pouring concrete mortar on top of it with a waterproof layer in between. This utilizes the flexibility of inorganic fiberboard to reduce solid-borne sound between the upper and lower floors and improve sound insulation. Even in this application, conventional rigid thermoplastic resin foams cannot provide sufficient sound insulation due to their rigidity.

最近、上記しだこれらの問題を解決するために、例えば
、低密度化したポリスチレン発泡体を機械的に柔軟化し
て得られる発泡体があるが、この場合密度が20’KP
/m3未満になると、機械的柔軟化のために気泡を構成
する樹脂膜が破壊し、いわゆる連通現象を起こしてしま
う。また、たとえ発泡体の表面層の比較的肉厚のある部
分で気泡の破壊を押え、一般的測定法による吸水率から
見る、見掛上の独立気泡率を保ち得たとしても、発泡体
内部の、表面層に比較して薄い膜で構成されている熱性
能の維持という面ではるかに劣った発泡体と力ってしま
う一般に本発明でいう測定方法による独立気泡率で50
%以上の値を有していない発泡体は断熱材として適用し
がたいものである。
Recently, in order to solve these problems mentioned above, there are foams obtained by mechanically softening low-density polystyrene foam, but in this case, the density is 20'KP.
If it is less than /m3, the resin film constituting the bubbles will be destroyed due to mechanical flexibility, resulting in a so-called communication phenomenon. Furthermore, even if the relatively thick surface layer of the foam suppresses the destruction of the bubbles and maintains the apparent closed cell ratio as seen from the water absorption rate using a general measurement method, the inside of the foam The foam is composed of a thinner film than the surface layer, and is far inferior in terms of maintaining thermal performance.In general, the closed cell ratio according to the measurement method used in the present invention is 50.
% or more is difficult to use as a heat insulating material.

更に機械的に柔軟化した場合は、発泡体全体として柔軟
化されているものであって、ミクロ的に見ると、発泡体
の気泡に柔軟化された部分と、されてない部分とがあり
、その物性は発泡体の厚み方向、或いは平面方向に不均
一なものとなってしまう。
Furthermore, when it is mechanically softened, the foam as a whole is softened, and when viewed microscopically, there are parts of the foam that have been softened and parts that have not. The physical properties become non-uniform in the thickness direction or in the planar direction of the foam.

一方、発泡剤を含有する発泡性粒子を、数回に分けて発
泡させ、更に型内で発泡させて板状体、或いは成形体と
して断熱材、緩衝材、または遮音材として使用されてい
るものがある。しかし、この物の様に粒子自体を発泡回
数を増やして低密度(高発泡)にした発泡体は、粒子自
体が大きくなり、成形体とする場合に気密充填が出来に
くく、粒子間の融着か弱い発泡体となってしまう。また
、融着を強くしようとすると、成形体とする時に、圧縮
充填及び圧縮成形を行なう必要があり、この様にして出
来た発泡体は、その発泡体に本発明でいうしわの存在が
認められず、柔軟性、遮音性に欠けるものとなってしま
うため、その低密度化には限界があり、実用上耐え得る
発泡体の密度は17に9 / m3以上のものでしかな
い。
On the other hand, foamable particles containing a foaming agent are foamed in several batches and then foamed in a mold to form a plate or molded product that is used as a heat insulating material, a cushioning material, or a sound insulating material. There is. However, in foams like this one, in which the particles themselves are made to have a low density (highly foamed) by increasing the number of times they are foamed, the particles themselves become large, making it difficult to airtightly fill them when molded, and the fusion between the particles increases. This results in a weak foam. In addition, in order to strengthen the fusion bond, it is necessary to perform compression filling and compression molding when making a molded product, and the foam made in this way has the presence of wrinkles as defined in the present invention. However, there is a limit to how low the density can be made, and the density of a foam that can withstand practical use is only 17:9/m3 or higher.

しかるに市場においては、低密度で柔軟性に富み、断熱
性能を有し、且つ遮音性のある硬質熱可塑性樹脂の発泡
体を得る事は長年に亘る強い要求である。
However, in the market, there has been a strong demand for many years to obtain a rigid thermoplastic resin foam that is low in density, highly flexible, has heat insulating properties, and has sound insulating properties.

本発明は、この様な現状に鑑みて研究の結果成されたも
ので、各種気体の樹脂に対する透過性、及び透過性の温
度依存性と軟化温度とを組み合わせて、超低密度で且つ
、柔軟性に富み、本発明でいう気泡膜のしわの存在によ
り、遮音性に優れた、硬質熱可塑性樹脂の断熱性を有す
る発泡体を得る方法を発明するに至ったものである。
The present invention was achieved as a result of research in view of the current situation, and combines the permeability of various gases to resin, the temperature dependence of permeability, and softening temperature to create an ultra-low density and flexible resin. The present invention has led to the invention of a method for obtaining a foam having the heat insulating properties of a hard thermoplastic resin, which has excellent sound insulation properties due to the presence of wrinkles in the cellular membrane as used in the present invention.

即ち、本発明は、硬質熱可塑性樹脂の板状、或いはシー
ト状発泡体或いは発泡成形体の該樹脂に対し空気よりガ
ス透過度の大きい気体或いは、該気体が存在する液体中
にて、初期発泡体体積の1.4倍以上で且つ、嵩密度1
5Ky/m3以下に加熱発泡させ、次いで該加熱発泡体
体積の60%以下に収縮させ、更に雰囲気温度(T)が
、40’C≦(T)≦樹脂の軟化温度、の乾燥室内で熟
成し、収縮特発泡体体積の1.4倍以上に膨張させ、密
度(D)が3 Ky / m3≦(D)≦17Ky/m
3で気泡構造において、少なくとも6つの気泡が隣接し
て生じる境界部分に一端を有し、気泡膜の中央部分に向
って延びる多数のしわを有し、且つ独立気泡率50%以
上の、板状或いはシート状発泡体或いは発泡成形体を得
る事を特徴とする発泡体の製造方法である。
That is, the present invention provides initial foaming in a gas having a higher gas permeability than air for a plate-like or sheet-like foamed body or a foam molded body of a hard thermoplastic resin, or in a liquid in which the gas is present. 1.4 times or more body volume and bulk density 1
It is heated and foamed to 5Ky/m3 or less, then shrunk to 60% or less of the volume of the heated foam, and further aged in a drying room where the ambient temperature (T) is 40'C≦(T)≦the softening temperature of the resin. , expanded to 1.4 times or more the volume of the shrinkable special foam, and the density (D) is 3 Ky/m3≦(D)≦17 Ky/m
3. In the cell structure, the cell membrane has one end at the boundary where at least six cells are formed adjacent to each other, has many wrinkles extending toward the center of the cell membrane, and has a closed cell ratio of 50% or more, and is plate-shaped. Alternatively, it is a method for producing a foam, which is characterized in that a sheet-like foam or a foam molded product is obtained.

史に図面を混じえながら本発明の内容について詳述する
The contents of the present invention will be explained in detail with reference to the history and drawings.

捷ず、本発明においては、工業的には、前段の発泡は1
段階でやるのが望ましい。そのためには出発原料として
の発泡体は200 Ky 7m3以下のものを選ぶこと
が望ましく、100 K、Sl 7m3以下であった場
合には更に能率よく、かつ、良質の発泡体を得ることが
できるものである。
In the present invention, industrially, the foaming in the first stage is
It is preferable to do it in stages. For this purpose, it is desirable to select a foam as a starting material of 200 Ky, 7 m3 or less, and if it is 100 K, Sl 7 m3 or less, it is possible to obtain a foam with higher efficiency and better quality. It is.

次に本発明においては硬質熱可塑性樹脂の発泡体を、ま
ず該樹脂(で対して空気よりガス透過度の大きい気体及
び或いは該気体が存在する液体中にて加熱発泡する必要
がある。この理由は、該樹脂に対して空気より透過度の
小さい気体や該気体が存在する液体中では、長時間加熱
しても発泡体密度は、はとんど低下せず、場合によって
は発泡体中に存在する空気や発泡剤が逸散し返って収縮
してしまうことがある。例えば、第1図は加熱温度を9
5℃に統一して、スチレンに対する透過度の違う、F−
11(フレオン−11)、空気、He1水蒸気、及び気
体の存在する液体として温水(水蒸気を有する)、の6
種類の加熱雰囲気中で、初期密度26に’il/m3、
幅、長さ、厚み、が各々、400龍、700mm、15
+nmのポリスチレン押出発泡板を加熱した場合の、最
終発泡体密度のグラフである。このグラフによると、H
e 、水蒸気、温水、の場合は、発泡体の密度低下が起
きているが、空気中及びF−11中では、かえって発泡
体密度は一ヒ昇してしまっていることがわかる。
Next, in the present invention, it is necessary to heat and foam the rigid thermoplastic resin foam in a gas having a higher gas permeability than air and/or a liquid containing the gas. In gases that have lower permeability than air for the resin, or in liquids containing such gases, the foam density will not decrease even if heated for a long time, and in some cases, the foam density will not decrease even if heated for a long time. Existing air and foaming agent may escape back and cause shrinkage.For example, Figure 1 shows heating temperature of 9.
F- with different permeability to styrene, unified at 5℃
11 (Freon-11), air, He1 water vapor, and hot water (with water vapor) as a liquid in the presence of gas, 6
In a heated atmosphere of
The width, length, and thickness are 400 mm, 700 mm, and 15 mm, respectively.
Figure 2 is a graph of final foam density when heating +nm polystyrene extruded foam board. According to this graph, H
It can be seen that in the case of e, steam, and hot water, the density of the foam decreased, but in air and F-11, the density of the foam increased.

また、たとえ初期発泡体内圧空気より透過度の小さい気
体で満たされた発泡体を、該気体より透過度が大きく、
且つ空気以下の透過度を持つ気体(例えば空気)雰囲気
中で加熱する場合が考えられるが、この場合は、該発泡
体は速度は遅いが膨張する。しかし、加熱発泡後、一旦
収縮させる段階において、収縮量が少なく、本発明方法
によって得られる発泡体には到達し得ない。これは、収
縮時は、発泡体内には空気以下の透過度を持つ気体しか
存在しないため、収縮量は、加熱による発泡体内の気体
の膨張分以下しか有り得ないためである。
Furthermore, even if the foam is filled with a gas having a lower permeability than the air under pressure inside the initial foam, if the permeability is higher than that gas,
In addition, the foam may be heated in an atmosphere of a gas (for example, air) having a permeability lower than that of air; in this case, the foam expands at a slow rate. However, at the stage of once shrinking after heating and foaming, the amount of shrinkage is so small that it cannot reach the foam obtained by the method of the present invention. This is because at the time of contraction, only gas having a permeability lower than that of air exists in the foam, so that the amount of contraction can only be equal to or less than the expansion of the gas in the foam due to heating.

以上の事からも本発明方法は、発泡体を構成する樹脂に
対し空気より透過度の大きい気体及び或いは、該気体の
存在する液体中にて加熱発泡させる事が必要であること
がわかる。空気より透過度の大きい気体とは、相手の樹
脂の種類によっても多少異なるが一般的には水蒸気、H
e XCO2、cH3cρ、cH2cQ2.、”2H5
C1等がある。またこれらノfi体が存在する液体とは
、例えば、温水、アルコール、グリセリン等があるが、
これらのうちでも、加熱媒体として好ましくは、水蒸気
或いは温水(水蒸気を有する)雰囲気中が良い。
From the above, it can be seen that the method of the present invention requires heating and foaming the resin constituting the foam in a gas having a higher permeability than air and/or in a liquid containing the gas. Gases with higher permeability than air vary somewhat depending on the type of resin, but generally water vapor, H
e XCO2, cH3cρ, cH2cQ2. ,”2H5
There are C1 etc. Liquids in which these nofi bodies exist include, for example, warm water, alcohol, glycerin, etc.
Among these, the heating medium is preferably water vapor or a hot water (containing water vapor) atmosphere.

次に上記雰囲気中で、嵩密度15に51/m3以下で且
つ、初期発泡体体積の1.4倍以上に加熱発泡させる事
が必要である。(ここで加熱発泡した時の発泡体体積及
び嵩密度の測定方法は別記する。)この理由は、密度1
5Ky/m3を越える場合は、いくら初期密度に対する
発泡倍率を大きくしても、まだ密度が15Kp/m3以
下であっても、初期発泡体体積の1.4倍未満の場合、
即ち体積としての増加率が40%未満の場合は、本発明
でいうしわの存在がほとんど得られないものである。
Next, it is necessary to heat and foam the foam in the above-mentioned atmosphere to a bulk density of 15 to 51/m3 or less and at least 1.4 times the initial foam volume. (Methods for measuring foam volume and bulk density when heated and foamed are described separately.) The reason for this is that density 1
If it exceeds 5Ky/m3, no matter how much you increase the foaming ratio relative to the initial density, even if the density is still 15Kp/m3 or less, if it is less than 1.4 times the initial foam volume,
That is, when the increase rate in volume is less than 40%, the presence of wrinkles as defined in the present invention is hardly obtained.

次に、上記加熱処理を行なった後、加熱発泡時の体積の
60係以下に収縮させる必要がある。この理由は、上記
加熱発泡処理を行なった後、一旦収縮した体積が加熱発
泡時の発泡体体積の60%を越えている場合、即ち収縮
量を少なく保つ場合は、気泡膜にしわが出来ないかまた
は、出来ても発泡体全体に及ぶ均一なしわとはならず、
目的とする諸物性を持つ発泡体を得る事は出来ないため
である。しかるに現状では、低密度化を行なう方法とし
て、前述した如く、発泡剤を含有する発泡性粒子を数回
に分けて加熱発泡させ、発泡後の寸法変化をほとんど行
なわせない様に更に型内で発泡させ、板状体、或いは成
形体としているため、該発泡体には本発明でいうしわは
ほとんど存在しないものである。上記内容を更に明確に
させるため、第2図に本発明方法で得られた発泡体の気
泡構造写真値)と、収縮を起さない様に粒子状態で数回
(6回)に分けて加熱発泡させて得た発泡体の気泡構造
写真(b)とを示した。(a)に示される本発明品は、
少なくとも3つの気泡が隣接して生じる境界部分に一端
を有し、気泡膜の中央部分に向って延びる多数のしわが
存在するが、(b)に示される比較品には本発明でいう
しわは存在しない事がわかる。
Next, after performing the above heat treatment, it is necessary to shrink the volume to 60 times or less of the volume at the time of heating and foaming. The reason for this is that after the heat-foaming treatment described above, if the volume once shrunk exceeds 60% of the volume of the foam at the time of heat-foaming, that is, if the amount of shrinkage is kept small, wrinkles may form in the bubble membrane. Or, even if it is possible, the wrinkles will not be uniform throughout the foam,
This is because it is not possible to obtain a foam having the desired physical properties. However, at present, as mentioned above, the method of achieving low density is to heat and foam expandable particles containing a foaming agent in several batches, and then further heat and foam them in a mold so that there is almost no dimensional change after foaming. Since the foam is foamed to form a plate-like body or a molded body, the foam has almost no wrinkles as defined in the present invention. In order to further clarify the above contents, Fig. 2 shows a photograph of the cell structure of the foam obtained by the method of the present invention) and the heating in the particle state in several times (six times) to prevent shrinkage. A photograph (b) of the cell structure of the foam obtained by foaming is shown. The product of the present invention shown in (a) is
There are a number of wrinkles that have one end at the boundary where at least three bubbles occur adjacent to each other and extend toward the center of the bubble membrane, but the comparative product shown in (b) does not have the wrinkles defined in the present invention. I know it doesn't exist.

更に本発明方法は、上述の一旦収縮させた発泡体を、雰
囲気温度(T)が40°C≦(T)≦樹脂の軟、化温度
の乾燥室好ましくは湿度30チ以下、より好捷しくけ湿
度10%以下の乾燥室で好捷しくは24時間以−七熟成
させ収縮特発泡体体積の1.4倍以上に膨張させる必要
がある。
Furthermore, in the method of the present invention, the once-shrinked foam is dried in a drying room where the ambient temperature (T) is 40°C≦(T)≦the softening temperature of the resin, preferably at a humidity of 30°C or less. It is necessary to mature the foam preferably for at least 24 hours in a drying room with a humidity of 10% or less to expand it to at least 1.4 times the volume of the shrinkable foam.

この理由は、回復させる雰囲気温度(T)が400C未
満では、第3図に示す如く、回復に長時間費やし、工業
的に不利になるためである。この事は、−例として第4
図に示しだポリスチレンに対する空気のガス透過曲線か
らも明らかである。即ち、40c′Cを境として空気の
ポリスチレンに対する透過量は増し、回復速度が速くな
る事を意味している。一方、樹脂の軟化温度以上の温度
によって加熱すると、回復と同時に樹脂自体が溶融して
しまい、発泡体と成し得なくなる。また、湿度が高い場
合には、収縮した発泡体中の水分と、空気との置換が行
なわれにくく、回復操作を終えた後、加熱雰囲気から取
り出すと、再度収縮を起こし、寸法安定な発泡体を得る
ことが難しくなる。更に、熟成時間は、その温度と、得
ようとする発泡体の密度とによって決まるが、17Kp
/m3の発泡体を得る場合、好ましくは24時間以上熟
成するのが良い。また収縮特発泡体体積の1.4倍以上
に膨張させないと、柔軟性のある発泡体が得られずまた
、体積回復量が少なくなり、密度の低下も出来ず、且つ
、本発明でいうしわが発泡体の特性、いわゆる遮音性に
対し有効に作用しなくなるためである。
The reason for this is that if the atmospheric temperature (T) for recovery is less than 400C, as shown in FIG. 3, it will take a long time for recovery, which is industrially disadvantageous. This is true - for example, in the fourth
This is clear from the gas permeation curve of air against polystyrene shown in the figure. In other words, this means that the amount of air permeated through polystyrene increases at 40c'C, and the recovery speed becomes faster. On the other hand, if heated to a temperature higher than the softening temperature of the resin, the resin itself will melt at the same time as recovery, making it impossible to form a foam. In addition, if the humidity is high, it is difficult for the moisture in the shrunk foam to be replaced with air, and when the foam is removed from the heated atmosphere after the recovery operation, it will shrink again, resulting in a dimensionally stable foam. becomes difficult to obtain. Furthermore, the aging time is determined by the temperature and the density of the foam to be obtained;
/m3, preferably aged for 24 hours or more. In addition, unless the foam is expanded to 1.4 times or more the volume of the shrinkable special foam, a flexible foam cannot be obtained, the amount of volume recovery will be small, and the density cannot be lowered. This is because the properties of our foam, so-called sound insulation, will no longer be effectively affected.

以上述べた回復雰囲気は、乾燥空気雰囲気の場合を一例
として上げたが、この他、炭酸ガス、ヘリウム、水素等
の無機ガス、或いは有機ガスと空気の混合中でもその用
途に応じて使用可能である。
The recovery atmosphere described above is an example of a dry air atmosphere, but it can also be used with inorganic gases such as carbon dioxide, helium, hydrogen, or a mixture of organic gas and air depending on the purpose. .

また、本発明方法において、加熱発泡時、収縮時、及び
熟成時に発泡体の製品形状を良く保ち得るようにするた
めに補助板を設けると更に好ましい。
Further, in the method of the present invention, it is more preferable to provide an auxiliary plate so that the product shape of the foam can be well maintained during heat foaming, shrinkage, and aging.

尚、発泡体物性に方向性を持たせる場合は、幅、長さ、
厚み各方向の一方向或いは二方向への発泡を型わく内に
入れて抑え、残る二方向或いは一方向へのみ自由に発泡
させても良い。
In addition, when giving directionality to the physical properties of the foam, the width, length,
It is also possible to suppress foaming in one direction or two directions in each direction of the thickness by placing it in a mold frame, and to allow free foaming only in the remaining two directions or one direction.

上述したように、本発明方法によって得られた発泡体は
、従来では見られなかった新規の発泡体であり、これを
必要によってはプラスチック板、プラスチックフィルム
、木板、無機物、布などとの複合体として使用しても強
度、断熱性、遮音性などに優れたものを得ることが出来
、有効である。
As mentioned above, the foam obtained by the method of the present invention is a novel foam that has not been seen before, and if necessary, it can be made into a composite with a plastic board, plastic film, wood board, inorganic material, cloth, etc. Even when used as a material, it is effective because it can provide excellent strength, heat insulation, and sound insulation.

本発明でいう硬質熱可塑性樹脂とは、スチレン、メチル
スチレン、エチルスチレン、クロルスチレン、または上
記の様なアルケニル芳香族化合物と他の容易に重合し得
るオレフィン化合物、例えば無水マレイン酸、アクリル
酸、メタクリル酸等との共重合体、ゴム補強重合体等い
わゆるスチレン系重合体或いは、アクリロニトリル、メ
チルメタアクリレート、アクリロニトリル−ブタジェン
−スチレン共重合体等のアクリル系重合体、ポリカーボ
ネート、ポリフェニレンオキサイド、硬質塩化ビニル重
合体、或いは上記重合体の混合物である。硬質熱可塑性
樹脂の発泡体とは、上記重合物或いはその混合物を化学
発泡剤、物理発泡剤、或いはこれらの混合物等によって
押出し発泡、型内発泡、自由発泡させた発泡体をいう。
The hard thermoplastic resin used in the present invention refers to styrene, methylstyrene, ethylstyrene, chlorostyrene, or alkenyl aromatic compounds such as those mentioned above, and other easily polymerizable olefin compounds such as maleic anhydride, acrylic acid, Copolymers with methacrylic acid etc., so-called styrene polymers such as rubber reinforcing polymers, acrylic polymers such as acrylonitrile, methyl methacrylate, acrylonitrile-butadiene-styrene copolymers, polycarbonate, polyphenylene oxide, hard vinyl chloride It is a polymer or a mixture of the above polymers. A hard thermoplastic resin foam is a foam obtained by extrusion foaming, in-mold foaming, or free foaming of the above polymer or a mixture thereof using a chemical foaming agent, a physical foaming agent, a mixture thereof, or the like.

特に好ましくは、上記スチレン系重合体を押出機中で物
理発泡剤或いは化学発泡刺戟いはその混合物と溶融混練
し、Tダイ或いは環状ダイにより押出されて得られる、
いわゆる押出発泡体が良い。発泡性粒子を型内で発泡融
着させ、板状体或いはその他の成形体に成した発泡体も
含むが、この場合、粒子間の融着が多少悪くなり、押出
し発泡或いはシート状で発泡させて得られた発泡体を使
用した場合に比べて断熱性が多少劣るものである。更に
本発明方法に使用する硬質熱可塑性樹脂の発泡体形状は
特に限定するものではないが、板状、角柱状、シート状
のものが有効であり、厚みは50111111以下のも
のが最終発泡体の寸法精度を維持する意味で特に有効で
ある。また、発泡体には必要に応じて一般の核剤や滑剤
、着色剤、紫外線吸収剤、帯電防止剤等が入っていても
よい。
Particularly preferably, the styrenic polymer is melt-kneaded with a physical foaming agent, a chemical foaming agent, or a mixture thereof in an extruder, and extruded through a T-die or an annular die.
So-called extruded foam is good. It also includes foamed products in which expandable particles are foamed and fused in a mold to form a plate-like object or other molded object, but in this case, the fusion between the particles is somewhat poor, and it is not possible to extrude or foam the particles in the form of a sheet. The heat insulation properties are somewhat inferior to those obtained using foamed materials. Further, the shape of the hard thermoplastic resin foam used in the method of the present invention is not particularly limited, but plate-like, prismatic, and sheet-like shapes are effective, and those with a thickness of 50111111 mm or less are suitable for the final foam. This is particularly effective in maintaining dimensional accuracy. Further, the foam may contain general nucleating agents, lubricants, colorants, ultraviolet absorbers, antistatic agents, etc., as necessary.

本発明で用いる発泡体密度、独立気泡率、樹脂の軟化温
度の測定方法は下記の方法に基づくものである。
The methods for measuring the foam density, closed cell ratio, and softening temperature of the resin used in the present invention are based on the following methods.

○初期、収縮時、及び最終発泡体密度:JIS−A−9
511 0加熱発泡時体積:第5図に示す如く発泡機1の各側面
と、上面に各2個所以上の穴2を開けておき、加熱発泡
前と発泡時の、発泡機各面から発泡体までの寸法をスケ
ール6にて測定し、発泡体体積の増加分及び、加熱発泡
時の体積を計算する、 O加熱発泡時密度二上記体積を、加熱発泡前の発泡体重
□量で除したもの。
○Initial, shrinkage, and final foam densities: JIS-A-9
511 0 Volume when heated and foamed: As shown in Fig. 5, two or more holes 2 are made on each side and the top of the foaming machine 1, and the foam is poured from each side of the foaming machine before and during foaming. Measure the dimensions up to 6 on scale 6, and calculate the increase in foam volume and the volume when heated and foamed. .

O独立気泡率:ASTM−D−2856の測定法に準じ
て測定する(試料表面層のオ□−プンセル層の値も含め
る)。試料の各・ 表面層その面に対する厚み方向に厚
みの1’、721oづつ切断し、再度測定する。この操
作をn回繰り返−し、そのn回の平均値で表わしたもの
。回数は多い程よいが、元の試料の大きさによって限界
があるため、少なくともn≧3とする。
O closed cell ratio: Measured according to the measurement method of ASTM-D-2856 (including the value of the open cell layer on the sample surface layer). Each surface layer of the sample was cut by 1' and 721 degrees of thickness in the thickness direction of that surface, and measured again. This operation was repeated n times and expressed as the average value of the n times. The higher the number of times, the better, but there is a limit depending on the size of the original sample, so at least n≧3.

0樹脂の軟化温度: ASTM−D−1525実施例・
比較例1 樹脂軟化温度106°Cのポリスチレンを原料とシfc
密度54 KLI/m、3、重量142.8 fi’、
幅・長・厚の各々が、400mm、 700n+、 1
5mmの押出発泡ポリスチレン板を、100°C水蒸気
、′100℃温水、及びIC130C空気雰囲気中にて
、15分〜120分間加熱発泡し、その時の各試料の発
泡体体積と密度を算出した。これによると、加熱時間に
関係なく、空気雰囲気中にて加熱発泡したものは、発泡
密度がかえって大きくなってしtつだ。
0 Softening temperature of resin: ASTM-D-1525 Example
Comparative Example 1 Using polystyrene with a resin softening temperature of 106°C as a raw material
Density 54 KLI/m, 3, Weight 142.8 fi',
The width, length, and thickness are each 400mm, 700n+, 1
A 5 mm extruded polystyrene foam plate was heated and foamed in an atmosphere of 100°C steam, '100°C hot water, and IC130C air for 15 to 120 minutes, and the foam volume and density of each sample at that time were calculated. According to this, regardless of the heating time, when foaming is done by heating in an air atmosphere, the foaming density actually increases.

しかし、温水及び水蒸気雰囲気中で発泡したものは、発
泡時体積は初期発泡体体積の2.8〜10.0倍、強1
tfr):12.I Ky / m3〜3.4 K51
7 m、’Aであり、これを大気中で冷却し60%〜3
[1%に収縮させた後、70°Cのエアーオープン中で
体積変化がほとんどなくなるまで乾燥させ、取り出し、
物性を測定した結果、密度15.5〜5.4KP/m3
で電子顕微鏡でその気泡膜の構造を観察した所本発明で
いうしわが均一に多数認められた。また独立気泡率は5
5%以上であった。
However, when foamed in a hot water or steam atmosphere, the volume at the time of foaming is 2.8 to 10.0 times the initial foam volume, with a strength of 1
tfr):12. I Ky/m3~3.4 K51
7 m, 'A, and it is cooled in the atmosphere to 60% ~ 3
[After shrinking to 1%, dry it in an air open at 70 °C until there is almost no change in volume, take it out,
As a result of measuring the physical properties, the density was 15.5 to 5.4 KP/m3
When the structure of the bubble film was observed using an electron microscope, many wrinkles as defined in the present invention were uniformly observed. Also, the closed cell ratio is 5
It was 5% or more.

実施例・比較例2 実施例・比較例1同様で密度21に9/rn3の(重量
88.29− )発泡体を、加熱媒体を水蒸気に限定し
、加熱発泡条件(温度、時間)を変え、発泡倍率及び密
度を変化させ、′発泡体体積を1.2〜5.0倍、密度
1735〜4.2に51/m2に変化させた。これによ
ると発泡倍率1.4倍未満、及び、或いは密度15に9
7m3を越えるものは60%以上収縮させる事が困難で
あり、外力的に収縮させると、独立気泡率が50係未満
になるか及び、又は、本発明でいうしわが均一に存在し
なかった。しかし、発泡倍率1.4倍以上、且つ密度1
5に51/m3以下の発泡体を実施例1と同様に収縮、
回復させたものは、いずれも発泡体密度が17に9/m
3以下で独立気泡率も全て50係以上であり、電子顕微
鏡によるその気泡構造を観察した所本発明でいうしわが
均一に多数認められた。
Example/Comparative Example 2 Similar to Example/Comparative Example 1, a foam with a density of 21 to 9/rn3 (weight 88.29-) was used, the heating medium was limited to steam, and the heating and foaming conditions (temperature, time) were changed. , the foaming ratio and density were changed to change the foam volume from 1.2 to 5.0 times and the density from 1735 to 4.2 to 51/m2. According to this, the foaming ratio is less than 1.4 times and/or the density is 15 to 9.
If the size exceeds 7 m3, it is difficult to shrink it by 60% or more, and when it is shrunk by external force, the closed cell ratio becomes less than 50%, or the wrinkles referred to in the present invention are not uniformly present. However, the foaming ratio is 1.4 times or more and the density is 1.
5. Shrink the foam of 51/m3 or less in the same manner as in Example 1,
In both cases, the foam density was 17 to 9/m.
3 or less, and the closed cell ratio was all 50 or more, and when the cell structure was observed using an electron microscope, many wrinkles as defined in the present invention were uniformly observed.

実施例・比較例6 実施例・比較例2同様な方法で得られた発泡体のうち、
発泡時密度8.5に97m3、発泡体体積倍率2.47
倍の発泡体を大気中で冷却し−H47チにまで収縮させ
たものを、エアーオープン中で300C,40°C97
0°C,105°C,110℃の5水準で熟成を行なっ
た。その結果40℃〜105°Cのものは熟成時間に差
を生じたが、最終回復発泡体はいずれも密度が17Ky
/m3以下で且つ本発明でいうしわも多数存在し、独立
気泡率も全て50チ以上であった。これに比し、30℃
のものは、15日間放置しても体積変化は認められなか
った、一方、110°Cのものは発泡体が膨張する前に
樹脂が溶融してしまい、目的とする発泡体は得られなか
った。
Example/Comparative Example 6 Among the foams obtained in the same manner as Example/Comparative Example 2,
Density when foaming: 8.5 to 97m3, foam volume magnification: 2.47
The foam was cooled in the air and shrunk to -H47cm.
Aging was performed at five levels: 0°C, 105°C, and 110°C. As a result, there was a difference in aging time between 40°C and 105°C, but the final recovered foams all had a density of 17Ky.
/m3 or less, there were many wrinkles as defined in the present invention, and the closed cell ratio was all 50 cm or more. Compared to this, 30℃
No change in volume was observed with the foam that was left at 110°C for 15 days.On the other hand, with the foam that was heated to 110°C, the resin melted before the foam expanded, and the desired foam could not be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加熱媒体の種類の違いによる密度低下状態の例
を示すグラフ、第2図(a)は本発明方法によって得ら
れた発泡体の気泡構造を示す拡大写真、(b)は比較品
の気泡構造を示す拡大写真、第3図は熟成温度別売一体
の回復状態を示すグラフ、第4図はポリスチレン膜に対
する嫡気透過の温度依存性の一例を示すグラフである。 出願人旭ダウ株式会社 代理人 豊  1) 善  雄 第1− 加 熱 時 間 (分) 1久 第3図 懸成哨間 〔印 第4図 温 度 〔0C) 第5図 手続補正書(方式) %式% 1、事件の表示 特願昭57−55985号 2、発明の名称 硬質熱可塑性樹脂の発泡体の製造方法 6、補正をする者 事件との関係・特許出願人 東京都千代田区有楽町1丁目1番2号 (046)旭ダウ株式会社 代表者    弓   倉  礼  −4、代理人 東京都千代田区有楽町1丁目4番1号 三信ピル 204号室 電話501−21386、補正
の対象 明細書の「図面の簡単な説明」の欄 Z補正の内容 7−1 明細書の「図面の簡単な説明」の欄につき以下
のように補正する。 (1)明細書筒18頁12行目の「気泡構造を示す拡大
写真」を「気泡構造を示す電子顕微鏡写真」と訂正する
。 (2)同 13行目のr(b)は比較品の気泡構造を示
す拡大写真」を[第2図(b)は比較品の気泡構造を示
す電子顕微鏡写真」と訂正する。 (3)  同 16行目の「−例を示すグラフである。 」を「−例を示すグラフ、第5図は加熱発進時体積の測
定方法を説明するための概略斜視図である。」と訂正す
る。
Figure 1 is a graph showing an example of density reduction due to different types of heating medium, Figure 2 (a) is an enlarged photograph showing the cell structure of the foam obtained by the method of the present invention, and (b) is a comparative product. FIG. 3 is a graph showing the recovery state of the aging temperature (sold separately), and FIG. 4 is a graph showing an example of the temperature dependence of direct air permeation through a polystyrene membrane. Applicant Asahi Dow Co., Ltd. Agent Yutaka 1) Yoshio No. 1 - Heating time (minutes) 1-ku Fig. 3 Kensei-no-ma [Seal Fig. 4 Temperature [0C] Fig. 5 Procedural amendment (method) ) % formula % 1. Indication of the case Japanese Patent Application No. 57-55985 2. Name of the invention Method for manufacturing rigid thermoplastic resin foam 6. Person making the amendment Relationship to the case Patent applicant Yurakucho, Chiyoda-ku, Tokyo 1-1-2 (046) Asahi Dow Co., Ltd. Representative Rei Yumikura -4, Agent Room 204, Sanshin Pill, 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Telephone 501-21386, " 7-1 Contents of amendment to column Z of "Brief explanation of drawings" 7-1 The column of "Brief explanation of drawings" of the specification will be amended as follows. (1) "Enlarged photograph showing bubble structure" on page 18, line 12 of the specification tube is corrected to "electron micrograph showing bubble structure." (2) In the same line 13, r(b) is an enlarged photograph showing the bubble structure of the comparison product.'' is corrected to ``Figure 2(b) is an electron micrograph showing the bubble structure of the comparison product.'' (3) In the 16th line, "-This is a graph showing an example." was changed to "-A graph showing an example. FIG. 5 is a schematic perspective view for explaining the method of measuring the volume at the time of heating start." correct.

Claims (1)

【特許請求の範囲】[Claims] 1)硬質熱可塑性樹脂の板状、或いはシート状発泡体或
いは発泡成形体の該樹脂に対し空気よりガス透過度の大
きい気体或いは、該気体が存在する液体中にて、初期発
泡体体積の1.4倍以上で且つ、嵩密度15Kp/m3
以下に加熱発泡させ、次いで該加熱発泡体体積の60%
以下に収縮させ、更に雰囲気温度(T)が、40℃≦(
T)≦樹脂の軟化温度、の乾燥室内で熟成し、収縮特発
泡体体積の1.4倍以上に膨張させ、密度(D)が3 
Ky 7m:l≦(D)≦17に5’/m3で気泡構造
において、少なくとも3つの気泡が隣接して生じる境界
部分に一端を有し、気泡膜の中央部分に向って延びる多
数のしわを有し、且つ独立気泡率50%以上の、板状或
いはシート状発泡体或いは発泡成形体を得る事を特徴と
する発泡体の製造方法。
1) 1 of the initial foam volume in a gas that has a higher gas permeability than air for the resin of a rigid thermoplastic resin plate or sheet foam or foam molded product, or in a liquid in which the gas exists. .4 times or more and bulk density 15Kp/m3
The following heating and foaming is performed, and then 60% of the volume of the heated foam is
Further, the ambient temperature (T) is 40℃≦(
T) ≦ softening temperature of the resin, aged in a drying chamber, expanded to 1.4 times or more the volume of the shrinkable special foam, and the density (D) was 3.
Ky 7m: l≦(D)≦17 and 5′/m3, in the cell structure, at least three bubbles have one end at the boundary area where they are adjacent to each other, and have numerous wrinkles extending toward the central portion of the cell membrane. 1. A method for producing a foam, which is characterized by obtaining a plate-like or sheet-like foam, or a foam molded product, which has a closed cell ratio of 50% or more.
JP57055985A 1982-04-06 1982-04-06 Preparation of foamed product of hard thermoplastic resin Pending JPS58173631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055985A JPS58173631A (en) 1982-04-06 1982-04-06 Preparation of foamed product of hard thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055985A JPS58173631A (en) 1982-04-06 1982-04-06 Preparation of foamed product of hard thermoplastic resin

Publications (1)

Publication Number Publication Date
JPS58173631A true JPS58173631A (en) 1983-10-12

Family

ID=13014369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055985A Pending JPS58173631A (en) 1982-04-06 1982-04-06 Preparation of foamed product of hard thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS58173631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080301971A1 (en) * 2005-12-29 2008-12-11 Sergei Leonidovich Koretsky Device for Drying Capillary Porous Materials by Acoustic Thermal Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080301971A1 (en) * 2005-12-29 2008-12-11 Sergei Leonidovich Koretsky Device for Drying Capillary Porous Materials by Acoustic Thermal Method

Similar Documents

Publication Publication Date Title
US3262625A (en) Insulating surfaces
EP1511795B1 (en) Anisotropic polymer foam
US3883625A (en) Method for making expandable plastics
KR101859913B1 (en) High strength extruded thermoplastic polymer foam
JP2024056801A5 (en) Air conditioning drain pipe and its manufacturing method
JPH0313057B2 (en)
US20240017451A1 (en) Method for manufacturing laminate
JP2003039565A (en) Foamed particle molded object
US4585605A (en) Rigid thermoplastic resin foam and process for preparation thereof
EP0151183B1 (en) Rigid thermoplastic resin foam and process for its production
US3987134A (en) Manufacture of foamed compartmented structures
JPS58173631A (en) Preparation of foamed product of hard thermoplastic resin
JP4503720B2 (en) Method for producing foamed article with skin
US3445406A (en) Process for elasticizing foamed polystyrenes and resultant product
JP2992074B2 (en) Extruded styrene-based resin foam sheet excellent in cutting workability and method for producing the same
JP2012201820A (en) Expansion-molded product and production method therefor
US3696181A (en) Flash extursion of polyvinyl chloride
JP2023019516A (en) Expanded polypropylene resin particles and method for producing the same
JPH0252653B2 (en)
US3503907A (en) Polyvinyl chloride foam structure
JP7422587B2 (en) Resin foams and resin composites
JPH0971675A (en) Foam and its production
JP4639605B2 (en) Insulating panel manufacturing method
JP5365902B2 (en) Roll receiver made of styrene resin foam plate
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same