JPS58173423A - Measuring method of face shape - Google Patents
Measuring method of face shapeInfo
- Publication number
- JPS58173423A JPS58173423A JP5707882A JP5707882A JPS58173423A JP S58173423 A JPS58173423 A JP S58173423A JP 5707882 A JP5707882 A JP 5707882A JP 5707882 A JP5707882 A JP 5707882A JP S58173423 A JPS58173423 A JP S58173423A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- measurement
- shape
- interferometer
- interference fringes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、平面や曲面の面状態を測定する方法であり、
特にトロイダル面、シリンドリカル面等の曲面を効果的
に測定する面形状測定方法に関するものである。[Detailed description of the invention] The present invention is a method for measuring the surface condition of a flat or curved surface,
In particular, the present invention relates to a surface shape measuring method for effectively measuring curved surfaces such as toroidal surfaces and cylindrical surfaces.
従来から、レンズ、ミラー等の光学的研摩面の形状を測
定するには、ニュートン原器や各種干渉計等の干渉現象
を利用した測定手段が用いられている。これらの手段は
、主に平面や球面の形状測定を対象としており、被測定
面が回転曲面のように母線と子線で異なる曲率を有する
場合には測定が不可能か、或いは著しい制約を受けるこ
とになる0例えば、トロイダル面の形状を従来のニュー
トン原器を用いて測定する場合には、通常は球面又はシ
リンドリカル面を有するニュートン原器を用いて、トロ
イダル面の子線方向の断面の複数個所を検査する代用的
な方法が用いられる。この方法は、一時に1個の断面し
か検査できず、測定個所を変えるたびにニュートン原器
を当て直したとすると、ニュートン原器の参照面と被測
定面であるトロイダル面の間の光路長は前回の測定個所
と無関係になる。従って、子線方向断面のニュートンリ
ングを写真等によって順次記録し、これらの写真を継ぎ
合わせたとしても、第1図に示すようにニュートンリン
グの縞1の位相は互いに不連続であって、トロイダル面
の二次元的な形状を知ることは困難である。ニュートン
原器の代りにトワイマン、フィゾー等の干渉計を使用し
ても全く同様な問題が生ずることは避けられない。BACKGROUND ART Conventionally, in order to measure the shape of an optically polished surface such as a lens or mirror, measurement means that utilize interference phenomena such as a Newtonian prototype or various interferometers have been used. These methods are mainly aimed at measuring the shape of planes and spherical surfaces, and if the surface to be measured has different curvatures for the generatrix and sagittal line, such as a rotating curved surface, measurement is impossible or is subject to significant limitations. For example, when measuring the shape of a toroidal surface using a conventional Newtonian prototype, a Newtonian prototype with a spherical or cylindrical surface is usually used to measure multiple cross sections of the toroidal surface in the sagittal direction. Alternative methods of spot inspection are used. With this method, only one cross section can be inspected at a time, and if the Newtonian prototype is reapplied each time the measurement location is changed, the optical path length between the reference surface of the Newtonian prototype and the toroidal surface that is the surface to be measured is becomes unrelated to the previous measurement location. Therefore, even if Newton's rings in the sagittal direction cross-section are recorded sequentially using photographs, etc., and these photographs are stitched together, the phases of the Newton's ring fringes 1 are discontinuous with each other, as shown in Figure 1, and the toroidal It is difficult to know the two-dimensional shape of a surface. Even if a Twyman, Fizeau, etc. interferometer is used instead of the Newton prototype, the same problem will inevitably occur.
このような問題を解決する1つの手段として、先ず母線
方向中央部の断面形状を干渉計で測定しておき、それと
直交する断面、即ち子線方向の断面形状を二次元的に継
ぎ合わせる際に、前記母線方向の断面形状を基準にして
干渉縞の位相ずれを補正する方法が考えられる。しかし
、この方法は1す線方向と子線方向の両方向の測定が不
可欠であり、かつ干渉縞の位相ずれの補正も必要である
。One way to solve such problems is to first measure the cross-sectional shape of the central part in the generatrix direction using an interferometer, and then measure the cross-sectional shape orthogonal to the cross-sectional shape, that is, the cross-sectional shape in the sagittal direction, two-dimensionally. A possible method is to correct the phase shift of the interference fringes based on the cross-sectional shape in the generatrix direction. However, this method requires measurement in both the linear direction and the sagittal direction, and also requires correction of the phase shift of the interference fringes.
更に、被測定範囲の母線方向断面の開口数が大きくて一
時に測定できない場合には、母線方向の断面内における
干渉縞同志の継ぎ合わせが困難となり、結果として二次
元的な形状を正しく測定することができないことになる
。Furthermore, if the numerical aperture of the cross section in the generatrix direction of the measurement range is large and cannot be measured all at once, it becomes difficult to join interference fringes within the cross section in the generatrix direction, resulting in accurate measurement of the two-dimensional shape. You will not be able to do that.
また他の手段として、トロイダル面をその回転対称軸の
廻りに回転し得るように、例えばターンテーブル上に配
置し、このターンテーブルを回転させながら干渉計でト
ロイダル面の子線断面を連続して測定すれば、二次元的
な形状を知ることができる。しかしながら、この方法で
は各断面の干渉縞の位相を連続的に保つために、測定中
の間は干渉計の参照面と被測定面間の光路長差を、光の
波長よりも十分に小さい範囲内で一定に保持しなければ
ならず、ターンテーブルの軸受や測定装置全体の防震、
空気の揺らぎの防止等のために精密で高価な機構が必要
になる。As another method, the toroidal surface is placed on a turntable so as to be able to rotate around its axis of rotational symmetry, and while the turntable is rotated, the sagittal cross sections of the toroidal surface are successively measured using an interferometer. By measuring it, you can find out its two-dimensional shape. However, in this method, in order to keep the phase of the interference fringes in each cross section continuous, the optical path length difference between the reference surface of the interferometer and the measured surface is kept within a range sufficiently smaller than the wavelength of the light during measurement. It must be kept constant, and the turntable bearing and the entire measuring device must be earthquake-proofed.
Precise and expensive mechanisms are required to prevent air fluctuations.
更に他の手段として、トロイダル面を有するニュートン
原器を使用するか、或いは干渉計中にI・ロイタル参照
波面を発生させるアナモフィック光学系を使用するか、
或いはホログラムによってトロイダル参照波面を発生さ
せる等の方法により、トロイダル面全体を二次元的に測
定することが考えられる。しかしこの方法もニュートン
原器、アナモフィック光学系、ホログラム等の製作が困
難であり、特に被測定面の開口数が大きくなると困難さ
が倍増し、ニュートン原器等に汎用性が無くなるという
欠点がある。Still other means include using a Newtonian prototype with a toroidal surface, or using an anamorphic optical system that generates an I-Roytal reference wavefront in the interferometer.
Alternatively, the entire toroidal surface may be measured two-dimensionally by a method such as generating a toroidal reference wavefront using a hologram. However, this method also has the disadvantage that it is difficult to produce Newtonian prototypes, anamorphic optical systems, holograms, etc., and the difficulty doubles when the numerical aperture of the surface to be measured becomes large, making the Newtonian prototype etc. less versatile. .
本発明の目的は、上述の従来例の欠点を解決し、干渉計
を用いて連続平面のみならず、トロイダル面、シリンド
リカル面等の回転連続曲面の二次元的形状を正確に測定
し、従来の光学系では原理的に測定できないほど被測定
面の開口数が大きい回転曲面の形状をも測定可能とする
面形状測定方法を提供することにあり、その要旨は、被
測定面である連続面の少なくとも2つ以上の断面形状を
、被測定面の測定位置を変えながら干渉計により同時に
測定することを繰り返し、各回の測定では少なくとも1
つの測定位置が先の測定位置と同一となるより1こし、
第1及c7弔2の測g 時−わ9゜て同一位置について
得られた測定値同志を比較して、これらの測定値間のず
れ量を求め、一方の測定時の測定値を基準として他方の
測定時の複数個の測定値を補正し、補正して得られた各
断面形状を継ぎ合わせることにより、前記被測定面の二
次元的な形状の情報を得ることを特徴とする方法である
。The purpose of the present invention is to solve the above-mentioned drawbacks of the conventional example, and to accurately measure the two-dimensional shape of not only continuous planes but also rotating continuous curved surfaces such as toroidal surfaces and cylindrical surfaces using an interferometer, and to The purpose of this method is to provide a surface shape measurement method that makes it possible to measure the shape of a rotating curved surface with a large numerical aperture of the surface to be measured, which cannot be measured in principle with an optical system. At least two or more cross-sectional shapes are repeatedly measured using an interferometer while changing the measurement position on the surface to be measured, and each measurement is performed at least once.
1 more than one measurement position is the same as the previous measurement position,
Compare the measured values obtained at the same position at 1st and 2nd measurement time - 9° to find the amount of deviation between these measured values, and use the measured value at one measurement as the standard. A method characterized in that information on the two-dimensional shape of the surface to be measured is obtained by correcting a plurality of measured values at the time of the other measurement and joining each cross-sectional shape obtained by the correction. be.
次に本発明を図示の実施例に基づいて詳細に説明する。Next, the present invention will be explained in detail based on illustrated embodiments.
第2図は本発明に係る方法を実現するための装置であり
、トロイダル面Stを有する試料Sを測定する場合の平
面構成図、第3図はその側面構成図である。試料Sはレ
ンズ又はミラーとし、X−Yステージとあおり機構を有
する載物台10上に載置する。更に、この載物台10を
ターンテーブル20上に固定し、載物台10がターンテ
ーブル20の中心軸1の廻りに回転し得るようにする。FIG. 2 shows an apparatus for implementing the method according to the present invention, and is a plan configuration diagram when measuring a sample S having a toroidal surface St, and FIG. 3 is a side configuration diagram thereof. The sample S is a lens or a mirror, and is placed on a stage 10 having an X-Y stage and a tilting mechanism. Furthermore, this stage 10 is fixed on a turntable 20 so that the stage 10 can rotate around the central axis 1 of the turntable 20.
試料Sに対向してトワイマン型の干渉計30を設置し、
その側面の観測窓には干渉縞を検知するための撮像素子
40を取付ける。この撮像素子40の出力線を、干渉縞
の強度分布を記憶するためのメモリ回路50に接続し、
更にメモリ回路50の出力を装置全体の制御及び演算を
行う制御演算回路60に入力する。そして、制御演算回
路60の一つの出力をステッピングモータ70に送信し
、ステッピングモータ70により前記ターンテーブル2
0を任意の位置に回転するようにする。A Twyman type interferometer 30 is installed opposite the sample S,
An imaging device 40 for detecting interference fringes is attached to the observation window on the side. The output line of this image sensor 40 is connected to a memory circuit 50 for storing the intensity distribution of interference fringes,
Furthermore, the output of the memory circuit 50 is input to a control calculation circuit 60 that controls the entire device and performs calculations. Then, one output of the control calculation circuit 60 is sent to the stepping motor 70, and the stepping motor 70 causes the turntable 2 to
Rotate 0 to any position.
測定に先立ち、試料Sが有するトロイダル面Stの回転
対称軸qは、ターンテーブル20の回転軸gと合致する
ように、乾物台10のx−Yステージ及びあおり機構に
よって調整するものとする。Prior to measurement, the axis of rotational symmetry q of the toroidal surface St of the sample S is adjusted by the x-Y stage and tilting mechanism of the drying stand 10 so that it coincides with the axis of rotation g of the turntable 20.
但し、トロイダル面Stが回転研摩によって加[され、
加工層から外さずにそのまま加1時の回転軸を使って回
転できる場合には、上述の調整は省略できる。干渉計3
0において、レーザー光源31から射出する平行光束り
は、ビームエクスバング32によって光束幅を広げた後
に、ハーフミラ−33により、ここを反射する光束La
と透過する光束Lbとに分けられる。このハーフミラ−
33を透角度を有する2つの平行光束L1及びL2とな
って対物レンズ35に入射する。そこで、対物レンズ3
5を通過した2つの光束L1、L2の集光位置が、トロ
イダル面Stの子線の曲率中心群を連ねてできる円弧p
上となるように、干渉計30とトロイダル面St間の距
離を調整する。但し、トロイダル面Stと載物台10.
ターンテーブル20同志間の相対的位置は、前記の距離
調整の際に不変に保持するものとする0次に、複プリズ
ム34を対物レンズ35の光軸方向に移動させることに
よって、対物レンズ35を射出後の2つの光束L1.
L2の結像位置を変えることなく、光束Ll、 L2の
主光線の向きを変えて該主光線の交差する点をターンテ
ーブル20の回転軸p上に重ねる。However, the toroidal surface St is polished by rotary polishing,
If it can be rotated as it is using the rotating shaft at the time of machining 1 without removing it from the processing layer, the above-mentioned adjustment can be omitted. Interferometer 3
0, the parallel light beam emitted from the laser light source 31 is expanded in beam width by a beam ex-bang 32, and then reflected by a half mirror 33 into a light beam La.
and a transmitted light beam Lb. This half mirror
33 becomes two parallel light beams L1 and L2 having a transmission angle and enters the objective lens 35. Therefore, objective lens 3
The convergence position of the two light beams L1 and L2 that have passed through the toroidal surface St is an arc p formed by connecting the centers of curvature of the sagittal lines of the toroidal surface St.
The distance between the interferometer 30 and the toroidal surface St is adjusted so that the toroidal surface St is at the top. However, the toroidal surface St and the stage 10.
The relative position between the turntables 20 shall be kept unchanged during the distance adjustment described above. Next, by moving the double prism 34 in the optical axis direction of the objective lens 35, the objective lens 35 is Two light beams L1 after exiting.
The directions of the principal rays of the light beams Ll and L2 are changed to overlap the point at which the principal rays intersect on the rotation axis p of the turntable 20 without changing the imaging position of L2.
以上の手順により、トロイダル面Stに入射した2つの
光束Ll、 L2は、その集光方向がトロイダル面St
の子線の曲率中心Pに向かい、かつ2つの光束Ll、
L2の主光線はそれぞれトロイダル面Stの母線の曲率
中心qに向うことになる。従って、トロイダル面Stで
反射された光束は、第2図の平面内、即ちトロイダル面
Stの母線を含む平面内においては、主光線のみが元と
同じ光路を逆に進み。Through the above procedure, the two light beams Ll and L2 incident on the toroidal surface St are focused in the direction of the toroidal surface St.
toward the center of curvature P of the sagittal line, and two luminous fluxes Ll,
The principal rays of L2 each head toward the center of curvature q of the generatrix of the toroidal surface St. Therefore, in the light beam reflected by the toroidal surface St, within the plane of FIG. 2, that is, within the plane including the generatrix of the toroidal surface St, only the principal ray travels in the opposite direction along the same optical path as the original.
ハーフミラ−33及び結像レンズ36を経て撮像素f−
40の受光面に達する。一方、第3図の平面内、即ちタ
ーンテーブル20の回転軸重を含む平面内においては、
トロイダル面Stで反射された全ての光束が元と同じ光
路を逆に進み、ハーフミラ−33で反射され撮像素子4
0の受光面に達することになる。レーザー光[31から
出射後にハーフミラ−33で反射した光束Laは、参照
ミラー37で反射した後にハーフミラ−33を透過して
、トロイダル面Stから反射してきた前述の主光線と重
ね合わされて1渉する。従って、撮像素子40の受光面
に相当する位置には、第4図に示すように2つの光束L
1、L2に対して、トロイダル面sthの2つの子線断
面U、Vの形状を表す干渉縞U、■が現れる。この状態
において、ステッピングモータ70を駆動してターンテ
ーブル20を回転すれば、トロイダル面St上の任意の
子線断面の形状か測定できる。良く知られているように
トワイマン型干渉計による干渉縞は、光の波長の1/2
を単位とする波面の等高線を表しているので、この干渉
縞の等高線を数えることによって波面の形状、即ちトロ
イダル面Stの子線断面の形状が判ることになる。しか
し、このままではターンテーブル20の回転に伴う振動
、或いは外乱による干渉縞の位相の不連続が生ずるため
に、以下の手順を採ればよい。The image sensor f- passes through the half mirror 33 and the imaging lens 36.
40 light receiving surfaces are reached. On the other hand, within the plane of FIG. 3, that is, within the plane containing the rotational axis load of the turntable 20,
All the light beams reflected by the toroidal surface St travel in the opposite direction along the same optical path as before, are reflected by the half mirror 33, and are transferred to the image sensor 4.
It reaches the light receiving surface of 0. The light beam La reflected by the half mirror 33 after being emitted from the laser beam [31 is reflected by the reference mirror 37 and then transmitted through the half mirror 33, where it is superimposed with the aforementioned principal ray reflected from the toroidal surface St and crosses once. . Therefore, at a position corresponding to the light receiving surface of the image sensor 40, two light beams L
1 and L2, interference fringes U and ■ representing the shapes of the two sagittal cross sections U and V of the toroidal surface sth appear. In this state, if the stepping motor 70 is driven to rotate the turntable 20, the shape of an arbitrary sagittal cross section on the toroidal surface St can be measured. As is well known, the interference fringes produced by a Twyman interferometer are 1/2 of the wavelength of light.
Since it represents the contour line of the wavefront in units of , the shape of the wavefront, that is, the shape of the sagittal cross section of the toroidal surface St can be determined by counting the contour lines of this interference fringe. However, if this continues as it is, discontinuity in the phase of the interference fringes will occur due to vibrations accompanying the rotation of the turntable 20 or disturbances, so the following procedure may be adopted.
第5図において、(a)に示す成る時点でトロイダル面
St上の2つの子線断面H,Iでの干渉縞り、iの強度
分布がメモリ回路50に記憶されたとする0次に、ター
ンテーブル20を回転して測定位置を変えて再度測定を
する。このとき、一方の測定位置は前回測定した位置l
と同じ位置になるようにターンテーブル20の回転角を
制御し、1、Jの2つの子線断面を測定し、第5図(b
)に示すように干渉縞i 、jを得る。ここで干渉縞i
、i’とは同一個所Iを測定しているにも拘らず同一パ
ターンを有する干渉縞ではなく、前述したターンテーブ
ル20の回転に伴う振動や、外乱による干渉縞の位相ず
れのために横ずれが生じているのが通常である。ここで
第6図は横軸を子線方向位置、縦軸を高さ位置を表した
各測定位置の断面形状であり、干渉縞iとi′とはΔ、
のずれを生じているもとする。位置IとJは同時に測定
しているので、干渉縞i、jのずれも同じ量であり、従
って干渉縞iとi′との比較によって得られたずれ量Δ
lの分゛だけ干渉縞jの断面形状を補正して新たな断面
形状干渉縞joとすれば、この干渉縞j0は振動や外乱
の影響が除去されたものになる。再び、ターンテーブル
20を回転させて、同様にして位置Jと新たな測定位置
Kによる干渉縞j′とkとを第5図(c)に示すように
測定し、iとi′との場合と同様の比較を実施し、その
ずれ量Δ2を求めて補正を行えば、位INKについても
連続性を持った形状koが得られる。これらの補正され
た干渉縞はメモリ回路50に記憶され、必要に応じて表
示装置、記録装置に出力される。以上の操作を繰返すこ
とによって、トロイダル面St全面に渡って各子線断面
の形状が第7図に示すように連続性をもって継ぎ合わせ
られ、結果としてトロイダル面Stの二次元的な形状を
知ることができ、従来の干渉計で球面や平面の干渉縞を
二次元的に観察すると同様の観察が可能となる。In FIG. 5, it is assumed that the intensity distribution of the interference fringes and i at the two sagittal cross sections H and I on the toroidal surface St are stored in the memory circuit 50 at the time shown in (a). Rotate the table 20 to change the measurement position and measure again. At this time, one measurement position is the previously measured position l
The rotation angle of the turntable 20 was controlled so that the position was the same as the position shown in Fig. 5 (b).
), the interference fringes i and j are obtained. Here, the interference fringe i
, i' are interference fringes that do not have the same pattern even though the same point I is measured, but there is a lateral shift due to the vibration accompanying the rotation of the turntable 20 mentioned above and the phase shift of the interference fringes due to external disturbances. This is normal. Here, FIG. 6 shows the cross-sectional shape of each measurement position with the horizontal axis representing the sagittal direction position and the vertical axis representing the height position, and the interference fringes i and i' are Δ,
Assume that there is a misalignment. Since positions I and J are measured at the same time, the deviations of interference fringes i and j are also the same, and therefore the deviation amount Δ obtained by comparing interference fringes i and i' is
If the cross-sectional shape of the interference fringe j is corrected by the amount of l to obtain a new cross-sectional shape interference fringe j0, this interference fringe j0 will have the effects of vibration and disturbance removed. Rotate the turntable 20 again and measure interference fringes j' and k at position J and a new measurement position K in the same manner as shown in FIG. 5(c). By performing a comparison similar to the above, determining the amount of deviation Δ2, and performing correction, a shape ko having continuity can be obtained for the position INK as well. These corrected interference fringes are stored in the memory circuit 50 and output to a display device or a recording device as required. By repeating the above operations, the shape of each sagittal cross section is seamlessly joined over the entire surface of the toroidal surface St as shown in FIG. 7, and as a result, the two-dimensional shape of the toroidal surface St is known. Similar observations can be made by observing spherical or flat interference fringes two-dimensionally using a conventional interferometer.
なお、同一場所における2つの測定値から干渉縞の位相
ずれ又は断面形状の横ずれ量を求めるには、制御演算回
路60において、例えば2つの測定値をそれぞれフーリ
エ変換してその位相項を比較する等の手段を採用すれば
よい、また、上述のM1定におけるトロイダル面Stの
母線方向の測定間隔は、第2図における2つの光束L1
、L2の主光線のなす角αで定まるので、測定間隔を更
に密にするには第2図における複プリズム34の角度を
小さくして、前記の角αを小さくすればよい、更には、
ターンテーブル20の回転角ピッチをα/n(nは整数
)と小さくして、n回目の回転毎に同一個所が重複して
測定されるようにすれば、測定間隔をn倍に密とするこ
とができる。In order to obtain the phase shift of the interference fringes or the amount of lateral shift of the cross-sectional shape from two measured values at the same location, the control calculation circuit 60 performs a Fourier transform on each of the two measured values and compares the phase terms. In addition, the measurement interval in the generatrix direction of the toroidal surface St in the above-mentioned M1 constant is the two luminous fluxes L1 in FIG.
, L2 is determined by the angle α formed by the principal rays of L2, so in order to make the measurement interval even closer, the angle α of the biprism 34 in FIG.
If the rotation angle pitch of the turntable 20 is made small to α/n (n is an integer) so that the same point is repeatedly measured every nth rotation, the measurement interval can be made n times closer. be able to.
上述の実施例においては、干渉計30をトワイマン型と
し、また2つの光束L1、L2を発生させるために複プ
リズム34を使用したが、必ずしもこれらに限定される
必要はなく、例えば第8図に示すようにフィゾー型の干
渉計を使用することもできるし、複プリズム34を使用
する代りに第9図に示すように、2組の干渉計を組合わ
せる等、種々の変形例が可能であることは言うまでもな
い。In the above embodiment, the interferometer 30 is of the Twyman type, and the double prism 34 is used to generate the two light beams L1 and L2, but it is not necessarily limited to these, and for example, as shown in FIG. A Fizeau type interferometer can be used as shown, and various modifications are possible, such as combining two sets of interferometers as shown in FIG. 9 instead of using the double prism 34. Needless to say.
なお、これらの第8図、第9図においては、第2図、第
3図と同一の符号は同一の部材を示している。In addition, in these FIGS. 8 and 9, the same reference numerals as in FIGS. 2 and 3 indicate the same members.
本発明の応用はトロイダル面、シリンダ面等のように回
転対称軸を唯一つしか有しない回転曲面の測定にとどま
らない0例えば平面ミラー、或いは球レンズ等のように
従来の光学系では開口数の限界から原理的に全面同時測
定が不可能な面に対しても本発明の有効性が発揮される
。また、実施例においては、−回に2つの断面を測定す
るようにしたが、同時に3個所以上を測定してもよい。The application of the present invention is not limited to the measurement of rotational curved surfaces that have only one axis of rotational symmetry, such as toroidal surfaces and cylindrical surfaces. The effectiveness of the present invention is demonstrated even in areas where simultaneous measurement over the entire surface is theoretically impossible due to limitations. Furthermore, in the embodiment, two cross sections were measured at - times, but three or more locations may be measured at the same time.
更には、測定値同志の比較を1組の測定値同志ではなく
、複数組の測定値同志を比較してずれ量を正確に求める
ようにすことも考えられる。また、実施例ではずれ量を
求めるための測定値同志の比較を、1回の測定が終了し
た都度行うようにしたが、測定値をそのまま全てメモリ
回路50に記憶し、測定が終了した後に逐次的に測定値
を制御演算回路60で補正して正しい断面形状を得るよ
うにしてもよい。Furthermore, it is also conceivable to compare the measured values not with one set of measured values but with a plurality of sets of measured values to accurately determine the amount of deviation. In addition, in the embodiment, the comparison of measured values to determine the amount of deviation is performed every time one measurement is completed, but all measured values are stored as they are in the memory circuit 50, and after the measurement is completed, they are compared one after another. Alternatively, the measured value may be corrected by the control calculation circuit 60 to obtain a correct cross-sectional shape.
また、試料Sがシリンダ面を有する形状である場合の測
定では、シリンダ面の回転対称軸の廻りにシリンダ面を
回転し得るようなターンテーブルによって、シリンダ面
を回転させながら母線断面の形状を前述の方法と同様に
測定すればよい。或いは、シリンダ面の母線と平行な方
向にシリンダ面を直線的に移動可能な載物台を使ってシ
リンダ面を直線運動させながら、子線断面の形状を測定
することも可能である。In addition, in the measurement when the sample S has a shape with a cylinder surface, the shape of the generatrix cross section is measured while rotating the cylinder surface using a turntable that can rotate the cylinder surface around the axis of rotational symmetry of the cylinder surface. It can be measured in the same way as the method. Alternatively, it is also possible to measure the shape of the sagittal cross section while linearly moving the cylinder surface using a stage that can linearly move the cylinder surface in a direction parallel to the generatrix of the cylinder surface.
以上説明したように本□発明に係る面形状測定方法は、
各回ごとの測定値同志のずれ量を求め、このずれ量を補
正した干渉縞を継ぎ合わせるので正確な断面形状が得ら
れる。これは特に母線と子線とから形成される曲面にお
いては、従来は殆ど不uf能であった測定が可能になる
など、その効果は極めて大きい。As explained above, the surface shape measuring method according to the present invention is as follows:
The amount of deviation between the measured values for each measurement is determined, and the interference fringes corrected for this amount of deviation are stitched together, so that an accurate cross-sectional shape can be obtained. This is extremely effective, especially for curved surfaces formed by generatrix and sagittal lines, as it enables measurements that were previously almost impossible.
第1図は不連続を補正しない方法により得られた干渉縞
の集合から成る被測定面の正面図、第2図以ドは本発明
に係る面形状測定方法の実施例を示し、第2図はこの方
法を実現するための装置の平面構成図、第3図はその側
面構成図、第4図は測定される干渉縞の説明図、第5図
(a) 、 (b) 。
(c)及び第6図は測定値の不連続を補正する手順の説
明図、第7図は不連続を補正して得られた干渉縞の集合
から成る被測定面の正面図、第8図、第9図は本発明に
よる方法を実現するための他の実施例の構成図である。
符号ioはX−Yステージ、20はターンテーブル、3
0はモ渉計、31はレーザー光源、32はビームエクス
パンダ、33はハーフミラ−134は複プリズム、35
は対物レンズ、36は結像0はメモリ回路、60は制御
演算回路、7oはステッピングモータ、Sは試料、St
はトロイダル面である。
特許出願人 キャノン株式会社
第5図
[7図
第8図
り リFIG. 1 is a front view of a surface to be measured consisting of a set of interference fringes obtained by a method that does not correct discontinuities; FIG. 3 is a plan configuration diagram of an apparatus for realizing this method, FIG. 3 is a side configuration diagram thereof, FIG. 4 is an explanatory diagram of interference fringes to be measured, and FIGS. 5(a) and (b). (c) and Fig. 6 are explanatory diagrams of the procedure for correcting discontinuities in measured values, Fig. 7 is a front view of the surface to be measured consisting of a set of interference fringes obtained by correcting discontinuities, and Fig. 8 , FIG. 9 is a block diagram of another embodiment for implementing the method according to the present invention. The code io is the X-Y stage, 20 is the turntable, 3
0 is a beam meter, 31 is a laser light source, 32 is a beam expander, 33 is a half mirror, 134 is a double prism, 35
is an objective lens, 36 is an imaging circuit, 0 is a memory circuit, 60 is a control calculation circuit, 7o is a stepping motor, S is a sample, St
is a toroidal surface. Patent applicant: Canon Co., Ltd. Figure 5 [Figure 7 Figure 8]
Claims (1)
の断面形状を、被測定面の測定位置を変えながらL渉計
により回持に測定することを繰り返し、各回の測定では
少なくとも1つの測定位置が先の測定位置と同一となる
ようにし、第1及び第2の測定時において回−位置につ
いて得られた測定値同志を比較して、これらの測定値間
のずれ酸を求め、 ・方の測定時の測定値を基準として
他方の測定時の複数個の測定値を補正し、補正して得ら
れた各断面形状を継ぎ合わせることにより、前記被測定
面の二次元的な形状の情報を得ることを特徴とする面形
状測定方法。 2、前記被測定面が母線と子線とから形成される曲面で
ある場合に、F渉計から射出する光束の−を光線を母線
の白土中心点に合わせ、光束の焦点位置を子線の曲率中
心位置に合わせ、被測定面を母線の曲率中心点を軸にし
て回転移動するようにして測定位置を変えるようにした
特許請求の範囲第1項記載の面形状測定方法。[Claims] l, i which is the surface to be measured! At least two or more of the Ia side 1-
The cross-sectional shape of the surface to be measured is repeatedly measured using an L ladle meter while changing the measurement position on the surface to be measured, and in each measurement, at least one measurement position is the same as the previous measurement position, and the first and by comparing the measured values obtained for rotation and position during the second measurement to determine the deviation between these measured values, A method for measuring a surface shape, characterized in that information on the two-dimensional shape of the surface to be measured is obtained by correcting individual measured values and joining the respective cross-sectional shapes obtained by the correction. 2. When the surface to be measured is a curved surface formed by a generatrix and a sagittal line, align the - of the light beam emitted from the F interferometer with the white clay center point of the generatrix, and set the focus position of the light beam on the sagittal line. 2. The surface shape measuring method according to claim 1, wherein the measurement position is changed by rotating the surface to be measured about the center of curvature of the generatrix as an axis in accordance with the center of curvature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5707882A JPS58173423A (en) | 1982-04-05 | 1982-04-05 | Measuring method of face shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5707882A JPS58173423A (en) | 1982-04-05 | 1982-04-05 | Measuring method of face shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58173423A true JPS58173423A (en) | 1983-10-12 |
JPH0447242B2 JPH0447242B2 (en) | 1992-08-03 |
Family
ID=13045430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5707882A Granted JPS58173423A (en) | 1982-04-05 | 1982-04-05 | Measuring method of face shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58173423A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097205A (en) * | 1983-11-01 | 1985-05-31 | Olympus Optical Co Ltd | Planar face measuring device |
JPS62294905A (en) * | 1985-11-26 | 1987-12-22 | エ−デイ−イ−・コ−ポレ−シヨン | Method and device for measuring object |
CN105466354A (en) * | 2015-12-21 | 2016-04-06 | 中国科学院长春光学精密机械与物理研究所 | Optical element thermal stress assessment system in vacuum environment |
WO2022225897A1 (en) * | 2021-04-20 | 2022-10-27 | Nikon Corporation | Systems and methods for measuring height properties of surfaces |
-
1982
- 1982-04-05 JP JP5707882A patent/JPS58173423A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097205A (en) * | 1983-11-01 | 1985-05-31 | Olympus Optical Co Ltd | Planar face measuring device |
JPH0510602B2 (en) * | 1983-11-01 | 1993-02-10 | Olympus Optical Co | |
JPS62294905A (en) * | 1985-11-26 | 1987-12-22 | エ−デイ−イ−・コ−ポレ−シヨン | Method and device for measuring object |
JPH0549042B2 (en) * | 1985-11-26 | 1993-07-23 | Ei Deii Ii Corp | |
CN105466354A (en) * | 2015-12-21 | 2016-04-06 | 中国科学院长春光学精密机械与物理研究所 | Optical element thermal stress assessment system in vacuum environment |
WO2022225897A1 (en) * | 2021-04-20 | 2022-10-27 | Nikon Corporation | Systems and methods for measuring height properties of surfaces |
Also Published As
Publication number | Publication date |
---|---|
JPH0447242B2 (en) | 1992-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6188482B1 (en) | Apparatus for electronic speckle pattern interferometry | |
JPH0712535A (en) | Interferometer | |
JPH0666537A (en) | System error measuring method and shape measuring device using it | |
JP3162355B2 (en) | Surface shape measurement method and device | |
JPS58173423A (en) | Measuring method of face shape | |
JP3146590B2 (en) | Shape measuring method and shape measuring system | |
CN109612405A (en) | Large-diameter convex cone mirror surface shape detection system and detection method | |
JPS58173416A (en) | Measuring method of face shape | |
JPH07229721A (en) | Device for generating aspherical wave and method for measuring aspherical shape | |
HU195882B (en) | Arrangement for interference examination of the flatness of technical surfaces | |
JPH02259510A (en) | Method and instrument for measuring surface shape or the like | |
JPH03156305A (en) | Aspherical-shape measuring apparatus | |
JPH08159724A (en) | Rotary surface measuring instrument | |
JP2000249510A (en) | Shearing interferometer, refraction index distribution measuring device provided with the interferometer and measuring method for refraction index distribution | |
JPH05141935A (en) | Measuring method and measuring device for small displacement quantity | |
JP3192461B2 (en) | Optical measuring device | |
JPH1114498A (en) | Optical system, measuring method, and device | |
JP2535732B2 (en) | Optical instrument aberration measurement method using hologram element | |
JP2000146515A (en) | Shearing interferometer and shearing interference method | |
JPH0540024A (en) | Shape measuring system | |
JP3111589B2 (en) | Shape measuring method and shape measuring system | |
JP3169189B2 (en) | Method and apparatus for measuring surface shape of surface to be measured | |
JP3393910B2 (en) | Surface shape measurement method | |
JP2527176B2 (en) | Fringe scanning shearing interferometer | |
JPH06273129A (en) | Method and apparatus for measuring rotary surface |