[go: up one dir, main page]

JPS58172210A - Manufacture of carbon body for electrode - Google Patents

Manufacture of carbon body for electrode

Info

Publication number
JPS58172210A
JPS58172210A JP57053585A JP5358582A JPS58172210A JP S58172210 A JPS58172210 A JP S58172210A JP 57053585 A JP57053585 A JP 57053585A JP 5358582 A JP5358582 A JP 5358582A JP S58172210 A JPS58172210 A JP S58172210A
Authority
JP
Japan
Prior art keywords
electrode
carbon
parts
resin
gas permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57053585A
Other languages
Japanese (ja)
Inventor
Hitoshi Fujimagari
等 藤曲
Nobuaki Katada
堅田 信明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP57053585A priority Critical patent/JPS58172210A/en
Publication of JPS58172210A publication Critical patent/JPS58172210A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Ceramic Products (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase the gas permeability of a carbon for an electrode and to improve the discharge characteristics by adding a resin which is converted into fibers by shearing force during kneading and vaporized during calcination as a component when a material which is carbonized by calcination is kneaded. CONSTITUTION:A material which is carbonized by calcinating, e.g. polyvinyl chloride or polyvinylidene chloride, graphite, activated carbon or other material which is used optionally, and a resin which is converted into fibers by shearing force during kneading and vaporized during calcination, e.g. polytetrafluoroethylene or polymethyl methacrylate are prepared. These materials are kneaded, molded, and calcined to obtain a carbon body for an electrode with high gas permeability and improved discharge characteristics.

Description

【発明の詳細な説明】 本発明は、電極用炭素体の製造方法、特に。[Detailed description of the invention] The present invention relates to a method for producing a carbon body for electrodes, particularly.

空気電池や燃料電池の電極用炭素体などのように気体透
過率が高いことを望まれる電極用炭素体の好適な製造方
法に関する。
The present invention relates to a suitable method for producing carbon bodies for electrodes, such as carbon bodies for electrodes of air cells and fuel cells, which are desired to have high gas permeability.

各種合成樹脂など、焼成によって炭化する成分を“、黒
鉛や活性炭などの必要に応じて使用される成分とともに
材料とし、混線、成形、焼成という基本的工程を経て電
極用炭素体を製造することは公知となっている。
It is possible to manufacture carbon bodies for electrodes by using components that carbonize when fired, such as various synthetic resins, along with components used as necessary, such as graphite and activated carbon, through the basic steps of cross-wiring, molding, and firing. It is publicly known.

そして、空気電池や燃料電池などのように。And like air cells, fuel cells, etc.

気体透過能を必要とされる電極用炭素体にあっては、焼
成時に自ずと形成される微細気孔をして役立たせている
Carbon bodies for electrodes that require gas permeability utilize the fine pores that are naturally formed during firing.

しかし、前述した如き微細気孔だけでは決して満足な気
体透過能を得ることはできない。
However, it is never possible to obtain a satisfactory gas permeability by using only the fine pores as described above.

そこで、如何にして人為的に気体透過能を高めるかが重
要事項となる。
Therefore, it is important to consider how to artificially increase the gas permeability.

本発明は、混線時に生じる剪断力を受けて繊維化し、焼
成時(/i:は気散じてしまうような樹脂を用いること
により、気体透過能を高めることを可能にしたものであ
り、即ち1本発明は、焼成により炭化する成分を少くと
も主材として含む材料を混線、成形、焼成して電極用炭
素体を製造するにあたり、゛前記材料中の成分として、
混線時の剪断力によりて繊維化し、焼成時には気散して
しまう樹脂・を含ませたことを特徴とする電極用炭素体
の製造方法を要旨とするものである。
The present invention makes it possible to increase the gas permeability by using a resin that becomes fibrous under the shearing force generated during cross-wires and is dispersed during firing. The present invention provides a method for manufacturing a carbon body for an electrode by cross-wiring, forming, and firing a material that contains at least a component that is carbonized by firing as a main component.
The gist of the present invention is a method for producing a carbon body for an electrode, characterized in that it contains a resin that becomes fibrous due to the shearing force during cross-contact and is dispersed during firing.

まず2本発明で使用される材料の成分について例示する
と、焼成によυ炭化する成分としては、ポリ塩化ビニル
、ポリ塩化ビニリデン、塩化ビニル−酢酸ビニル共重合
体、塩素化ポリ塩化ビニル、塩素化ポリエチレンなどの
含塩素樹脂やフラン系樹脂をはじめとする各種合成樹脂
ハ勿論+  ヒツチ、アスファルト、セルロース誘導体
、リグニン誘導体、アラビアゴム、ポリビニルアルコー
ルといったように各種有機物が挙げられる。
First, to give two examples of the components of the materials used in the present invention, components that undergo υ carbonization by firing include polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, chlorinated polyvinyl chloride, and chlorinated polyvinyl chloride. Examples include various synthetic resins such as chlorine-containing resins such as polyethylene and furan resins, and various organic substances such as asphalt, cellulose derivatives, lignin derivatives, gum arabic, and polyvinyl alcohol.

また、必要に応じて使用される成分としては。In addition, as an ingredient used as necessary.

前述した黒鉛や活性炭など機能を高めることを主目的に
使用されるもの1例えば、触媒用としての白金やパラジ
ウムあるいはそれらの化合物や金属フタロシアニンなど
、をはじめとして。
Items used primarily to enhance functionality, such as the aforementioned graphite and activated carbon, include platinum, palladium, compounds thereof, and metal phthalocyanine for use as catalysts.

製造時の単なる助剤であることを主目的に使用されるも
の9例えば、可塑剤、溶剤、安定剤なども挙げられる。
Examples of substances used mainly as auxiliary agents during production include plasticizers, solvents, and stabilizers.

そして9本発明の要点成分たる、混練時の剪断力によっ
て繊維化し、焼成時には気散してしまう樹脂(以下、要
分樹脂という)としては。
9. The resin (hereinafter referred to as "essential resin"), which is a key component of the present invention, is turned into fibers by the shearing force during kneading and is dispersed during firing.

ポリテトラフルオロエチレン、ポリメチルメタクリレー
ト、α−メチルスチレン、トリフルオロスチレンなどが
挙げられ、中でも、ポリテトラフルオロエチレンは繊維
化し易くモノマー生成率も高く、好優しく使用される。
Examples include polytetrafluoroethylene, polymethyl methacrylate, α-methylstyrene, and trifluorostyrene. Among them, polytetrafluoroethylene is easily used as a fiber and has a high monomer production rate.

前述した成分はそれぞれ1種もしくは2種以上の組み合
わせとして使用することが可能で。
The above-mentioned components can be used alone or in combination of two or more.

使用割合も任意であるが、要分樹脂はさほど大きな使用
割合でなくても十分に気体透過能を高めることができ1
例えば、ポリテトラフルオロエチレンの場合、焼成によ
り炭化する成分(および、焼成後も残存させる。必要に
応じて使用される成分:黒鉛など)に対する重量割合で
The usage ratio is also arbitrary, but the key point is that the gas permeability can be sufficiently increased even if the usage ratio of resin is not very large.
For example, in the case of polytetrafluoroethylene, the weight ratio is based on the component that is carbonized by firing (and the component that remains after firing; optionally used component: graphite, etc.).

10チ程度以下で十分である。勿論、この範囲よシ多く
使用することもできるが、あまシに多すぎると強度的な
問題や割れなどを生じることになるので、15チ以上の
使用は差し控えた方がよいし、逆に、少なすぎると実質
的に効果を生じなくなるので、0.5%以上、好ましく
は。
About 10 inches or less is sufficient. Of course, you can use more than this range, but if you use too much, it will cause strength problems and cracks, so it is better to refrain from using more than 15 inches. If it is too small, there will be no substantial effect, so it is preferably 0.5% or more.

1チ以上とするのがよく、また、要分樹脂の種類9組み
合わせによって使用割合が変化するのも然りである。
It is preferable to use 1 or more, and it is also true that the usage ratio changes depending on the combination of 9 types of essential resins.

材料の混線はヘンシェルミキサー、ニーダ−。Mixing of materials is done using Henschel mixer and kneader.

ロール機など種々手段を用いることができるが。Various means such as a roll machine can be used.

本発明はこの混線時に発生する剪断力を利用するので、
各ロールの回転数1回転比2間隙の大きさなどを設定す
ることによって大きな剪−断力を得ることができ、また
、ロール回数によっても繊維化状態を変更できるロール
機は好適に採用される手段の一つである。
Since the present invention utilizes the shearing force generated during this crosstalk,
A roll machine that can obtain a large shearing force by setting the rotation speed, rotation ratio, and gap size of each roll, and can also change the fiberization state by changing the number of rolls, is preferably adopted. It is one of the means.

混練された材料は、押出成形、射出成形、注型などの種
々手段によって成形されるが、当該成形をもって最終形
状たる必要はなく、また。
The kneaded material is molded by various means such as extrusion molding, injection molding, and casting, but it is not necessary that the final shape is formed by the molding.

後記する実施例でもわかるように9本発明による電極用
炭素体はその全体に一様に前記要分樹脂に基づく気孔を
形成されている必要もない。
As will be understood from the Examples described later, the carbon body for electrodes according to the present invention does not need to have pores formed uniformly throughout the body based on the essential resin.

成形された材料゛は必要に応じて乾燥などの工程を経て
焼成される。尚、この際、前記した含塩素樹脂について
は600℃程度までの昇温を例えば、10時間、20時
間、あるいは30時間(勿論それ以上でもよい)といっ
たように時間をかけて行うと強度的に優れた製品を得る
ことができる。
The molded material is fired after undergoing processes such as drying, if necessary. At this time, for the above-mentioned chlorine-containing resin, if the temperature is raised to about 600°C over a long period of time, for example, 10 hours, 20 hours, or 30 hours (of course, it may be longer), the strength will deteriorate. You can get excellent products.

焼成後の炭素用電極体は、更に必要に応じて触媒層の形
成、撥水処理などを施され電極として使用される。
The carbon electrode body after firing is further subjected to formation of a catalyst layer, water repellent treatment, etc. as necessary, and then used as an electrode.

以下、実施例により説明するが、単に部とあるのは2重
量部を示すものである。
Examples will be explained below, and "part" means 2 parts by weight.

〔実施例1〕 ポリ塩化ビニル           6°部黒   
鉛                      60
部活性炭         60部 ジオクチル7タレート(可塑剤)     40部ステ
アリン酸塩(安定剤)       4部メチルエチル
ケトン(溶剤)    150部ポリテトラフルオロエ
チレン     2部上記材料を加圧ニーダ−及び6本
ロール機にて混練した。3本ロール機の回転数は後ロー
ルから順に15 rpm、’ 45 rpm、 90 
rpm、従って回転比はj : 5 : 6.また、各
ロールの直径は。
[Example 1] Polyvinyl chloride 6° black
Lead 60
Part activated carbon 60 parts Dioctyl 7-talate (plasticizer) 40 parts Stearate (stabilizer) 4 parts Methyl ethyl ketone (solvent) 150 parts Polytetrafluoroethylene 2 parts The above materials were kneaded using a pressure kneader and a 6-roll machine. . The rotational speed of the three-roll machine is 15 rpm, 45 rpm, 90 rpm starting from the rear roll.
rpm, therefore the rotation ratio is j: 5: 6. Also, what is the diameter of each roll?

1201EBであり1間隙は0.02mに設定、温度は
105℃、ロール回数は40回とした。
1201EB, one gap was set to 0.02 m, the temperature was 105° C., and the number of rolls was 40.

混練された材料は溶剤を実質的に含まない状態となって
おり、これをセンタービン付キプレーカープレートを使
用したラム式の押出成形機を用いて、肉厚1.5111
(’外径4 II (φ)、内径1襲(φ))の中空棒
状体に押し出した。尚、押し出された中空棒状体を切断
し、その面を顕微鏡で観察したところ、約0.01〜0
.5μの径を有する繊維体が網状に存在していた。
The kneaded material is in a state in which it is substantially free of solvent, and is molded into a ram-type extrusion molding machine with a wall thickness of 1.5111 mm using a Kipler car plate with a center bin.
It was extruded into a hollow rod-shaped body (outer diameter 4 II (φ), inner diameter 1 stroke (φ)). In addition, when the extruded hollow rod-shaped body was cut and its surface was observed under a microscope, it was found that it was approximately 0.01 to 0.
.. A network of fibrous bodies having a diameter of 5 μm was present.

中空棒状体を空気中で室温から500℃まで15時間か
けて昇温処理した後、密閉容器で。
After heating the hollow rod-shaped body in air from room temperature to 500°C over 15 hours, it was placed in a closed container.

700℃、1時間の焼成処理を施した。A firing treatment was performed at 700°C for 1 hour.

〔実施例2〜4〕 実施例1において、ポリテトラフルオロエチレンの使用
量を5部、1部部、20部と変えた以外すべて実施例1
と同様にしたものを順に実施例2,3.4とした。
[Examples 2 to 4] All examples were the same as in Example 1 except that the amount of polytetrafluoroethylene used was changed to 5 parts, 1 part, and 20 parts.
Examples 2 and 3.4 were prepared in the same manner as above.

〔実施例5〕 実施例1において、ポリテトラフルオロエチレンに代え
、ポリメチルメタクリレートを2部使用した以外すべて
実施例1と同様にした。
[Example 5] Everything was the same as in Example 1 except that 2 parts of polymethyl methacrylate was used instead of polytetrafluoroethylene.

〔実施例6,7〕 実施例5において、ポリメチルメタクリレートの使用量
を5部、10部と変えた以外すべて実施例5と同様にし
たものを順に実施例6,7とした。
[Examples 6 and 7] Examples 6 and 7 were prepared in the same manner as in Example 5 except that the amount of polymethyl methacrylate used was changed to 5 parts and 10 parts.

〔実施例8〕 ポリ塩化ビニル           30部黒   
鉛                      40
部ジオクチルフタレート(可塑剤)   15部ステア
リン酸塩(安定剤)      2部メチルエチルケト
ン(溶剤)     80部ポリテトラフルオロエチレ
ン     5部上記材料を実施例1と同様に混練した
(以下。
[Example 8] Polyvinyl chloride 30 parts black
Lead 40
1 part dioctyl phthalate (plasticizer) 15 parts stearate (stabilizer) 2 parts methyl ethyl ketone (solvent) 80 parts polytetrafluoroethylene 5 parts The above materials were kneaded in the same manner as in Example 1 (below).

材料■という)。materials (referred to as ■).

ポリ塩化ビニル           35部黒   
鉛                      10
部活性炭         50部 ジオクチルフタレート(可塑剤)   20部ステアリ
ン酸塩(安定剤)      2部メチルエチルケトン
(溶剤)     80部上記材料を実施例1と同様に
混練した(以下。
Polyvinyl chloride 35 parts black
Lead 10
Part activated carbon 50 parts Dioctyl phthalate (plasticizer) 20 parts Stearate (stabilizer) 2 parts Methyl ethyl ketone (solvent) 80 parts The above materials were kneaded in the same manner as in Example 1 (below).

材料「という)。materials (called "materials").

実施例1で使用した押出成形機に、まず材料■を入れ1
次いで材料Iを入れ、実施例1と同様に押し出した。こ
れによって、押出成形機内における材料の流れを利用し
、材料■よりなる内層部(肉厚1. OIll ) 、
材料■よりなる外層部(肉厚0.5 m )からなる複
層の中空棒状体が得られ、これを実施例1と同様に焼成
温度まで熱処理した。
First, put material ■ into the extrusion molding machine used in Example 1.
Next, material I was added and extruded in the same manner as in Example 1. As a result, by utilizing the flow of material in the extrusion molding machine, the inner layer part (thickness 1.OIll) made of material (1),
A multilayer hollow rod-shaped body consisting of an outer layer portion (thickness: 0.5 m) made of material (1) was obtained, and this was heat-treated to the firing temperature in the same manner as in Example 1.

〔比較例1〕 実施例1において、ポリテトラフルオロエチレンを使用
しなかった以外すべて実施例1と同様にした。
[Comparative Example 1] Everything was the same as in Example 1 except that polytetrafluoroethylene was not used.

〔比較例2〕 実施例8において、ポリテトラフルオロエチレンを使用
しなかった以外すべて実施例8と同様にした。
[Comparative Example 2] The same procedures as in Example 8 were carried out except that polytetrafluoroethylene was not used.

上記各側で得た中空炭素棒それぞれの先端をシリコンゴ
ムで封じ、非封部の長さを4011として、860To
rr圧の空気を中空部に圧送(100Torr差)L、
40111長の非封部全表面より透過する空気の量を調
べた。この結果を、見掛比重(注1)、比表面積(注2
)とともに表−1に示す。
The tips of the hollow carbon rods obtained on each side were sealed with silicone rubber, and the length of the unsealed part was set to 4011, and 860To
Air at rr pressure is pumped into the hollow part (100 Torr difference) L,
The amount of air permeating through the entire surface of the unsealed part with a length of 40111 was investigated. These results are calculated based on the apparent specific gravity (Note 1) and specific surface area (Note 2).
) are shown in Table-1.

表−1 注1=見掛比重は1重量(直示天秤で測定)を体積(ダ
イヤルノギスで測定)で徐することによって算出した。
Table 1 Note 1: Apparent specific gravity was calculated by dividing 1 weight (measured with a direct scale) by volume (measured with a dial caliper).

注2:比表面積は、低温窒素吸着によるBET法によっ
て測定した。
Note 2: Specific surface area was measured by the BET method using low-temperature nitrogen adsorption.

また、電極としての性能を調べるために、各側で得た中
空炭素棒それぞれの表面にパラフィン10チを含む石油
ベンジン溶液を噴霧し9石油ベンジンを揮発させて撥水
処理し、先端をシリコンゴムで封じたものを正極とし、
空気電池を構成した。尚、負極は99.9 %亜鉛より
なる内径20Ws(φ)の筒状容器、電解液は15チ水
酸化すtllラム溶液、正極の長さはシリコン非封部が
40’1llli、  うち、電解液中における長さは
301B、  また、負荷抵抗は100Ωであり。
In addition, in order to investigate the performance as an electrode, a petroleum benzene solution containing 10% paraffin was sprayed on the surface of each hollow carbon rod obtained on each side, and the petroleum benzene was volatilized to make it water repellent, and the tip was made with silicone rubber. The one sealed with is used as the positive electrode,
An air battery was constructed. The negative electrode was a cylindrical container with an inner diameter of 20Ws (φ) made of 99.9% zinc, the electrolyte was a 15% hydroxide tlllum solution, and the length of the positive electrode was 40'1lli in the unsealed silicon part. The length in liquid is 301B, and the load resistance is 100Ω.

正極は負極の中央に位置させた。The positive electrode was located in the center of the negative electrode.

得られた放電特性を表−2に示す。The obtained discharge characteristics are shown in Table 2.

(注)表−2中、初期電圧は放電開始5分後に測定した
安定状態下(放置開始直後は、正極中に存在する空気量
などの影響があり、消費される酸素と供給される酸素と
が平衡していない)における値を示した。また、、O,
1V低下、02■低下などの値は、それぞれ放電開始時
から測定した。初期電圧からの低下分を時間で示したも
のである。
(Note) In Table 2, the initial voltage is measured under stable conditions 5 minutes after the start of discharge. is not balanced). Also, ,O,
Values such as 1V decrease and 02■ decrease were measured from the start of discharge. It shows the amount of decrease from the initial voltage in terms of time.

以上よりわかるように9本発明によると、電極用炭素体
としての気体透過能を高めることができ、電池としての
放電特性を改善することができる。また2本発明による
と比表面積も大きくすることが可能となるので、格別、
気体透過能を必要としない他の電池にも好ましく[重用
することができる〇 特許出願人 ぺんてる株式会社
As can be seen from the above, according to the present invention, the gas permeability of the carbon material for electrodes can be increased, and the discharge characteristics of the battery can be improved. In addition, according to the present invention, it is possible to increase the specific surface area, so
Also suitable for other batteries that do not require gas permeability [can be used extensively] Patent applicant Pentel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 焼成により炭化する成分を少くとも主材として含む材料
を混線、成形、焼成して電極用炭素体を製造するにあた
り、前記材料中の成分として、混線時の剪断力によって
繊維化し、焼成時には気散してしまう樹脂を含ませたこ
とを特徴とする電極用炭素体の製造方法。
When manufacturing a carbon body for electrodes by cross-wiring, forming, and firing a material that contains at least a component that carbonizes when fired, the component in the material is formed into fibers by the shearing force during cross-wiring, and is dispersed during firing. 1. A method for producing a carbon body for an electrode, characterized in that it contains a resin that causes
JP57053585A 1982-03-31 1982-03-31 Manufacture of carbon body for electrode Pending JPS58172210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053585A JPS58172210A (en) 1982-03-31 1982-03-31 Manufacture of carbon body for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053585A JPS58172210A (en) 1982-03-31 1982-03-31 Manufacture of carbon body for electrode

Publications (1)

Publication Number Publication Date
JPS58172210A true JPS58172210A (en) 1983-10-11

Family

ID=12946923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053585A Pending JPS58172210A (en) 1982-03-31 1982-03-31 Manufacture of carbon body for electrode

Country Status (1)

Country Link
JP (1) JPS58172210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096516A (en) * 1983-10-31 1985-05-30 Pentel Kk Molded article of active carbon
EP0755328A1 (en) * 1994-04-15 1997-01-29 Corning Incorporated Activated carbon honeycombs having varying adsorption capacities and method of making same
WO1997028547A1 (en) * 1996-02-02 1997-08-07 Takeda Chemical Industries, Ltd. Activated carbon electrode and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096516A (en) * 1983-10-31 1985-05-30 Pentel Kk Molded article of active carbon
EP0755328A1 (en) * 1994-04-15 1997-01-29 Corning Incorporated Activated carbon honeycombs having varying adsorption capacities and method of making same
EP0755328A4 (en) * 1994-04-15 1997-11-12 Corning Inc Activated carbon honeycombs having varying adsorption capacities and method of making same
WO1997028547A1 (en) * 1996-02-02 1997-08-07 Takeda Chemical Industries, Ltd. Activated carbon electrode and process for producing the same

Similar Documents

Publication Publication Date Title
KR101963139B1 (en) Producing method of carbon aerogel and carbon aerogel made by the same
Kim et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors
KR100894481B1 (en) Supercapacitor electrode composed of metal oxide accumulated in ultrafine carbon fiber and manufacturing method thereof
US7505250B2 (en) Carbon-porous media composite electrode and preparation method thereof
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
DE102010005954A1 (en) Porous carbon product and process for its production
WO2007137667A1 (en) Method for the production of porous carbon molds
CN105761950A (en) Preparation method of porous nitrogen-rich carbon fiber electrode
JP2004044074A (en) Activated carbon fiber and method for producing the same
KR20210016535A (en) Method for producing carbon-based active layer for anode of lead carbon battery and active layer prepared therefrom
KR101439896B1 (en) Method for preparing controlled porous carbon nano sheet and porous carbon nano sheet made by the same
US3158510A (en) Catalytic fuel cell electrode and method of making same
JPS58172210A (en) Manufacture of carbon body for electrode
JP2005239456A (en) Nitrogen-containing carbon and method for producing the same
JPH01239056A (en) Alumina pipe and its production
Yadav et al. Highly conducting silver nanowire‐polyacrylonitrile hollow fibres for flexible supercapacitors
JPH0358146B2 (en)
CN113668140A (en) A kind of porous interconnected structure carbon nanofiber felt and its preparation method and application
JPS602999B2 (en) Manufacturing method of lead core
GB2026816A (en) Diaphragms for acoustic instruments and method of producing the same
JPH11251197A (en) Method for manufacturing carbon electrode for electric double layer capacitor
JPS60204610A (en) Manufacture of formed article of activated carbon
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JPS6113568A (en) Manufacturing method of carbon body for electrode
KR102094204B1 (en) Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials