JPS58172015A - Generating circuit of saw-tooth wave - Google Patents
Generating circuit of saw-tooth waveInfo
- Publication number
- JPS58172015A JPS58172015A JP5470782A JP5470782A JPS58172015A JP S58172015 A JPS58172015 A JP S58172015A JP 5470782 A JP5470782 A JP 5470782A JP 5470782 A JP5470782 A JP 5470782A JP S58172015 A JPS58172015 A JP S58172015A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- voltage
- turn
- oscillation
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007599 discharging Methods 0.000 claims abstract description 8
- 230000010355 oscillation Effects 0.000 abstract description 22
- 239000003990 capacitor Substances 0.000 abstract description 21
- 238000010586 diagram Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 101100448410 Mus musculus Gkn1 gene Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K4/00—Generating pulses having essentially a finite slope or stepped portions
- H03K4/06—Generating pulses having essentially a finite slope or stepped portions having triangular shape
- H03K4/08—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape
- H03K4/48—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices
- H03K4/50—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor
- H03K4/501—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor the starting point of the flyback period being determined by the amplitude of the voltage across the capacitor, e.g. by a comparator
- H03K4/502—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor the starting point of the flyback period being determined by the amplitude of the voltage across the capacitor, e.g. by a comparator the capacitor being charged from a constant-current source
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、のこぎり波発生回路に関するもので、集積回
路化した場合における発振周波数の温度ドリフトに対す
る1)温度係数が小さい 2)温に係数のバラツキ−が
小さい、という利点に加えて製造上相じる発振レベル及
び晃伽周波畝のバラツキに対して極めて良好なのこぎり
波発生回路を提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sawtooth wave generation circuit, which has the following advantages: 1) Small temperature coefficient against temperature drift of oscillation frequency when integrated circuit 2) Small variation in coefficient with temperature In addition, the present invention provides a sawtooth wave generation circuit which is extremely good against variations in oscillation level and koga frequency ridges due to manufacturing reasons.
従来から、周波数50Hzもしくは5QHzで発振する
TV用の垂直偏向回路や低い周波数でのPLL回路等に
用いられるのこぎり波発生回路としては種々な本のが開
発されているが、自走発振時におけるバラツキに対して
今一つ満足できるものが少なかった。例えば、現在実用
化されているこの種の発振回路の一例を第1図に示すが
、この発振回路では、発振の時定数を定めるのに、通常
用いるごとくキャパシタと抵抗を用いてその時定数に基
〈キャパシタの充放電を利用したものであるが、その充
放−の限度レベルを設定するため、三つのトランジスタ
Qn * Ql4およびQtyの工きツタを共通接続し
て差動物性をもたせQssのベースに充放電用キャパシ
タCo1の端子を圧を加え、他の二つのトランジスタQ
14 * Ql?のベースにはそれぞれ発振波形の上限
及び下限を決足する基準バイアスが夫々独立に加えられ
ている。その値はVu点で2/3Vcc。Various books have been developed for sawtooth wave generation circuits used in vertical deflection circuits for TVs that oscillate at a frequency of 50Hz or 5QHz, PLL circuits at low frequencies, etc., but variations in free-running oscillation There wasn't much that I was satisfied with. For example, an example of this type of oscillation circuit that is currently in practical use is shown in Figure 1. In this oscillation circuit, a capacitor and a resistor are used as usual to determine the oscillation time constant. (This uses the charging and discharging of a capacitor, but in order to set the limit level for charging and discharging, the base of Qss is Pressure is applied to the terminal of charging/discharging capacitor Co1, and the other two transistors Q
14 * Ql? Reference biases that determine the upper and lower limits of the oscillation waveform are independently applied to the bases of the oscillation waveforms. Its value is 2/3 Vcc at Vu point.
Vsl点で1/3Vcc(Vccは電源電圧)に選ばれ
ている。The Vsl point is selected to be 1/3 Vcc (Vcc is the power supply voltage).
次に、第1図の発振回路の動作を図に基いて説明する。Next, the operation of the oscillation circuit shown in FIG. 1 will be explained based on the drawings.
先ず、ml源電圧Vccが印加されると、トランジスタ
Q14 * Qtyのベースには抵抗分割によってただ
ちに所定のバイアス電圧が加えられるが、キャパシタC
・1の両端には抵抗RolとCOtとの時定数に基く光
電々流によってROIの電圧降下を生じVccからこれ
を引いた電圧が加えられる。従って、キャパシタCot
の両端の電位は0から徐々にC・!×Ro1の時定数に
したがって上昇する。トランジスタQ13のベース電圧
が、Ql4のベース電圧V asに接近するとQl鵞が
導通をはじめ、抵抗RISK電圧降下が生じる。この電
圧によってトランジスタQssに電流が流れはじめて抵
抗antの電圧降下がふえる。これによりトランジスタ
Qso + Qtsが同時に導通を開始すると、トラン
ジスタQllはQl4のペースバイアス抵抗であるR鵞
・ヲ蝮絡するため、V匂の一位は恩赦にさがクトランジ
スタQI4はカットオフになる。よってトランジスタQ
txには勢いよ<1!を流が流れ、トランジスタQss
+ Qssは完全導通となる。かくしてキャパシタC
o1にたくわ見られた電荷は、抵抗RB?およびトラン
ジスタQ、。First, when the ml source voltage Vcc is applied, a predetermined bias voltage is immediately applied to the base of the transistor Q14*Qty by resistance division, but the capacitor C
・A voltage drop is generated across the ROI due to a photocurrent based on the time constant of the resistors Rol and COt, and a voltage obtained by subtracting this from Vcc is applied to both ends of the resistor 1. Therefore, the capacitor Cot
The potential across both ends gradually increases from 0 to C.! It increases according to the time constant of ×Ro1. When the base voltage of transistor Q13 approaches the base voltage Vas of Ql4, Ql begins to conduct, causing a voltage drop on resistor RISK. Due to this voltage, current begins to flow through the transistor Qss, and the voltage drop across the resistor ant increases. As a result, when the transistors Qso + Qts start conducting at the same time, the transistor Qll connects with the pace bias resistance of Ql4, so the first place in the V smell is unreliable, and the transistor QI4 is cut off. . Therefore, transistor Q
There is momentum in tx <1! The current flows through the transistor Qss
+ Qss becomes completely conductive. Thus capacitor C
Is the charge seen in o1 the resistor RB? and transistor Q,.
を通じて放電される。キャパシタCotとR1γの時定
数に基いて時間とともにCOIの電圧Vs2は下降し、
Vslの電圧に近くなってくるとQl2には電流が次第
にながれなくなってくる。よって、トランジスタQls
s Ql。、Ql3は同時にカットオフに近くなる。discharged through. The voltage Vs2 of COI decreases with time based on the time constant of capacitor Cot and R1γ,
As the voltage approaches Vsl, current gradually stops flowing to Ql2. Therefore, the transistor Qls
s Ql. , Ql3 simultaneously become close to the cutoff.
こうなると、トランジスタQ ttが導通をはじめてト
ランジスタQss + Qs@を導通させ、トランジス
タQllに減少しながらも流れこんでいる電流紫うばっ
てしまうため、トランジスタQtm+Qll)の電流カ
ットオフは急赦に生じる。トランジスタQ1・tQtm
がカットオフになると、トランジスタQ14のペース電
位が急上昇してもとくもどるため、トランジスタQty
もカットオフになり、同時にキャパシタCowには抵抗
R・1を通じて再び充電が開始される。この彼、前述し
た動作が生じ。When this happens, the transistor Qtt starts to conduct, causing the transistor Qss + Qs@ to conduct, and the current flowing into the transistor Qll, albeit decreasing, is lost, so that the current cut-off of the transistor Qtm + Qll suddenly occurs. Transistor Q1・tQtm
When Qty becomes cutoff, the pace potential of transistor Q14 rises rapidly and returns to its original state, so transistor Qty
is also cut off, and at the same time, capacitor Cow starts charging again through resistor R.1. This caused him to exhibit the aforementioned behavior.
結縄発振がくり返される。The rope oscillation is repeated.
ところが、この第1のごときi&回1では、発振回路を
構成するトランジスタQ14 *Q*を及びQxsのベ
ースバイアス回路がそれぞれ独立になっているため、同
一チップ上においても、各トランジスタ、抵抗等の素子
の微小なバラツキの影智でバイアス点が一定せずにバラ
ツキが大きくなシ、発振周波数のバラツキとなって製造
上選別あるいは外部定数での調整を余儀なくされる。一
方、各トランジスタ素子のhFKのバラツキによる各ト
ランクxpのベース電流のバラツキによって、バイアス
抵抗の電圧降下のうちベース電流に基く部分がバラクい
て、発掘周波数及びその温変係数あるいは発皺振幅のバ
ラツキが大きい欠点をもつ。その上、ベース電流を無視
するためにバイアス抵抗を小さくし回路電流を十分に流
した場合、バイアスが2つもあり回路電流がむだに流す
ことになる。However, in the first i× 1, the base bias circuits of transistor Q14 *Q* and Qxs that constitute the oscillation circuit are independent, so even on the same chip, each transistor, resistor, etc. Due to the effects of minute variations in the elements, the bias point is not constant and the variations are large, resulting in variations in the oscillation frequency, which necessitates selection during manufacturing or adjustment using external constants. On the other hand, due to variations in the base current of each trunk xp due to variations in hFK of each transistor element, the portion of the voltage drop of the bias resistor that is based on the base current varies, causing variations in the excavation frequency and its temperature variation coefficient or wrinkle amplitude. It has a big drawback. Furthermore, if the bias resistance is made small to ignore the base current and a sufficient circuit current is allowed to flow, there will be two biases and the circuit current will flow in vain.
本発明の目的は、発振絢波数およびこの振1鵬のバラツ
キが小さく且つ温度係数も小さいのこぎ9波発生卸路を
提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a sawtooth 9-wave generation circuit that has small variations in the number of oscillation waves and its amplitude, and also has a small temperature coefficient.
本発明による回路は、各トランジスタのバイアス電圧を
得るためのバイアス1錯を一つにまとめ、さらにベース
電流の変化によるバイアス抵抗の電圧降下分を減少させ
る目的でベース11.流會大幅に減少させる為にトラン
ジスタをダーリントン接続することとし、一方ダーリン
トン接続による温度特性の悪化にも工夫して対処したも
ので、原理的には発掘周波数に温匿係数ケもたない発振
回路を形成することができた。The circuit according to the present invention combines the bias circuits for obtaining the bias voltage of each transistor into one, and further reduces the voltage drop of the bias resistor due to changes in the base current. In order to significantly reduce the current, the transistors are connected in Darlington connection, and at the same time, the deterioration of temperature characteristics due to Darlington connection is also taken care of, and in principle it is an oscillation circuit that does not have a thermal coefficient at the excavated frequency. was able to form.
第2図は、本発明に蔓づくバイアスを一箇所にまとめた
もので、説明を簡便にするため電流の温度補償は省いで
ある。次に、第2図について説明する。ダーリントン接
続された三組のトランジスタ対(Qis−Qu ) −
(Qss 、Qse ) −(Ql1−Q84)のエミ
ッタは共通接続されていて、トランジスタQSI−Q@
4はバイアス回路から抵抗分@によって所Wの電圧を加
えている。バイアス回路はツェナーダイオードDWの両
端の電圧をトランジスタQ・6のペースで受け、その工
Zツタ電圧を抵抗R@a、 l(、、I(、、の三つで
電圧分割してそれツレバイアス電圧をトランジスタQ@
、Q−のペースに加えている。ダーリントン接続し九三
組メのトランジスタの各々の接続上で、例えばトランジ
スタQssのエミッタから抵抗1’tsaを介してトラ
ンジスタQ@4のペースに接続し、トランジスタQ@4
のエミッタが他の組のQss * Qssのエミッタと
共通接続している。他の組のトランジスタ対(Q−9Q
詩)、(Qu、Q@4)に対しも同じように抵抗R1B
!、R64が接続されている。FIG. 2 summarizes the biases associated with the present invention in one place, and the temperature compensation of the current is omitted to simplify the explanation. Next, FIG. 2 will be explained. Three Darlington-connected transistor pairs (Qis-Qu) -
The emitters of (Qss, Qse) - (Ql1-Q84) are commonly connected, and the transistors QSI-Q@
4 applies a voltage of W from the bias circuit via a resistor @. The bias circuit receives the voltage across the Zener diode DW at the pace of the transistor Q.6, and divides the voltage between the resistors R@a, l(, , I(, , , ) to obtain the bias voltage. Transistor Q@
, in addition to Q-'s pace. On the connection of each of the transistors in the darlington group 93, for example, the emitter of the transistor Qss is connected to the pace of the transistor Q@4 through the resistor 1'tsa, and the transistor Q@4
The emitters of Qss * Qss of the other set are commonly connected. Other transistor pairs (Q-9Q
Similarly, resistance R1B is applied to (Qu, Q@4)
! , R64 are connected.
次に動作を説明する。電源電圧をVcc端子に加えると
、キャパシタC−は抵抗Ruを通して充電される。抵抗
R13につながるトランジスタQs・。Next, the operation will be explained. When a power supply voltage is applied to the Vcc terminal, capacitor C- is charged through resistor Ru. Transistor Qs. connected to resistor R13.
QrIのトランジスタは電源ONと同時にトランジスタ
Qss、Q・鵞が作動するため、機を一つにして電流が
流れはじめる。コンデンサCOtの両端の電位は、R,
、XC,、で決まる時定数でOから次第に立上るので、
当初は低くてトランジスタQis t Quはオフ状態
となっている。このため、トランジスタQ@sもオフで
ある。したがって、トランジスタQ・1もオフとなって
いるため、トランジスタQiyのコレクタ電aはすべて
トランジスタQssのペースに流入して急故にキャパシ
タCotを充電しようとする。In the QrI transistor, when the power is turned on, the transistors Qss and Q are activated, so current begins to flow as one unit. The potential across the capacitor COt is R,
It gradually rises from O with a time constant determined by ,XC, , so
Initially, it is low and the transistor Qist Qu is in an off state. Therefore, transistor Q@s is also off. Therefore, since the transistor Q.1 is also off, all of the collector current a of the transistor Qiy flows into the pace of the transistor Qss and suddenly attempts to charge the capacitor Cot.
次に、キャパシタCowの充電が進んでこの両端の電位
が上り、トランジスタQgsで決っていた共通工はツタ
の電位に対するトランジスタQ@aのできまる電位を越
える程にトランジスタQssのペース電位が上昇してく
ると、トランジスタQI4が急速に導通をはじめ、それ
と反対にトランジスタQssはカットオフになる。そう
なると、トランジスタQI4のコレクタ電流によって抵
抗)tssが電位降下し、その結果トランジスタQss
が導通する。このため、抵抗R,−の電圧降下がふえ、
トランジスタQmo −Qst frドライブ可能とす
ると、これらが導通開始する。そうすると、トランジス
タQis + Qssのペースに流れていた電流は、ト
ランジスタQ・1゜QHに吸いとられて、Qs−tQi
−は急速にカットオフに至る。と同時にキャパシタC@
lの充電が止まる。この瞬間のCDの両端の電圧が発振
電圧の上限レベルを定める。キャパシタC(11の充電
が止篭るとCa11に蓄えられ丸亀荷は抵抗ルoat通
じて放電開始する。放電に伴ってキャパシタC11の両
端の電位はさがってゆくが、前記共通エミッタの電位が
トランジスタQaで決まるエミッタ電位になるまで、ト
ランジスタQ14は導通をつづける(キャパシタC・3
の放電々流の一部でベース駆動している丸め)ため、こ
の間はトランジスタQi・はカットオフであり、トラン
ジスタQ・3で決まるエミッタ電位になったときトラン
ジスタQI4はカットオフとなシ、その為にトランジス
タQue Q@6 eQstが再びカットオフになる。Next, as the charging of the capacitor Cow progresses, the potential at both ends rises, and the common voltage determined by the transistor Qgs increases the pace potential of the transistor Qss to the extent that it exceeds the potential determined by the transistor Q@a with respect to the potential of the ivy. When this happens, transistor QI4 rapidly begins to conduct, and conversely, transistor Qss becomes cut-off. In this case, the potential of the resistor) tss drops due to the collector current of the transistor QI4, and as a result, the transistor Qss
conducts. Therefore, the voltage drop across the resistor R,- increases,
When the transistors Qmo-Qst fr are enabled to be driven, they start conducting. Then, the current flowing through the transistor Qis + Qss is absorbed by the transistor Q・1°QH, and becomes Qs−tQi
− quickly reaches the cutoff. At the same time, capacitor C@
l stops charging. The voltage across the CD at this moment determines the upper limit level of the oscillation voltage. When the capacitor C (11) stops charging, the Marugame load stored in Ca11 starts discharging through the resistor oat.As the discharge occurs, the potential across the capacitor C11 decreases, but the potential at the common emitter becomes the same as the transistor Qa. Transistor Q14 continues to conduct until the emitter potential determined by
During this period, transistor Qi is cut off, and when the emitter potential determined by transistor Q3 is reached, transistor QI4 is cut off. Therefore, the transistor Que Q@6 eQst becomes cut-off again.
この点で、キャパシタCamの放電が止まシ、発振電圧
の最下点を決定する。トランジスタQi4がカットオフ
にな夛、トランジスタQuが導通をはじめるとs Qs
sで決まるエミッタ電位が高いので、トランジスタQa
s本カットオフになり、キャパシタCowには再び充電
が開始され、発掘がくり返される。At this point, the capacitor Cam stops discharging and the lowest point of the oscillation voltage is determined. When transistor Qi4 becomes cut-off and transistor Qu starts conducting, s Qs
Since the emitter potential determined by s is high, the transistor Qa
The capacitor Cow is cut off, and the capacitor Cow starts charging again, and the excavation is repeated.
第3図は、実際に本発明を応用した回路で、第2図にお
ける抵抗R@、 、 R1,1をトランジスタ。6テ。Figure 3 shows a circuit to which the present invention is actually applied, in which the resistors R@, , R1,1 in Figure 2 are transistors. 6 te.
Q・畠でおきかえ、トランジスタQ□、Q67のペース
・エミッタ間電圧の温度変化を補償し、発振の温菱安屋
1fk基本的に完壁なものになしたものであり、その他
の回路木子の記号はすべて第2図と共通に示しである。It was replaced by Q. Hatake, compensated for the temperature change in the voltage between the pace and emitter of transistors Q□ and Q67, and made the oscillation Onryo Yasuya 1fk basically complete, and other circuit trees. All symbols are shown in common with FIG. 2.
本発明の発振回路の出方は、基本的に発振条件を指定す
るキャパシタCo5(第1図)、C@s(第2図)の両
端の電圧を増幅回路をへてと)出す。The oscillation circuit of the present invention basically outputs the voltage across the capacitors Co5 (FIG. 1) and C@s (FIG. 2), which specify the oscillation conditions, through the amplifier circuit.
第1図は従来のノコギリ波発生回路の一例を示す回路図
、第2図は本発明の基本的回路を示す回路図、第3図は
本発明の具体的構成の一実施例を示す回路図である。
Q・・・・・・トランジスタ、D・・・・・・ダイオー
ド、n・・・・・・抵抗、C・・・・・・コンデンサ。Fig. 1 is a circuit diagram showing an example of a conventional sawtooth wave generation circuit, Fig. 2 is a circuit diagram showing a basic circuit of the present invention, and Fig. 3 is a circuit diagram showing an example of a specific configuration of the present invention. It is. Q: Transistor, D: Diode, n: Resistor, C: Capacitor.
Claims (1)
ランジスタ部のベース相当端子に出力電圧を供給する充
放電回路と、前記第2および第3のトランジスタの各ベ
ース相当端子へそれぞれ供給される第1および第2のバ
イアス電圧を発生するためのバイアス源と、前記第1.
第2および第3のトランジスタの各エミッタ相当端子を
直流接続した接続点に接続され丸亀流源と、前記第2の
トランジスタ部に流れる電流を検出して前記充放電回路
の充電電流を制御する第1の回路手段と、前記第1のト
ランジスタ部に流れる電流を検出して前記第1の回路手
段の動作を制御すると共に前記第2のトランジスタに流
れる電流を制御する第2の回路手段とを具備することを
特徴とするのζぎり波発生回路。1st. A charge/discharge circuit supplies an output voltage to the second and third transistor sections, a terminal corresponding to the base of the first transistor section, and a charge/discharge circuit supplies an output voltage to the terminal corresponding to the base of the second and third transistors, respectively. a bias source for generating first and second bias voltages;
A second transistor is connected to a connection point where the emitter-equivalent terminals of the second and third transistors are connected with direct current, and detects the current flowing through the Marugame source and the second transistor section to control the charging current of the charging/discharging circuit. and second circuit means that detects a current flowing through the first transistor section to control the operation of the first circuit means and also controls a current flowing through the second transistor. A ζ-giri wave generation circuit characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5470782A JPS58172015A (en) | 1982-04-01 | 1982-04-01 | Generating circuit of saw-tooth wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5470782A JPS58172015A (en) | 1982-04-01 | 1982-04-01 | Generating circuit of saw-tooth wave |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58172015A true JPS58172015A (en) | 1983-10-08 |
JPS634965B2 JPS634965B2 (en) | 1988-02-01 |
Family
ID=12978266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5470782A Granted JPS58172015A (en) | 1982-04-01 | 1982-04-01 | Generating circuit of saw-tooth wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58172015A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861697A (en) * | 1995-10-31 | 1999-01-19 | Mitsubishi Denki Kabushiki Kaisha | Single-phase induction motor and rotor assembling apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4989464A (en) * | 1972-12-26 | 1974-08-27 | ||
JPS5457943A (en) * | 1977-10-18 | 1979-05-10 | Toshiba Corp | Schmitt trigger circuit |
-
1982
- 1982-04-01 JP JP5470782A patent/JPS58172015A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4989464A (en) * | 1972-12-26 | 1974-08-27 | ||
JPS5457943A (en) * | 1977-10-18 | 1979-05-10 | Toshiba Corp | Schmitt trigger circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861697A (en) * | 1995-10-31 | 1999-01-19 | Mitsubishi Denki Kabushiki Kaisha | Single-phase induction motor and rotor assembling apparatus |
US5898250A (en) * | 1995-10-31 | 1999-04-27 | Mitsubishi Denki Kabushiki Kaisha | Single-phase induction motor and rotor assembling apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS634965B2 (en) | 1988-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3281357B2 (en) | Switching power supply | |
JP2001190063A (en) | Switching power unit | |
US5914589A (en) | Voltage boosting circuit for high-potential-side MOS switching transistor | |
JPS6155614B2 (en) | ||
JPS58172015A (en) | Generating circuit of saw-tooth wave | |
EP0806076B1 (en) | Power-supply circuit | |
US4052645A (en) | Vertical deflection circuit | |
JPH01268454A (en) | Gradual starting circuit for switching power supplies | |
JP3121892B2 (en) | Charge control device with AC generator | |
JP3376668B2 (en) | Double integration circuit | |
JP3080237B2 (en) | Ignition inductor control circuit and control method thereof | |
JPH0724813Y2 (en) | Voltage superposition circuit of electronic tuning tuner | |
JPS602675Y2 (en) | discharge timer device | |
JPS6122345Y2 (en) | ||
JPH01298956A (en) | switching power supply | |
US6734676B2 (en) | Method and timing circuit for generating a switching or control signal | |
JPS5910840Y2 (en) | Horizontal deflection excitation circuit | |
JPH024497Y2 (en) | ||
JPH0339979Y2 (en) | ||
RU2213385C1 (en) | Auxiliary relay | |
JPS6041699Y2 (en) | solenoid circuit | |
JPS6127585B2 (en) | ||
JP2002504295A (en) | Display device with heating circuit | |
EP1271757B1 (en) | Power supply circuit and CCD camera using same | |
JPS5848831Y2 (en) | vertical deflection circuit |