[go: up one dir, main page]

JPS58167613A - Preparation of water-soluble cyclodextrin-containing polymer - Google Patents

Preparation of water-soluble cyclodextrin-containing polymer

Info

Publication number
JPS58167613A
JPS58167613A JP4733582A JP4733582A JPS58167613A JP S58167613 A JPS58167613 A JP S58167613A JP 4733582 A JP4733582 A JP 4733582A JP 4733582 A JP4733582 A JP 4733582A JP S58167613 A JPS58167613 A JP S58167613A
Authority
JP
Japan
Prior art keywords
containing polymer
cyclodextrin
water
soluble
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4733582A
Other languages
Japanese (ja)
Inventor
Kunio Kihara
木原 圀男
Hideo Toda
秀夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP4733582A priority Critical patent/JPS58167613A/en
Publication of JPS58167613A publication Critical patent/JPS58167613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

PURPOSE:To prepare a water-soluble cyclodextrin-containing polymer in high yield suitable for including a slightly soluble drug, having high including ability, by reacting a specific epoxy compound with cyclodextrin. CONSTITUTION:0.1-20g diepoxy compound shown by the formula (R is H or methyl; n is 1-10) and 0.5-5.0g cyclodextrin are dissolved in 10ml solvent (e.g., dimethylformamide, etc.), they are reacted in the presence of a catalyst (e.g., triethylamine, etc.) at 50-150 deg.C for 10-30hr, a cyclodextrin-containing polymer is precipitated in acetone, etc., washed, and dried to give the desired cyclodextrin-containing polymer. The diepoxy compound is obtained by synthesizing an ethylene glycol with epichlorohydrin.

Description

【発明の詳細な説明】 本発明は、水溶性シクロデキストリン含有重合体の製造
法に関し、更に詳しくは、分子サイズの大きい難溶性薬
物を包接化するに適した水溶性シクロデキストリン含有
重合体の製造法に関する。
Detailed Description of the Invention The present invention relates to a method for producing a water-soluble cyclodextrin-containing polymer, and more specifically, to a method for producing a water-soluble cyclodextrin-containing polymer suitable for inclusion of a poorly soluble drug with a large molecular size. Regarding manufacturing methods.

シクロデキストリン(以下、「CD」という。)は、種
々の化合物(ダスト化合物)を環内に取り込む、いわゆ
る、ホスト化合物として、包接化合物を形成することが
知られている。この包接化合物の形成を利用して、揮発
性物質の不揮発性化、酸化・光分解性物質の保護、難溶
性薬物の可溶化等、医薬への応用が試みられている。
Cyclodextrins (hereinafter referred to as "CD") are known to form clathrate compounds as so-called host compounds that incorporate various compounds (dust compounds) into the ring. Utilizing the formation of this clathrate compound, attempts have been made to apply it to medicines, such as making volatile substances non-volatile, protecting oxidized and photodegradable substances, and solubilizing poorly soluble drugs.

しかし、難溶性薬物の可溶化に関しては、CDによる包
接′化により難溶性薬物単独に比較して溶解度は増大す
るものの、CD単独に比較して包接化合物の溶解度が低
下する現象がみられ、生物学的利用能(バイオアベイラ
ビリティ)の点で問題があった・ また、包接部位を2箇所有する分子サイズの大きい薬物
は、CDが2分子関与することにより安定な包接化合物
を形成すると考えられる。
However, regarding the solubilization of poorly soluble drugs, although inclusion by CD increases the solubility compared to the poorly soluble drug alone, there is a phenomenon in which the solubility of the clathrate compound decreases compared to CD alone. However, there was a problem in terms of bioavailability.In addition, drugs with large molecules that have two inclusion sites form stable inclusion compounds due to the involvement of two molecules of CD. Conceivable.

従来、CDを含有する重合体の形成に関しては。Conventionally, regarding the formation of CD-containing polymers.

CDをエピクロルヒドリンに代表されるハロメチルオキ
シラン化合物、及びホルムアルデヒド等の架橋剤と反応
させて水不溶性樹脂にする方法(米国特許第34207
88号)が公知となっている。また、不飽和カルボン酸
のグリシジルエステルと架橋剤とを用いて合成した架橋
共重合体にCDを固定化する方法が特開昭55−754
02号公報に開示されている。
A method of making a water-insoluble resin by reacting CD with a halomethyloxirane compound represented by epichlorohydrin and a crosslinking agent such as formaldehyde (US Pat. No. 34207)
No. 88) is publicly known. In addition, a method of immobilizing CD on a crosslinked copolymer synthesized using a glycidyl ester of an unsaturated carboxylic acid and a crosslinking agent was disclosed in JP-A-55-754.
It is disclosed in Publication No. 02.

しかし、これらの方法によるCD含有重合体は水不溶性
を目的とするものであり、また、包接能が充分でないた
め、医薬への応用には適していない〇 一方、水溶性CD含有重合体の合成については、CDの
アクリル酸変性体のラジカル重合による方法[Macr
omolecules 、 9 (5)、 701 (
1976)〕及びCDとエピクロルヒドリンとを温和な
条件下で縮合する方法〔日本化学会第41回春季年会予
槁集(1980年4月)3U特2〕が知られている。前
者のCDアクリル酸変性体のラジカル重合による方法は
、原料として用いるアクリル酸変性体の合成に二工程を
要し、しかも生成物の分離操作が複雑であり、かつ、目
的物の収率が低く、また、後者の方法は、簡便であるが
低収率であるという間鞘点を有していた。
However, the CD-containing polymers obtained by these methods are intended to be water-insoluble and do not have sufficient inclusion ability, so they are not suitable for pharmaceutical applications.On the other hand, water-soluble CD-containing polymers For the synthesis of CD, a method using radical polymerization of an acrylic acid modified product of CD [Macr
Omolecules, 9 (5), 701 (
1976)] and a method of condensing CD and epichlorohydrin under mild conditions [Preliminary Proceedings of the 41st Spring Annual Meeting of the Chemical Society of Japan (April 1980) 3U Special 2] are known. The former method, which involves radical polymerization of a modified acrylic acid product of CD, requires two steps to synthesize the modified acrylic acid product used as a raw material, and the separation operation of the product is complicated, and the yield of the target product is low. Moreover, the latter method was simple but had the disadvantage of low yield.

すなわち、本発明は前述した従来のCD及びCD含有重
合体の問題点を解消したもので、好収率で、かつ、得ら
れたものの包接能が高い水溶性CD含有重合体の製造法
を提供することを目的とする。
That is, the present invention solves the problems of the conventional CD and CD-containing polymers described above, and provides a method for producing a water-soluble CD-containing polymer with a high yield and high inclusion ability. The purpose is to provide.

本発明者らは、前記した点に鑑みて、鋭意研究を重ねた
結果、 次式(■): (式中、Rは水素原子又はメチル基を、nは1〜10の
整数をそれぞれ表わす。) で示されるジェポキシ化合物を用いることにより、前述
の問題点が解消されることを見い出し、本発明を完成す
るに至った。
In view of the above points, the present inventors have conducted extensive research and have found the following formula (■): (wherein, R represents a hydrogen atom or a methyl group, and n represents an integer from 1 to 10, respectively. ) It has been discovered that the above-mentioned problems can be solved by using the jepoxy compound shown by the following, and the present invention has been completed.

すなわち、本発明は、 次式(I): (式中、R及びnは前記と同義である。)で示されるジ
ェポキシ化合物とCDとを反応させることを特徴とする
水溶性CD含有重合体の製造法である。
That is, the present invention provides a water-soluble CD-containing polymer characterized by reacting a jepoxy compound represented by the following formula (I): (wherein R and n have the same meanings as above) with CD. It is a manufacturing method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いるCDの構造は、D−グルコビラノース基
がα−1,4−グリコシド結合により゛環状に結合した
ものである。このCDには重合度に応じて、α−CD(
重合度6)、β−CD(重合度7)、β−CD(重合度
8)の3種の異量体が存在するが、本発明において、こ
れらは単独で又は二種以上の混合物として用いられる。
The structure of CD used in the present invention is one in which D-glucobylanose groups are linked in a cyclic manner through α-1,4-glycosidic bonds. Depending on the degree of polymerization, this CD contains α-CD (
There are three types of isomers: β-CD (polymerization degree 6), β-CD (polymerization degree 7), and β-CD (polymerization degree 8), and in the present invention, these can be used alone or as a mixture of two or more types. It will be done.

前記式(I)で示されるジェポキシ化合物としては、市
販のもの、又は公知の各種の方法により製造されたもの
が用いられる。前記ジェポキシ化合物は、例えば、エチ
レングリコール、ジェfL/ングリコール、トリエチレ
、ングリコール、ペンタエチレングリコール、デカエチ
レングリコール、プロピレングリコール、ジノロビレン
グリコール、ペンタゾロピレングリコール、デカプロピ
レングリフール等の、 (式中、R及びnは前記と同義である。)で示されるエ
チレングリコール類又はプロピレングリコール類とエピ
クロルヒドリンとを反応させることにより、容易に合成
することがで良る。
As the jepoxy compound represented by the formula (I), commercially available ones or those produced by various known methods can be used. The jepoxy compounds include, for example, ethylene glycol, GefL/nglycol, triethylene glycol, pentaethylene glycol, decaethylene glycol, propylene glycol, dinolobylene glycol, pentazolopylene glycol, decapropylene glycol, etc. It can be easily synthesized by reacting ethylene glycols or propylene glycols represented by the formula (wherein R and n have the same meanings as above) with epichlorohydrin.

CDと前記ジェポキシ化合物どの反応は、両者を溶媒中
適当な触媒の存在下において加熱することにより行なう
ことができる。両者の使用量は、CDに対するジェポキ
シ化合物のモル比が1以上であればよいが、特に2〜2
0の範囲内であることが好ましい。両者の溶媒中の濃度
は、用いる溶媒により異なるが、一般には、溶媒10d
に対して、CDは0.5〜5.0.9 、ジェポキシ化
合物は0.1〜20yの範囲内であることが好ましい。
The reaction between CD and the above jepoxy compound can be carried out by heating both in a solvent in the presence of a suitable catalyst. The amount of both used may be as long as the molar ratio of the jepoxy compound to CD is 1 or more, but especially 2 to 2.
It is preferably within the range of 0. The concentration of both in the solvent varies depending on the solvent used, but in general, the concentration of both in the solvent is 10 d.
In contrast, it is preferable that the CD is within the range of 0.5 to 5.0.9, and the jepoxy compound is within the range of 0.1 to 20y.

反応温度には、特に制限はないが、一般に高温の方が反
応速度が大きいので、50〜150℃の範囲内であるこ
とが好ましく、90〜120℃の範囲内であることが更
に好ましい。用いる溶媒は、CDとジェポキシ化合物と
を溶解するに充分なものであれば如何なるものでもよく
、例えば、ジメチルホルムアミド(DMF) 、ジメチ
ルスルホキ1シド(DMSO)等が挙げられる。触媒と
しては、エポキシ基の開環重合触媒となり得る任意のも
のが使用可能であり、例えば、トリエチルアミン等の第
三アミン、アミン−三フッ化ホウ素コンプレックス等の
ホウ素錯塩、ルイス酸、無機酸等が挙げられる。用いる
触媒の開け、その種類によっても異なるが、例えば、ト
リエチルアミンを用いる場合では、CDl0Fに対して
、一般には0.05〜2.0dの範囲内であることが好
ましい。以上の条件下において、10〜30時間反応さ
せることにより、反応は終了する。反応終了後、アセト
ン中でCD含有重合体を析出させ、適当に洗浄後乾燥す
ることにより、目的とするCD含有重合体を得ることが
できる。この時、アセトンの代わりにイソプロピルアル
コール等の溶媒を用いてもよい。
The reaction temperature is not particularly limited, but generally the reaction rate is higher at higher temperatures, so it is preferably within the range of 50 to 150°C, and more preferably within the range of 90 to 120°C. Any solvent may be used as long as it is sufficient to dissolve the CD and the jepoxy compound, and examples thereof include dimethylformamide (DMF) and dimethylsulfoxide (DMSO). As the catalyst, any catalyst that can serve as a ring-opening polymerization catalyst for epoxy groups can be used, such as tertiary amines such as triethylamine, boron complex salts such as amine-boron trifluoride complexes, Lewis acids, inorganic acids, etc. Can be mentioned. Although it varies depending on the size and type of catalyst used, for example, in the case of using triethylamine, it is generally preferable that it is within the range of 0.05 to 2.0 d relative to CD10F. The reaction is completed by reacting for 10 to 30 hours under the above conditions. After the reaction is completed, the desired CD-containing polymer can be obtained by precipitating the CD-containing polymer in acetone, appropriately washing and drying. At this time, a solvent such as isopropyl alcohol may be used instead of acetone.

本発明により得られる反応生成物は、CDの水酸基(例
えばβ−CDは、1分子中、−級水酸基7個及び二級水
酸基14個を有する。)とジェポキシ化合物のグリシジ
ル基の末端炭素原子とがエーテル結合を介して結合した
構造を単位として有するCD含有重合体である。
The reaction product obtained by the present invention consists of the hydroxyl group of CD (for example, β-CD has 7 -class hydroxyl groups and 14 secondary hydroxyl groups in one molecule) and the terminal carbon atom of the glycidyl group of the jepoxy compound. This is a CD-containing polymer having as a unit a structure in which these are bonded via ether bonds.

また、本発明により得られるCD含有重合体は、揮発性
物質の不揮発性化、酸化・光分解性物質の保護、種々の
化合物の吸着、分離等に、周知のCDと同様に用いるこ
とができる。更に重要なことは、以下に示す試験例から
明らかなように、CD単量体に比し、水溶解度の増大、
包接能の向上が認められたことである。従って、本発明
により得られる水溶性CD含有重合体を用いて、ビタミ
ンA及び種々のステロイド化合物等の分子サイズの大き
い難溶性薬物を包接化することにより、医薬への幅広い
利用が可能となった点で、本発明は、工業的に高い価値
を有するものである。
Furthermore, the CD-containing polymer obtained by the present invention can be used in the same way as well-known CDs for making volatile substances non-volatile, protecting oxidative and photodegradable substances, adsorbing and separating various compounds, etc. . More importantly, as is clear from the test examples shown below, compared to CD monomer, it has increased water solubility,
This indicates that the inclusion ability was improved. Therefore, by using the water-soluble CD-containing polymer obtained by the present invention to clathrate poorly soluble drugs with large molecular sizes such as vitamin A and various steroid compounds, it becomes possible to use the water-soluble CD-containing polymer widely in medicine. In this respect, the present invention has high industrial value.

以下、実施例及び比較例により、本発明を更に詳細に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 β−CD6.9  (5゜3X10’モル)、エチレン
グリコールジグリシジルエーテル9.3.9 (5,3
X10−” ”’)及びトリエチルアミン0.3mlを
D M F 40 mlに溶解し、100m1の40フ
ラスコに入れた。撹拌しながら110℃で21時間加熱
し反応を行なった。
Example 1 β-CD6.9 (5°3X10'mol), ethylene glycol diglycidyl ether 9.3.9 (5,3
X10-'''') and 0.3 ml of triethylamine were dissolved in 40 ml of DMF and placed in a 100 ml 40 flask. The reaction was carried out by heating at 110° C. for 21 hours while stirring.

室温に冷却後、反応液を約300 mlのアセトン中に
注ぎ、重合体を析出させた。アセト、ンで充分に洗浄後
、真空乾燥機にて乾燥した。得られた生成物は吸湿性の
大きい淡黄色カルメラ状物質で、収量は、10.O11
であった。
After cooling to room temperature, the reaction solution was poured into about 300 ml of acetone to precipitate a polymer. After thorough washing with acetate, it was dried in a vacuum dryer. The obtained product is a highly hygroscopic pale yellow carmeloid material, and the yield is 10. O11
Met.

実施例2 β−CD6.9  (5,3X10−’モル)、エチレ
ングリフールジグリシジルエーテル9.3.9 (5,
3X10−’モル)及びトリエチルアミン1.0 ml
をDMSO40dに溶解し、100m1の40フラスコ
に入した。撹拌しながら110℃で21時間加熱し反応
を行なった。室温に冷却後、実施例1と同様に処理した
。得られた生成物は吸湿性の大きい淡黄色カルメラ状物
質で、収量は10.6 Iiであった。
Example 2 β-CD 6.9 (5,3X10-'mol), ethyleneglyfur diglycidyl ether 9.3.9 (5,
3 x 10-' mol) and 1.0 ml of triethylamine
was dissolved in DMSO40d and placed in a 100ml 40 flask. The reaction was carried out by heating at 110° C. for 21 hours while stirring. After cooling to room temperature, it was treated in the same manner as in Example 1. The obtained product was a highly hygroscopic pale yellow carmeloid material, and the yield was 10.6 Ii.

実施例3 β−CD 6.9 (5,3XIO”−’モル)、ノナ
エチレングリコールジグリシジルエーテル27.8II
(5,3X10−”%ル)及び)!J−r−+ル7ミン
0.3mlをDMF40−に溶解した。以下、実施例1
と同様に処理した。得られた生成物は吸湿性の高粘性物
質で、収量は12.6 gであった。
Example 3 β-CD 6.9 (5,3XIO"-'mol), nonaethylene glycol diglycidyl ether 27.8II
0.3 ml of (5,3X10-"%le) and )!J-r-+ru7mine was dissolved in DMF40-.Hereinafter, Example 1
processed in the same way. The resulting product was a hygroscopic, highly viscous material with a yield of 12.6 g.

実施例4 β−CD 6 g  (5,3X 10−’モル)、グ
ロビレングリコールジグリシジルエーテル9.91i’
 (5,3X10′モル)及びトリエチルアミン0.3
mlをDMF40mlに溶解した。以下、実施例1と同
様に処理した。得られた生成物は吸湿性の粉末軟物質で
、iIV量は10.0 Nであった。
Example 4 β-CD 6 g (5,3X 10-' mol), 9.91 i' of globylene glycol diglycidyl ether
(5,3X10'mol) and triethylamine 0.3
ml was dissolved in 40 ml of DMF. Thereafter, the same treatment as in Example 1 was carried out. The resulting product was a hygroscopic powdery soft material with an iIV amount of 10.0 N.

試験例1 分子針分布の測定 実施例1で得られた生成物(以下、rH−183」とい
う。)Etび実施例2で得られた生成物(以下、rH−
193jという。)について、液体クロマトグラフィー
(グルパーミェーションクロマトグラフィー)により分
子累分布の測定を行なった。
Test Example 1 Measurement of molecular needle distribution The product obtained in Example 1 (hereinafter referred to as rH-183) and the product obtained in Example 2 (hereinafter referred to as rH-183)
It is called 193j. ), the molecular distribution was measured by liquid chromatography (glupermeation chromatography).

尚、測定条件は以下のとおりである。The measurement conditions are as follows.

測定装M:島津製作所製 液体クロマトグラフィーLC
−3A カラム。1(充填剤’): ’I1.8に14000P
W+5000PWCIIK洋曹達゛工業■製、分子ふる
いの一種)溶出溶媒:水 溶出速度: 1 ml / rnin。
Measuring device M: Liquid chromatography LC manufactured by Shimadzu Corporation
-3A column. 1 (filler'): 'I1.8 to 14000P
W+5000PWCIIK manufactured by Yosoda Kogyo ■, a type of molecular sieve) Elution solvent: Water Elution rate: 1 ml/rnin.

その結果を第1図に示した。The results are shown in Figure 1.

第1図において、実線けH−183の、破線はH−19
3の分子量分布曲線をそれぞれ表わす。
In Figure 1, the solid line is H-183, and the broken line is H-19.
The molecular weight distribution curves of 3 are shown, respectively.

また、aはβ−CDの、bはエチレングリコールジグリ
シジルエーテルの溶出゛位置をそれぞれ表わす0 第1図から、H−183及びH−193とも、未反応物
質であるβ−CD及びエチレングリコールジグリシジル
エーテルはわずかであり、主生成物がCD含有重合体で
あることがわかった。
Furthermore, a represents the elution position of β-CD and b represents the elution position of ethylene glycol diglycidyl ether. There was very little glycidyl ether, indicating that the main product was a CD-containing polymer.

試験例2 水溶解度試験 H−183,H−193及びβ−CDの水溶解度試験を
行ない、その結果を表に示した。
Test Example 2 Water Solubility Test A water solubility test was conducted for H-183, H-193 and β-CD, and the results are shown in the table.

表 表から明らかなように、本発明により得られたCD含有
重合体はβ−CDに比し、約40倍の水溶解度を有する
ことがわかった。
As is clear from the table, the CD-containing polymer obtained according to the present invention was found to have a water solubility about 40 times that of β-CD.

H−193とダスト分子との包接作用を調べるために、
螢光物質(6−(p−)ルイジノ)−2−ナフタリンス
ルホン酸カリウム;以下、rTNs、、1という。〕を
用いて螢光測定法により検討した。
In order to investigate the inclusion effect between H-193 and dust molecules,
Fluorescent substance (6-(p-)luidino)-2-potassium naphthalenesulfonate; hereinafter referred to as rTNs. ] was investigated by fluorescence measurement.

(1)  螢光スペクトル lXl0”−’MのTNS水溶液に、β−CD又はH−
193を、その濃度が2X10−’Mになるように溶解
したそれぞれの溶液の螢光スペクトルを第2図に示した
(1) β-CD or H-
Figure 2 shows the fluorescence spectra of each solution in which 193 was dissolved at a concentration of 2 x 10-'M.

TNS水溶液のみでは、500nm付近にわずかなピー
クが存在するのみであるが、β−CDが存在すると、包
接化に基づくピーク位置、強度に変化が起こる。
In the TNS aqueous solution alone, only a slight peak exists around 500 nm, but when β-CD is present, the peak position and intensity change due to inclusion.

H−193存在下では、β−CDに比し、更にその傾向
が顕著となった。このことから、β−CDと)l−19
3ではTNSの包接様式が異なると推定される。
In the presence of H-193, this tendency became even more remarkable than in β-CD. From this, β-CD and) l-19
It is presumed that the inclusion mode of TNS is different in No. 3.

lXl0−11MのTNS水溶液中のβ−CD、H−1
93のそれぞれの濃度変化に基づく螢光強度の影春を第
3図に示した。
β-CD, H-1 in lXl0-11 M TNS aqueous solution
Figure 3 shows the shadow of the fluorescence intensity based on the concentration change of each of the 93 samples.

β−CD、H−193共に濃度の上昇に伴ない、螢光強
度が増加し、包接体が増加することがわかる。この現象
を、以下に示すに1otzの式により定量的に取り扱っ
た□ 尚、式中、〔CD′3はβ−CD又はH−193の濃度
を、■は相対螢光強度の実測値を、■ooはIの極限値
を、Kdは解離定数をそれぞれ表わす。
It can be seen that as the concentration of both β-CD and H-193 increases, the fluorescence intensity increases and the number of clathrates increases. This phenomenon was treated quantitatively using the 1oz formula shown below. In the formula, [CD'3 is the concentration of β-CD or H-193, ■ is the actual measured value of relative fluorescence intensity, (iii) oo represents the limit value of I, and Kd represents the dissociation constant.

相対螢光強度の逆数とβ−CD又はH−193の濃度の
逆数との関係をプロットしたものを第4図に示す。第4
図において、破線は実線で示したH−193の濃度を1
0倍目盛りを用いて記したものである。
FIG. 4 shows a plot of the relationship between the reciprocal of the relative fluorescence intensity and the reciprocal of the concentration of β-CD or H-193. Fourth
In the figure, the dashed line indicates the concentration of H-193 indicated by the solid line.
It is written using a 0x scale.

β−CDは低濃度、高濃度下で2種の直線な示し、1:
1と2=1の2種類の取り込みが起こっている。一方、
H−193では1種の直線で示され、とり込みが1種類
であることがわかった。
β-CD exhibits two types of linearity under low and high concentrations, 1:
Two types of uptake are occurring: 1 and 2=1. on the other hand,
In H-193, it was shown by one type of straight line, indicating that there was only one type of uptake.

このことは、第5図に示したβ−CD及びH−193の
螢光波長のピーク位置(λmax)からも明らかである
。また、H−193の取り込みは1、β−CDの高濃度
下でのものと同様、2:1であると考えられる。包接体
の解離定数を前記に1otzの式より求めた結果、本発
明により製造したβ−CD含有重合体であるH−193
とTNS包接体(2:1)の解離定数は2.5 X 1
0−’  Mであり、一方、β−CDとTNS包接体(
2:1)の解離定数は2.7 X 10−’Mであるこ
とがわかった。このことから、包接部位を2箇所有する
TNS等の大きなケ゛スト分子は、CD含有重合体を用
いることにより、CD単量体を用いた場合に比し、より
安定な包接体を形成することが明らかとなった。
This is also clear from the peak positions (λmax) of the fluorescent wavelengths of β-CD and H-193 shown in FIG. In addition, the uptake of H-193 is thought to be 2:1, similar to that under high concentrations of 1 and β-CD. As a result of determining the dissociation constant of the clathrate from the 1otz formula described above, H-193, which is a β-CD-containing polymer produced according to the present invention,
The dissociation constant of the and TNS clathrate (2:1) is 2.5 x 1
0-' M, while β-CD and TNS clathrate (
2:1) was found to be 2.7 x 10-'M. This suggests that large cast molecules such as TNS, which have two inclusion sites, can form more stable inclusion bodies by using CD-containing polymers than by using CD monomers. became clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明により製造したCD含有重合体の分子
量分布曲線を示す図である。 第2図はH−193及びβ−CDの螢光スペクトル図で
ある。 第3図は、TNS水溶液中のβ−CD及びH−193の
それぞれの濃度変化に基づく螢光強度の影響を示す図で
ある。 第4図は、相対螢光強度の逆数とβ−CD又けH−19
3の濃度の逆数との関係を示す図である。 第5図は、β−CD及びH−193の螢光波長のピーク
位置を示す図である。 11杆叶 1オfγ壺f!叶 I/[CO3(xi03M’) 第5図 濃L  (M)
FIG. 1 is a diagram showing a molecular weight distribution curve of a CD-containing polymer produced according to the present invention. FIG. 2 is a fluorescence spectrum diagram of H-193 and β-CD. FIG. 3 is a diagram showing the influence of fluorescence intensity based on changes in the respective concentrations of β-CD and H-193 in a TNS aqueous solution. Figure 4 shows the reciprocal of relative fluorescence intensity and β-CD straddle H-19.
3 is a diagram showing the relationship between the concentration and the reciprocal of the concentration. FIG. 5 is a diagram showing the peak positions of fluorescence wavelengths of β-CD and H-193. 11 rod leaves 1 o fγ pot f! Kano I/[CO3(xi03M') Figure 5 Dark L (M)

Claims (1)

【特許請求の範囲】 1 次式: (式中、Rけ水素原子又はメチル基を、nけ1〜10の
整数をそれぞ・れ表わす。)で示されるジェポキシ化合
物とシクロデキストリンとを反応させることを特徴とす
る水溶性シフロブキス) IJン含有重合体の製造法。
[Scope of Claims] 1. Reacting a jepoxy compound represented by the following formula: (wherein R represents a hydrogen atom or a methyl group, each representing an integer from 1 to 10) and a cyclodextrin. 1. A method for producing a water-soluble IJ-containing polymer, characterized in that:
JP4733582A 1982-03-26 1982-03-26 Preparation of water-soluble cyclodextrin-containing polymer Pending JPS58167613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4733582A JPS58167613A (en) 1982-03-26 1982-03-26 Preparation of water-soluble cyclodextrin-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4733582A JPS58167613A (en) 1982-03-26 1982-03-26 Preparation of water-soluble cyclodextrin-containing polymer

Publications (1)

Publication Number Publication Date
JPS58167613A true JPS58167613A (en) 1983-10-03

Family

ID=12772334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4733582A Pending JPS58167613A (en) 1982-03-26 1982-03-26 Preparation of water-soluble cyclodextrin-containing polymer

Country Status (1)

Country Link
JP (1) JPS58167613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120324A (en) * 1985-11-20 1987-06-01 Nippon Junyaku Kk Method for solubilizing organic substances in water
EP1093469B1 (en) * 1998-07-01 2007-05-02 California Institute of Technology Linear cyclodextrin copolymers
US8252276B2 (en) 2002-09-06 2012-08-28 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US9610360B2 (en) 2007-01-24 2017-04-04 Ceruliean Pharma Inc. Polymer drug conjugates with tether groups for controlled drug delivery
US11464871B2 (en) 2012-10-02 2022-10-11 Novartis Ag Methods and systems for polymer precipitation and generation of particles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120324A (en) * 1985-11-20 1987-06-01 Nippon Junyaku Kk Method for solubilizing organic substances in water
EP1093469B1 (en) * 1998-07-01 2007-05-02 California Institute of Technology Linear cyclodextrin copolymers
EP1764112A3 (en) * 1998-07-01 2007-05-23 California Institute of Technology Linear cyclodextrin copolymers
US8252276B2 (en) 2002-09-06 2012-08-28 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8314230B2 (en) 2002-09-06 2012-11-20 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8389499B2 (en) 2002-09-06 2013-03-05 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8399431B2 (en) 2002-09-06 2013-03-19 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US8404662B2 (en) 2002-09-06 2013-03-26 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US9550860B2 (en) 2002-09-06 2017-01-24 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutics delivery
US9610360B2 (en) 2007-01-24 2017-04-04 Ceruliean Pharma Inc. Polymer drug conjugates with tether groups for controlled drug delivery
US11464871B2 (en) 2012-10-02 2022-10-11 Novartis Ag Methods and systems for polymer precipitation and generation of particles

Similar Documents

Publication Publication Date Title
JP6956767B2 (en) Production method for cyclodextrin derivatives
CN102002118B (en) Method for preparing dimer(fatty acid)yl polyester by grafting on cyclodextrin
EP2194068A1 (en) Cyclodextrin compound modified with folic acid, process for production thereof, drug delivery agent for targeting drug delivery system, pharmaceutical composition, and imaging agent
JP6764464B2 (en) Porous crosslinked cellulose gel and its manufacturing method
CN108948231B (en) A kind of water-soluble polyrotaxane crosslinking agent and preparation method thereof
Cai et al. Preparation of stimuli-responsive hydrogel networks with threaded β-cyclodextrin end-capped chains via combination of controlled radical polymerization and click chemistry
WO2001044305A1 (en) Cyclodextrin ethers
Kasza et al. Hyperbranched polyglycerol nanoparticles based multifunctional, nonmigrating hindered phenolic macromolecular antioxidants: Synthesis, characterization and its stabilization effect on poly (vinyl chloride)
Van Dongen et al. PAMAM dendrimers as quantized building blocks for novel nanostructures
Alkan et al. Vinyl ferrocenyl glycidyl ether: an unprotected orthogonal ferrocene monomer for anionic and radical polymerization
Guo et al. A facile and efficient one‐step strategy for the preparation of β‐cyclodextrin monoliths
JPS58167613A (en) Preparation of water-soluble cyclodextrin-containing polymer
Kang et al. Sulfonamide‐containing polymers: a new class of pH‐sensitive polymers and gels
CN111643678A (en) Sulfhydryl-containing zwitterionic polypeptide modified adriamycin derivative, nano micelle and preparation method thereof
Grischenko et al. Modification of arabinogalactan propargyl ethers by triazolyl functions
Farcas et al. Synthesis and characterization of furosemide complex in β-cyclodextrin
Hussain et al. Macromolecular prodrugs of aspirin with HPMC: A nano particulate drug design, characterization, and pharmacokinetic studies
CN101343368B (en) Method for preparing poly-rotaxane with dynamic chemical bond
CN102266568A (en) Preparation method for hydroxypropyl cyclodextrin inclusion of taxol
CN109593145B (en) Cyclic polymer with nuclear magnetic imaging function and preparation method and application thereof
JPH07216002A (en) Production of cyclodextrin derivative, and cyclodextrin derivative
Fleischmann et al. End group functionalization of poly (ethylene glycol) with phenolphthalein: towards star-shaped polymers based on supramolecular interactions
WO2023176809A1 (en) Method for producing polyethylene glycol derivative
JP3604390B2 (en) Use of mono-3,6-anhydrocyclodextrins for dissolving hydrophobic compounds and checking the purity of enantiomers and a process for the preparation of these cyclodextrins
JPH10139877A (en) Production of succinimidyl group-substituted polyoxyalkylene derivative