[go: up one dir, main page]

JPS58165261A - Matrix type fuel cell - Google Patents

Matrix type fuel cell

Info

Publication number
JPS58165261A
JPS58165261A JP57048375A JP4837582A JPS58165261A JP S58165261 A JPS58165261 A JP S58165261A JP 57048375 A JP57048375 A JP 57048375A JP 4837582 A JP4837582 A JP 4837582A JP S58165261 A JPS58165261 A JP S58165261A
Authority
JP
Japan
Prior art keywords
matrix
electrode
fuel cell
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57048375A
Other languages
Japanese (ja)
Inventor
Masahiro Sakurai
正博 桜井
Hiroyuki Tajima
田島 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57048375A priority Critical patent/JPS58165261A/en
Publication of JPS58165261A publication Critical patent/JPS58165261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電解質を固定保持するマトリックスを使用する
型の燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a type of fuel cell that uses a matrix that holds an electrolyte fixed.

燃料として水素ガス談たはメタン、エタンなどの天然ガ
スを改質変成した水素含有ガスを用い、酸化剤ガスとし
て酸素または空気を用いる型の燃料電池においては、燃
料ガスと酸化剤ガスとが直接反応することにより生ずる
発電効率の低下および異常発熱ないし爆発等の危険の発
生を防止するため、電池内部での反応ガスの混合および
燃料ガスの電池外部への漏洩を極力防ぐことが菫まれム
電階数固定型の燃料電池は、一般に第1図に示す構成を
有する。すなわち、耐熱、耐触性および電気絶縁性を有
する多孔性薄膜部材番こりん酸、ii酸、水酸化カリウ
ムなどの電解質を含浸させたマトリックスlを中央にし
て、ガス拡散の良好な多孔性カーボン不織布などからな
る電極基材2暑。
In fuel cells that use hydrogen gas or a hydrogen-containing gas obtained by reforming natural gas such as methane or ethane as the fuel, and oxygen or air as the oxidizing gas, the fuel gas and the oxidizing gas are directly connected. In order to prevent a decrease in power generation efficiency and dangers such as abnormal heat generation or explosion caused by the reaction, it is necessary to prevent the mixing of reaction gases inside the battery and the leakage of fuel gas to the outside of the battery as much as possible. A fixed-tier fuel cell generally has the configuration shown in FIG. That is, a porous thin film member having heat resistance, corrosion resistance, and electrical insulation properties.A porous carbon nonwoven fabric with good gas diffusion is formed with a matrix impregnated with an electrolyte such as phosphoric acid, II acid, or potassium hydroxide in the center. Electrode base material 2 consisting of etc.

3aと、ポリテトラフルオロエチレンなどからなる撥水
層2b 、 3bと、白金等の貴金属を担持したカーボ
ン粉末および結着剤などからなる触媒層2c  、 3
cとからそれぞれ形成される燃料電極2と酸化剤電極3
とをサンドインチ状に配設し、これらを導電性および気
密性を有する隔lll1板4.4にて挾持した構成をと
る。図は隔離板としてバイポーラプレートを用いた例を
示し、5はバイポーラグレート4の一方の面に形成され
た燃料供給溝で燃料ガス区画室を構成し、6はバイポー
ラプレート4の他方の而に形成された酸化剤供給溝で酸
化剤ガス区画室を構成している。バイポーラグレートを
用いずに、溝付き多孔板を用いる型のものでは、各電極
基材のマトリックスと反対側にそれぞれ燃料供給溝ない
し酸化剤供給溝が形成されて溝付き多孔板とされ、図の
バイポーラプレートのかわりに平担な気密隔離板が設け
られる。いずれの場合でも電極とマトリックスとを気密
なMll&で挾持するという点ではかパわりはな、い。
3a, water-repellent layers 2b, 3b made of polytetrafluoroethylene, etc., and catalyst layers 2c, 3 made of carbon powder supporting noble metals such as platinum, a binder, etc.
a fuel electrode 2 and an oxidizer electrode 3 respectively formed from c.
are arranged in a sandwich-like manner, and these are sandwiched between conductive and airtight partition plates 4.4. The figure shows an example in which a bipolar plate is used as a separator, 5 is a fuel supply groove formed on one side of the bipolar plate 4 and constitutes a fuel gas compartment, and 6 is a fuel gas compartment formed on the other side of the bipolar plate 4. The oxidizing agent supply groove constitutes an oxidizing agent gas compartment. In the type that uses a grooved perforated plate without using a bipolar grating, fuel supply grooves or oxidizer supply grooves are formed on the opposite side of each electrode base material to the matrix, forming a grooved perforated plate, as shown in the figure. Instead of a bipolar plate, a flat gas-tight separator is provided. In either case, there is no difference in terms of sandwiching the electrode and matrix with an airtight Mll&.

ところで、上記構成を有(する燃料電池において、電池
内部におけるガス漏れ□は、主として電極触媒し1.・
1゜ 層からマトリックスを通過−して対極へ、到達する形で
発生するため、マトリックスに所定量の電解質が均一に
含浸されられていれば上記ガス漏れは防止できる。した
がって、電池内部におけるガス漏れの残る通路は電極な
いしマ) IJラックス端部にあるから、従来は第2図
に示すように、この端部にパツキン7を仲人し、バイポ
ーラプレート4゜4を加圧してシールを行なっていた。
By the way, in a fuel cell having the above configuration, gas leakage inside the cell is mainly caused by the electrode catalyst.
The gas leaks from the 1.degree. Therefore, the remaining path for gas leakage inside the battery is at the end of the electrode or IJ rack, and conventionally, as shown in Figure 2, a gasket 7 is placed at this end and a bipolar plate 4. It was sealed by applying pressure.

ところが電極やマトリックスの端部をパッキン7々全周
にわたって完全に冶看させることはなかなか困雛であり
、このため、第2図に矢印で示すようなガスの流通径路
が形成され、燃料と酸化剤とが@接反I6を起す危険が
あった。
However, it is difficult to completely inspect the ends of the electrodes and matrix around the entire circumference of the packing 7. Therefore, a gas flow path is formed as shown by the arrow in Figure 2, and the fuel and oxidation There was a risk of @contact I6 occurring with the agent.

そこで本発明はかかる端”部におけるガス漏れをなくす
ことのできる構造を提供することを目的とする。
Therefore, an object of the present invention is to provide a structure that can eliminate gas leakage at such end portions.

この目的は本兄明lこよれば、爾いガス吹き抜は圧力を
有するマトリックス目体により端部のガスシールを行な
わせることにより達成され、そのたゎ、D□よ、□−□
4.□K RIf f mユし・この段着^:″姓′i
を仲人することを口するものである。
This purpose, according to the hon., is achieved by gas-sealing the ends by means of a pressure-bearing matrix body, so that D□, □-□
4. □K RIf f myushi・this rank ^:″surname’i
It is said to act as a matchmaker.

第3図は不発明の実施例の賛部断面図で、第1図と同一
部分は同一の符号を付しである。図から明らかなように
、マトリックス1は隔IL&であるバイポーラプレート
4の端部近傍まで延在させられているのに対し、燃料電
極2はバイポーラプレート4憂こ形成された段部8内に
仲人され、かくしてバイボー2プレートとマトリックス
とかI!L&接する部分9が形成される。この結果、燃
料電極基材2aから電極の端部を通って漏出しようと試
みる燃料ガスは、高いカス吹き抜は圧力を有するマトリ
ックス1に遭遇し、それ以上の進行を阻まれる。
FIG. 3 is a partial sectional view of the non-inventive embodiment, in which the same parts as in FIG. 1 are given the same reference numerals. As is clear from the figure, the matrix 1 extends close to the end of the bipolar plate 4 at the distance IL&, whereas the fuel electrode 2 is located within the step 8 formed around the bipolar plate 4. Thus, Bibo 2 Plate and Matrix I! A portion 9 in contact with L& is formed. As a result, fuel gas attempting to escape from the fuel electrode substrate 2a through the end of the electrode encounters the matrix 1 with high sludge pressure and is prevented from advancing further.

なお酸化剤の11t極3とマトリックス1の肩面は通常
のシール材10tこてシールしておけばよい。
Note that the 11t electrode 3 of the oxidizing agent and the shoulder surface of the matrix 1 may be sealed with a 10t trowel of an ordinary sealing material.

ところで、本発明はマトリックスが尚いガス吹き抜は圧
力(通冨0゜5〜2Kg/j)を持つことを前提にして
いるから、マトリックスには常に十分な電解質が含浸保
持されている必要がある。そこで第3図の実a例ではさ
らlこマトリックス1の周辺部に対向する位置であって
前m1段層の外構の位置におけるバイポーラプレート4
に′111L購質の液量調節機能を持つ碑11および補
給孔12を設けである。この措置を講することにより、
燃料電池の運転時ないし休止時におけるマトリックス中
の電解質量の増減を溝11にて吸収させ、したがってマ
トリックス1は常に高いガスシール力を維持できるため
、本発明の効果を一層確実ならしめることが可能となる
〇 なお、本発明は溝付き多孔板を用いる瀝のものにも適用
可能であり、また酸化剤電極側に対しても同様な構造を
とりつることはいうまでもない。
By the way, since the present invention is based on the assumption that the matrix and the gas vent have a pressure (total 0°5 to 2 kg/j), the matrix must always be impregnated with and retained a sufficient amount of electrolyte. be. Therefore, in the example shown in FIG.
A monument 11 and a replenishment hole 12 with a liquid volume adjustment function of 111L are provided. By taking this measure,
The grooves 11 absorb changes in the amount of electrolyte in the matrix during operation or rest of the fuel cell, and therefore the matrix 1 can always maintain a high gas sealing force, making it possible to further ensure the effects of the present invention. It goes without saying that the present invention can also be applied to a structure using a grooved perforated plate, and a similar structure can also be applied to the oxidizer electrode side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマトリックス型燃料電池の一例のmm図、II
Z図は従来のガスシール構造例を示す部分1lIr面図
、第3図は本発明の実施例の資部断面図である。 :縛・ f  l y) ず 2  図 T 3 図
Figure 1 is a mm diagram of an example of a matrix fuel cell, II
Figure Z is a sectional view of a portion 1lIr showing an example of a conventional gas seal structure, and Figure 3 is a sectional view of a component of an embodiment of the present invention. :Bound・Fly) Zu 2 Figure T 3 Figure

Claims (1)

【特許請求の範囲】 1)電解質を保持しかつガス吹抜は圧力の高いマトリッ
クスを中央に挾んでそれぞれ電極基材と撥水層と触媒層
とからなる燃料電極および酸化剤電極をそれぞれの触媒
層が対向するように配置しこれらを気密な隔離板にて挾
持してなる燃料電a#こおいて、マトリックスを隔離板
の端部近傍まで延在させるとともに、少なくとも燃料’
[極の接する隔離板端面に電極の厚さにほぼ等しい段差
を形成してこの段差内、に電極、を収容し、マトリック
スの周縁部をガスシールとして利用することを%徴とす
るマトリックス型燃料電池。 2、特許請求の範囲第1項記載の燃料電池において、マ
トリックスの前記周縁部が電解質収容部を備えているこ
とを!徴とするマトリックス型燃料電池。
[Scope of Claims] 1) A fuel electrode and an oxidizer electrode each consisting of an electrode base material, a water repellent layer, and a catalyst layer are connected to each other by sandwiching a high-pressure matrix in the center that holds an electrolyte and has a gas vent. In a fuel cell a#, the matrix is arranged to face each other and sandwiched between airtight separators, and the matrix is extended to near the end of the separator, and at least the fuel
[A matrix-type fuel characterized by forming a step approximately equal to the thickness of the electrode on the end surface of the separator that contacts the electrode, accommodating the electrode within this step, and using the peripheral edge of the matrix as a gas seal. battery. 2. In the fuel cell according to claim 1, the peripheral portion of the matrix includes an electrolyte storage portion! Matrix type fuel cell.
JP57048375A 1982-03-26 1982-03-26 Matrix type fuel cell Pending JPS58165261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048375A JPS58165261A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048375A JPS58165261A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Publications (1)

Publication Number Publication Date
JPS58165261A true JPS58165261A (en) 1983-09-30

Family

ID=12801571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048375A Pending JPS58165261A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS58165261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576382A1 (en) * 1985-01-22 1986-07-25 Srti Soc Rech Tech Ind Device for gas leaktightness, electrolyser unit, fuel cell and chemical reactor comprising such a device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576382A1 (en) * 1985-01-22 1986-07-25 Srti Soc Rech Tech Ind Device for gas leaktightness, electrolyser unit, fuel cell and chemical reactor comprising such a device

Similar Documents

Publication Publication Date Title
JPS58152B2 (en) Nenryo Denchi Denkiyoku Oyobi Sonokumitatetai
US20030198853A1 (en) Air breathing direct methanol fuel cell pack
US3990910A (en) Nickel-hydrogen battery
JPS58156B2 (en) Fuel cell with electrolyte retention matrix made of silicon carbide
JPH07501417A (en) Electrochemical fuel cell gasketed membrane electrode assembly
JPS5837669B2 (en) Fuel cell and its manufacturing method
JP2001297779A (en) Fuel cell system
US5096786A (en) Integral edge seals for phosphoric acid fuel cells
US5087534A (en) Gas-recirculating electrode for electrochemical system
US2655551A (en) Magnesium-cuprous chloride reserve battery
US3300343A (en) Fuel cell including electrodes having two dissimilar surfaces
JPH0722037A (en) Fuel cell and method of manufacturing the same
JPH10106604A (en) Fuel cell
EP0124275A1 (en) Thin-film high pressure fuel cell
JPS58155B2 (en) Nendoriyodenchikumitatetai
JPS58165261A (en) Matrix type fuel cell
JPS58145066A (en) Fuel cell
JPH069143B2 (en) Fuel cell storage method
US4032694A (en) Fuel cell with hydronium beta-alumina electrolyte
JPS58115770A (en) Fuel cell
US4250231A (en) Acid electrolyte fuel cell method having improved carbon corrosion protection
JPS6247968A (en) Molten carbonate fuel cell with internal reforming
JP4288919B2 (en) Fuel cell system
Weissbart Fuel cells—Electrochemical converters of chemical to electrical energy
JPS5829583B2 (en) Matrix fuel cell