JPS58162730A - Gas turbine apparatus - Google Patents
Gas turbine apparatusInfo
- Publication number
- JPS58162730A JPS58162730A JP4505182A JP4505182A JPS58162730A JP S58162730 A JPS58162730 A JP S58162730A JP 4505182 A JP4505182 A JP 4505182A JP 4505182 A JP4505182 A JP 4505182A JP S58162730 A JPS58162730 A JP S58162730A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- combustion gas
- reheater
- combustion
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 16
- 239000000567 combustion gas Substances 0.000 abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 13
- 239000001301 oxygen Substances 0.000 abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 abstract description 13
- 238000003303 reheating Methods 0.000 abstract description 8
- 238000011084 recovery Methods 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 18
- 239000000446 fuel Substances 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000010795 Steam Flooding Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 238000004952 furnace firing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/14—Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はガスタービン装置に関する。[Detailed description of the invention] The present invention relates to a gas turbine device.
ガスター、ビンにおいて熱効率を辱めるためには、サイ
クル最高温度すなわちタービン入口温度を高める必豐が
ある。しかるに、タービン習の耐熱性によってタービン
入口温度が制限され、タービン翼の耐熱温度が低い場合
には、燃焼器において燃焼ガス中に希釈空気を混入する
ことによ−)でガス温度を下げる。また、タービン翼の
耐M温度が高い場合に1i、燃焼ガスの希釈を行なわず
、さらに、燃焼器における燃焼を理論混合比近くで行な
い、高温の燃焼ガスをタービンに導く1、一方、ガスタ
ービンのタービンにおける断熱膨張を等温膨張に釘づけ
て熱効率とともに比出力を高めるため1こ、再熱が行な
われる。内燃型ガスタービンにおいては、複数段のター
ビンの段間に設けられた再熱器に燃料を供給し、タービ
ンの高圧段で所定圧まで膨張して温度が低下した燃焼カ
スに含まれる未燃焼酸素を利用して燃料を燃焼させ、ガ
ス温度を再び高めて後段のタービンに供給する・なお、
この再熱を行なう場合、カスタービン排気の温度が高く
なるので、ガスタービン排気を排熱回収ボイラに導き9
発生した蒸気で蒸気タービンを駆動するガス/蒸気複合
サイクルを構成することによって、熱効率の大幅な向上
を達成できる。In order to improve thermal efficiency in gas turbines and turbines, it is necessary to increase the maximum cycle temperature, that is, the turbine inlet temperature. However, if the turbine inlet temperature is limited by the heat resistance of the turbine and the turbine blades have a low allowable temperature limit, the gas temperature is lowered by mixing dilution air into the combustion gas in the combustor. In addition, when the M temperature resistance of the turbine blades is high, 1i, the combustion gas is not diluted, combustion in the combustor is performed near the stoichiometric mixture ratio, and high-temperature combustion gas is guided to the turbine. Reheating is performed in order to combine adiabatic expansion with isothermal expansion in the turbine to increase specific output as well as thermal efficiency. In an internal combustion gas turbine, fuel is supplied to a reheater installed between multiple stages of the turbine, and the unburned oxygen contained in the combustion residue is expanded to a predetermined pressure in the high-pressure stage of the turbine and the temperature has decreased. The fuel is combusted using the gas, the gas temperature is raised again, and the gas is supplied to the subsequent turbine.
When performing this reheating, the temperature of the gas turbine exhaust increases, so the gas turbine exhaust is guided to the exhaust heat recovery boiler 9.
Significant improvements in thermal efficiency can be achieved by configuring a combined gas/steam cycle in which the generated steam drives a steam turbine.
しかるに、上述のように、カスタービンのサイクル最高
温度すなわちタービン高圧段の入口温度が高くなるにと
もなって、燃焼器における燃焼が理論混合比に近くなる
ので、燃焼ガス中に含まれる未燃焼酸素の含有敞が少な
くなる。燃焼ガス中の酸素の含有凰が少ない場合には、
再熱のための燃料の煤焼が不安定となりさらには燃焼が
不可能となり、シt:がって、再熱を行なうことができ
なくなる。また、再熱の回数を多くするほど熱効率が向
上するとともに比出力が増大するのであるが、燃焼器を
出る燃焼ガス中に未炉焼酸素が多く含まれる場合におい
ても、再熱によって酸素か消費されるので、多段の再熱
を行なうことが不可能となる。However, as mentioned above, as the maximum cycle temperature of the cast turbine, that is, the inlet temperature of the turbine high pressure stage, increases, the combustion in the combustor approaches the stoichiometric mixing ratio, so that the unburned oxygen contained in the combustion gas increases. Contains less berries. When the oxygen content in the combustion gas is low,
The soot burning of the fuel for reheating becomes unstable, furthermore, combustion becomes impossible, and therefore, reheating becomes impossible. In addition, the greater the number of reheats, the higher the thermal efficiency and the greater the specific output. However, even if the combustion gas exiting the combustor contains a large amount of unfurnished oxygen, reheating reduces the amount of oxygen consumed. This makes it impossible to perform multi-stage reheating.
本発明は上記事情に鑑みてなされたものであり、その目
的は、燃焼ガス中に含まれる酸素の鰍が少ない場合にお
いても再熱を行なうことができるようにして、熱効率の
向上と比出力の増大を図ることができるガスタービン装
置を提供することである。The present invention has been made in view of the above circumstances, and its purpose is to improve thermal efficiency and increase specific output by making it possible to perform reheating even when there is little oxygen contained in the combustion gas. It is an object of the present invention to provide a gas turbine device that can be expanded.
以下1本発明の実施例について図面にもとづいて説明す
る。An embodiment of the present invention will be described below based on the drawings.
本発明の第1の実施例は、第1図に示すように、lは圧
縮機、2は燃焼器、3は高圧タービン。In the first embodiment of the present invention, as shown in FIG. 1, 1 is a compressor, 2 is a combustor, and 3 is a high-pressure turbine.
4は再熱器、5は低圧タービン、6は負荷であり、7は
圧縮機1の途中段で抽気した所定圧の圧縮空気を再熱器
4に導くための流路である。圧縮機lで圧縮されtコ空
気が燃焼器2に導かれ、この燃焼器2において、破線で
示す管路8を経て供給される燃料が燃焼し、高温高圧の
燃焼ガスが発生する。燃焼ガスは、高圧タービン3に導
かれ、この高圧タービン3において膨張仕事を行なう。4 is a reheater, 5 is a low-pressure turbine, 6 is a load, and 7 is a flow path for guiding compressed air of a predetermined pressure extracted at an intermediate stage of the compressor 1 to the reheater 4. The air compressed by the compressor 1 is guided to the combustor 2, where the fuel supplied through the pipe line 8 indicated by the broken line is combusted to generate high-temperature and high-pressure combustion gas. The combustion gas is guided to the high pressure turbine 3, where it performs expansion work.
高圧タービン3における断熱膨張によって圧力が所定値
まで低下し且つ温度が低下した燃焼ガスは、再熱器4に
導かれる。Combustion gas whose pressure has decreased to a predetermined value and whose temperature has decreased due to adiabatic expansion in the high-pressure turbine 3 is guided to a reheater 4.
高圧タービン3に導かれる燃焼ガスの温度が高められ、
したがって、燃焼器2における燃焼が理論混合比近くで
行なわれ、再熱器4に導かれる燃焼ガスに含まれる酸素
の量が少ない、このため。The temperature of the combustion gas guided to the high pressure turbine 3 is increased,
Therefore, combustion in the combustor 2 takes place near the stoichiometric mixture ratio, and the amount of oxygen contained in the combustion gas led to the reheater 4 is small.
再熱器4には、さらに、圧縮機1の途中段で抽気された
所定圧の圧縮空気が燃焼用空気として流路7を経て導か
れる。再熱器4において、この燃焼用空気を利用して破
線で示す管路9を経て供給される燃料が燃焼して、燃焼
ガスの温度が高められる。Further, compressed air at a predetermined pressure extracted at an intermediate stage of the compressor 1 is guided to the reheater 4 as combustion air through a flow path 7. In the reheater 4, the combustion air is used to combust the fuel supplied through the pipe line 9 indicated by the broken line, and the temperature of the combustion gas is increased.
再熱器4において温度が高められた燃焼ガスは、低圧タ
ービン5に導かれて膨張仕事を行なう。The combustion gas whose temperature has been raised in the reheater 4 is guided to the low pressure turbine 5 and performs expansion work.
高圧タービン3及び低圧タービン5によって圧縮機l及
び負荷6が駆動される。また、低圧タービン5を出る排
気は、依然と九で高温であり、排熱回収ボイラ10に導
かれて蒸気サイクルヘ給執する。蒸気サイクルにおいて
は、排熱回収ボイラlOで発生した蒸気か蒸気タービン
+1へ導か(1。A compressor 1 and a load 6 are driven by a high pressure turbine 3 and a low pressure turbine 5. Furthermore, the exhaust gas exiting the low-pressure turbine 5 is still at a high temperature, and is led to the exhaust heat recovery boiler 10 to feed the steam cycle. In the steam cycle, the steam generated in the exhaust heat recovery boiler IO is led to the steam turbine +1 (1.
膨張仕事を行なったのち復水器12で復水し、復水は給
水ポンプ13で排熱回収ボイラ10へ導かれ、ガスター
ビン排気によって加熱されて蒸発し過熱される。蒸気タ
ービン11によって負荷14が駆動される拳
本発明の箭2の実施例は、第2図に小すように* 2
1 tt圧縮機、22は燃焼器、23は高圧タービン、
24は高圧再熱器、25は中圧タービン。After performing the expansion work, the condensate is condensed in the condenser 12, and the condensate is led to the exhaust heat recovery boiler 10 by the water supply pump 13, where it is heated by the gas turbine exhaust gas, evaporated, and superheated. An embodiment of the shaft 2 of the present invention in which the load 14 is driven by the steam turbine 11 is shown in FIG.
1 tt compressor, 22 a combustor, 23 a high pressure turbine,
24 is a high pressure reheater, and 25 is an intermediate pressure turbine.
26は低圧再熱器、27は低圧タービンであり。26 is a low pressure reheater, and 27 is a low pressure turbine.
28は圧縮機21の途中段で抽気した所定圧の圧縮空気
を低圧再熱器26に導くための流路である。Reference numeral 28 denotes a flow path for guiding compressed air of a predetermined pressure extracted at an intermediate stage of the compressor 21 to the low-pressure reheater 26.
圧縮機21で圧縮された空気が燃焼器22に導かれ、こ
の燃焼器22において、破線で示す管路29を経て供給
される燃料が燃焼して高温高圧の燃焼ガスが発生する。Air compressed by the compressor 21 is guided to the combustor 22, where the fuel supplied through the pipe line 29 shown by the broken line is combusted to generate high-temperature, high-pressure combustion gas.
燃焼ガスは、に圧タービン23に導かれ、この鵡圧ター
ビン23において膨張仕事を行なう。^圧タービン23
における断熱膨張に誹って圧力が所定値まで低下し且つ
温度が低下した燃焼カスは、高圧再熱器24に導かれる
。The combustion gas is guided to the pressure turbine 23, where it performs expansion work. ^pressure turbine 23
The combustion residue whose pressure has decreased to a predetermined value and whose temperature has decreased due to the adiabatic expansion in the combustion chamber 2 is led to the high-pressure reheater 24.
燃焼器22において発生する燃焼ガスに希釈空気が混入
されて、掲圧タービン23に導かれる燃焼ガスの温度か
上記第1実施例の高圧タービン8に導かれる燃焼ガスの
温度よりも低く、シたがって1局圧タービン23を出る
炉焼ガスに11酸素が多く含まれる。高圧タービーン2
3を出る燃焼ガスが晟圧再鵡器24に導かれ、この高化
再熱器24において、管路30を経て供給される燃料を
燃焼ガスに含まれる上記酸素を利用して燃焼させる。Dilution air is mixed into the combustion gas generated in the combustor 22, and the temperature of the combustion gas guided to the high pressure turbine 23 is lower than the temperature of the combustion gas guided to the high pressure turbine 8 of the first embodiment. The furnace gas leaving the single pressure turbine 23 contains a large amount of oxygen. High pressure turbine 2
The combustion gas exiting from the combustion gas 3 is led to a high-pressure reheater 24, where the fuel supplied through the pipe 30 is combusted using the oxygen contained in the combustion gas.
高圧再熱器24において温度が高められた燃焼ガスは、
中圧タービン25に導かれて膨張仕事を行なう、中圧タ
ービン25における断熱膨張により圧力が所定値まで低
下し且つ温度が低下した燃焼ガスは、低圧再熱器26に
導かれる。The combustion gas whose temperature has been increased in the high pressure reheater 24 is
Combustion gas whose pressure has been reduced to a predetermined value and whose temperature has been reduced by adiabatic expansion in the intermediate pressure turbine 25 is guided to the intermediate pressure turbine 25 to perform expansion work, and is guided to the low pressure reheater 26 .
高圧再熱器24における燃焼によって、燃焼ガス中の酸
素が消費され、低圧再熱器26に導かれる燃焼ガス中の
酸素の含有量か少ない、仁のため、低圧再熱器26には
、圧縮機21の途中段で抽気された所定圧の圧縮空気が
炉焼用y気として流路営8を経て導かれる。低圧再熱器
26において−1この燃焼用空気を利用して管路31を
経て供給される燃料が燃焼して、燃焼カスの温度が高め
られる。Oxygen in the combustion gas is consumed by combustion in the high-pressure reheater 24, and the oxygen content in the combustion gas led to the low-pressure reheater 26 is low. Compressed air at a predetermined pressure, which is bled in the middle of the machine 21, is led through the channel 8 as the furnace firing air. In the low-pressure reheater 26, the -1 combustion air is used to combust the fuel supplied through the pipe line 31, increasing the temperature of the combustion residue.
低圧再熱器26において[[が高められた煤焼カスは、
低圧タービン27に導かれてIII張仕小を行なう、高
圧タービン23中圧タービンン25゜低圧タービン27
によって圧縮機21及び負荷6が駆動される。また、低
圧タービン27を出る排気は、排熱回収ボイラ10へ導
かれ、蒸気サイクルへ給熱を行なう、蒸気サイクルの動
作は上記第1実施例の場合と同様である。In the low-pressure reheater 26, the soot scum with increased [[
High-pressure turbine 23 medium-pressure turbine 25° low-pressure turbine 27 guided by low-pressure turbine 27 to perform III tensioning
The compressor 21 and the load 6 are driven by. Further, the exhaust gas exiting the low pressure turbine 27 is guided to the exhaust heat recovery boiler 10 to supply heat to the steam cycle, and the operation of the steam cycle is the same as in the first embodiment.
なお、上記実施例では圧縮機から抽気した望気を燃焼用
空気として再熱器に導くが、再熱器に圧縮空気を供給す
ることだけを目的とする圧縮機を設けることも可能であ
り、また、カスタービンとは別置の供給源から圧縮空気
をP4!!ll器に導くことも可能である。In addition, in the above embodiment, the desired air extracted from the compressor is guided to the reheater as combustion air, but it is also possible to provide a compressor whose sole purpose is to supply compressed air to the reheater. In addition, compressed air is supplied to P4 from a source separate from the cast turbine. ! It is also possible to introduce it into a 1/2 vessel.
以上説明したように9本発明によるカスタービン装置に
おいては、圧縮空気が燃焼用空気として導かれる再熱器
を備えたから、ガスタービンのサイクル最高温度すなわ
ら燃焼器からタービンの高圧段に縛かれる燃焼ガスの温
度が高く、燃焼ガス中に含まれる酸素の鰍が少ない場合
においても。As explained above, since the gas turbine system according to the present invention is equipped with a reheater through which compressed air is introduced as combustion air, the maximum cycle temperature of the gas turbine, that is, from the combustor to the high pressure stage of the turbine, is restricted. Even when the temperature of the combustion gas is high and the amount of oxygen contained in the combustion gas is low.
単一あるいは複数の再熱を行なうことができ、したがっ
て、ガスタービンの鴫効率の向上及び比出力の増大を図
ることができる。Single or multiple reheats can be performed, thus increasing the efficiency and specific power of the gas turbine.
第1図は本発明の第1の実施例を示す系統線図、第2図
は本発明の第2の実施例を示す系統線図である。
1.21・・圧縮機、2.22・・燃焼器、3.23・
・高圧タービン、4・・再り器、5.27・・低圧ター
ビン、7.28・・流路、24・・高圧再熱器。FIG. 1 is a system diagram showing a first embodiment of the invention, and FIG. 2 is a system diagram showing a second embodiment of the invention. 1.21...Compressor, 2.22...Combustor, 3.23...
- High pressure turbine, 4... Reheater, 5.27... Low pressure turbine, 7.28... Channel, 24... High pressure reheater.
Claims (1)
とを特徴とするガスタービン装置。A gas turbine device comprising a reheater through which compressed air is guided as combustion air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4505182A JPS58162730A (en) | 1982-03-22 | 1982-03-22 | Gas turbine apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4505182A JPS58162730A (en) | 1982-03-22 | 1982-03-22 | Gas turbine apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58162730A true JPS58162730A (en) | 1983-09-27 |
Family
ID=12708551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4505182A Pending JPS58162730A (en) | 1982-03-22 | 1982-03-22 | Gas turbine apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58162730A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05506290A (en) * | 1990-02-01 | 1993-09-16 | マンネスマン・アクチエンゲゼルシャフト | Method and device for creating mechanical energy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5534291A (en) * | 1978-08-31 | 1980-03-10 | Ford Motor Co | Corrosion resistant primer |
-
1982
- 1982-03-22 JP JP4505182A patent/JPS58162730A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5534291A (en) * | 1978-08-31 | 1980-03-10 | Ford Motor Co | Corrosion resistant primer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05506290A (en) * | 1990-02-01 | 1993-09-16 | マンネスマン・アクチエンゲゼルシャフト | Method and device for creating mechanical energy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6085514A (en) | Method of steam cooling thermally highly loaded units of a gas-turbine group | |
US6782703B2 (en) | Apparatus for starting a combined cycle power plant | |
US5761896A (en) | High efficiency method to burn oxygen and hydrogen in a combined cycle power plant | |
US6223523B1 (en) | Method of operating a power station plant | |
CN1074085C (en) | Exhaust recirculation type combined plant | |
EP1186761A2 (en) | Energy recovery from compressor discharge bleed air in gas turbine plants | |
US20070034704A1 (en) | Oxygen-enriched air assisting system for improving the efficiency of cogeneration system | |
JPH08114104A (en) | Composite gas-steam turbine power plant | |
JPS61142335A (en) | Gas turbine plant startup method and gas turbine plant | |
EP1164254A3 (en) | Optimized steam turbine peaking cycles utilizing steam bypass and related process | |
US20100281870A1 (en) | System and method for heating fuel for a gas turbine | |
WO2006129150A2 (en) | Practical method for improving the efficiency of cogeneration system | |
US20110266726A1 (en) | Gas turbine exhaust as hot blast for a blast furnace | |
US5839269A (en) | Method of operating a combined gas and power steam plant | |
GB2298243A (en) | Steam turbine operation | |
EP0777820B1 (en) | Method and apparatus for regulating and augmenting the power output of a gas turbine | |
JPH0949436A (en) | Starting method of combination plant | |
JPH09217603A (en) | Driving method of power plant | |
JP2001515556A (en) | Hydrogen fuel power plant using heat transfer heat exchanger | |
JPH08210151A (en) | Power plant | |
RU2611138C1 (en) | Method of operating combined-cycle power plant | |
JP2002021508A (en) | Condensate supply system | |
JPS58162730A (en) | Gas turbine apparatus | |
RU2830779C1 (en) | Method of operation of combined cycle plant of power plant with parallel operation scheme | |
RU2830784C1 (en) | Combined cycle plant of power plant with parallel operation scheme |